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Abstract

System theoretic approaches to action recognition model

the dynamics of a scene with linear dynamical systems

(LDSs) and perform classification using metrics on the

space of LDSs, e.g. Binet-Cauchy kernels. However, such

approaches are only applicable to time series data living

in a Euclidean space, e.g. joint trajectories extracted from

motion capture data or feature point trajectories extracted

from video. Much of the success of recent object recogni-

tion techniques relies on the use of more complex feature

descriptors, such as SIFT descriptors or HOG descriptors,

which are essentially histograms. Since histograms live in

a non-Euclidean space, we can no longer model their tem-

poral evolution with LDSs, nor can we classify them using

a metric for LDSs. In this paper, we propose to represent

each frame of a video using a histogram of oriented optical

flow (HOOF) and to recognize human actions by classifying

HOOF time-series. For this purpose, we propose a gener-

alization of the Binet-Cauchy kernels to nonlinear dynami-

cal systems (NLDS) whose output lives in a non-Euclidean

space, e.g. the space of histograms. This can be achieved by

using kernels defined on the original non-Euclidean space,

leading to a well-defined metric for NLDSs. We use these

kernels for the classification of actions in video sequences

using (HOOF) as the output of the NLDS. We evaluate our

approach to recognition of human actions in several sce-

narios and achieve encouraging results.

1. Introduction

Analysis of human activities has always remained a topic

of great interest in computer vision. It is seen as a step-

ping stone for applications such as automatic environment

surveillance, assisted living and human computer interac-

tion. The surveys by Gavrila [14], Aggarwal et al. [1] and

by Moeslund et al., [18], [19] provide a broad overview of

over three hundred papers and numerous approaches for an-

alyzing human motion in videos, including human motion

capture, tracking, segmentation and recognition.

Related work. Recent work on activity recognition can

be broadly classified into three types of approaches: local,

global and system-theoretic.

Local approaches use local spatiotemporal features, e.g.

[17, 10, 30] to represent human activity in a video. Niebles

[20] presented an unsupervised method similar to the bag-

of-words approach for learning the probability distributions

of space-time interest points in human action videos. İkizler

et al. [16] presented a method whereby limb motion model

units are learnt from labeled motion capture data and used

to detect more complex unseen motions in a test video us-

ing search queries specific to the limb motion in the de-

sired activity. However, an important limitation of the afore-

mentioned approaches is that they do not incorporate global

characteristics of the activity as a whole.

Global approaches use global features such as optical

flow to represent the state of motion in the whole frame at a

time instant. With static background, one can represent the

type of motion of the foreground object by computing fea-

tures from the optical flow. In [13], optical flow histograms

were used to match the motion of a player in a soccer match

to that of a subject in a control video. Tran et al. in [27]

present an optical flow and shape based approach that uses

separate histograms for the horizontal and vertical compo-

nents of the optical flow as well as the silhouette of the per-

son as a motion descriptor. [15] and [31] represent human

activities by 3-D space-time shapes. Classification is per-

formed by comparing geometric properties of these shapes

against training data. All these approaches, however, do

not model the characteristic temporal dynamics of human

activities. Moreover, comparison is done either on a frame-

by-frame basis or by using other ad-hoc methods. Clearly,

the natural way to compare human activities is to compare

the temporal evolution of global features as a whole.

System-theoretic approaches to recognition of human

actions model feature variations with dynamical systems

and hence specifically consider the dynamics of the activity.

The recognition pipeline is composed of 1) finding features

in every frame, 2) modeling the temporal evolution of these
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Figure 1. Optical flows and HOOF feature trajectories

features with a dynamical system, 3) using a similarity cri-

teria, e.g. distances or kernels between dynamical systems,

to train classifiers, and 4) using them on novel video se-

quences. Bissacco et al. used joint-angle trajectotries in [3]

as well as joint trajectories from motion-capture data and

features extracted from silhouettes in [4] to represent the

action profiles. Ali et al. in [2] used joint trajectories to

extract invariant features to model the non-linear dynamics

of human activities. However, these approaches are mostly

limited to local feature representations and to our knowl-

edge, there has been no work on modeling the dynamics of

global features, e.g. optical flow variations.

Paper contributions. In this paper, we propose the His-

togram of Oriented Optical Flow (HOOF) features to repre-

sent human activities. These novel features are independent

of the scale of the moving person as well as the direction

of motion. Extraction of HOOF features does not require

any prior human segmentation or background subtraction.

However, HOOF features are non-Euclidean, and thus the

evolution of HOOF features creates a trajectory on a non-

linear manifold. Traditionally, Linear Dynamical Systems

(LDSs) have been used to model feature time series that are

Euclidean, e.g. joint angles, joint trajectories, pixel inten-

sities, etc. Non-Euclidean data like histogram time series

need to be modeled with Non-Linear Dynamical Systems

(NLDS). Hence, similarity criteria designed for LDSs can-

not be used to compare two histogram time series. In this

paper, we extend the Binet-Cauchy kernels [29] to NLDS.

This is done by replacing an infinite sum of output feature

inner products in the kernel expression by a Mercer kernel

[23] on the output space. We model the proposed HOOF

features as outputs of NLDS and use the Binet-Cauchy ker-

nels for NLDS to perform human activity recognition on the

Weizmann database [15] with encouraging results.

Paper outline. The rest of this paper is organized as fol-

lows. §2 briefly reviews the LDS recognition pipeline for

Euclidean time-series data. §3 proposes the Histogram of

Oriented Optical Flow (HOOF) features, which are used to

model the activity profile in each frame of a video. Ev-

ery activity video is thus represented as a non-Euclidean

time-series of HOOF features. §4 introduces NLDS and de-

scribes how NLDS parameters can be learnt using kernels

defined on the underlying non-Euclidean space. §5 presents

the Binet-Cauchy kernels for NLDSs which define a sim-

ilarity metric between two non-Euclidean time-series. §6

gives experimental results for human activity recognition

using the proposed metric and features. Finally, §7 gives

concluding remarks and future directions.

2. Recognition with Linear Dynamical Systems

A LDS is represented by the tuple M =
(µ,x0, A,C, B, R) and evolves in time according to

the following equations

{

xt+1 = Axt + Bvt

yt = µ + Cxt + wt
. (1)

Here xt ∈ R
n is the state of the LDS at time t; yt ∈ R

p is

the observed output or feature at time t; x0 is the initial state

of the system; and µ ∈ R
p is the mean of {yt}N−1

t=0 , e.g. the

mean joint angle configuration, etc. A ∈ R
n×n describes

the dynamics of the state evolution, B ∈ R
n×nv models the

way in which input noise affects the state evolution and C ∈
R

p×n transforms the state to an output or observation of the

overall system. vt ∈ R
nv and wt ∈ R

p are the system noise

and the observation noise at time t, respectively. We assume

that the noise processes are zero-mean i.i.d. Gaussian, such

that vt ∼ G(vt, 0, Inv
) and wt ∼ G(wt, 0, R), R ∈ R

p×p,



where G(z, µz,Σ)=(2π)−n/2|Σ|−1/2 exp(− 1
2
‖z− µz‖2

Σ)
is a multivariate Gaussian distribution on z with ‖z‖2

Σ =
z⊤Σ−1z. By this definition, Bvt ∼ G(Bvt, 0, Q) where

Q = BB⊤ ∈ R
nv×nv . We also assume that vt and wt are

independent processes.

Given a set of T training videos, the first task is to learn

the parameters Mi, i = 1, . . . , T , from the feature trajecto-

ries of each video. There are several methods to learn these

system parameters, e.g. [25], [28] and [11]. Once these pa-

rameters are identified for each of the videos, various met-

rics can be used to define the similarity between these LDSs.

In particular, three major types of metrics are 1) geomet-

ric distances based on subspace angles between the observ-

ability subspaces of the LDSs [9], 2) algebraic metrics like

the Binet-Cauchy kernels [29] and 3) information theoretic

metrics like the KL-divergence [6].

Given a metric, all pairwise similarities are evaluated on

the training data and used for classification of novel se-

quences using methods such as k-Nearest Neighbors (k-

NN) or Support Vector Machine (SVM).

3. Histogram of Oriented Optical Flow (HOOF)

As we alluded to in the introduction, existing system-

theoretic approaches to action recognition have been mostly

applied to joint angles extracted from motion capture data.

If one were to apply such approaches to video data, one

would be faced with the challenging problem of accurately

extracting and tracking the joints of a person in the presence

of self-occlusions, changes of scale, pose, etc.

Inspired by the recent success of histograms of features

in the object recognition community, we posit that the natu-

ral feature to use in a motion sequence is optical flow. How-

ever, the raw optical flow data may be of no use, as the num-

ber of pixels in a person (hence the size of the descriptor)

changes over time. Moreover, optical flow computations are

very susceptible to background noise, scale changes as well

as directionality of movement.

To avoid these issues, one could use instead the distribu-

tion of optical flow. Indeed, when a person moves through a

scene with a stationary background, it induces a very char-

acteristic optical flow profile. Figure 1 shows some optical

flow patterns for a sample walking sequence. However, no-

tice that the observed optical flow profile could be different

if the activity was performed at a larger scale. For exam-

ple a zoomed in walking person versus a far-away walking

person. The magnitude of the optical flow vectors would

be larger in the zoomed in case. Similarly, if a person is

running from the left to the right, the optical flow observed

would be a reflection in the vertical axis to that observed if

the person was running from the right to the left. We thus

need a feature based on optical flow that represents the ac-

tion profile at every time instant and that is invariant to the

scale and directionality of motion.

To overcome these issues, in this paper we propose the

Histogram of Oriented Optical Flow (HOOF), which is de-

fined as follows. First, optical flow is computed at every

frame of the video. Each flow vector is binned according

to its primary angle from the horizontal axis and weighted

according to its magnitude. Thus, all optical flow vectors,

v = [x, y]⊤ with direction, θ = tan−1( y
x ) in the range

−π

2
+ π

b − 1

B
≤ θ < −π

2
+ π

b

B
(2)

will contribute by
√

x2 + y2 to the sum in bin b, 1 ≤ b ≤
B, out of a total of B bins. Finally, the histogram is nor-

malized to sum up to 1.
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Figure 2. Histogram formation with four bins, B = 4

Figure 2 illustrates the procedure. Binning according to

the primary angle, the smallest signed angle between the

horizontal axis and the vector, allows the histogram repre-

sentation to be independent of the (left or right) direction of

motion. Normalization makes the histogram representation

scale-invariant. We expect to observe the same histogram

whether a person is moving from the left to the right or

in the opposite direction, whether a person is running far

away in the scene or very near the camera. Since the contri-

bution of each optical flow vector to its corresponding bin

is proportional to its magnitude, small noisy optical flow

measurements have little effect on the observed histogram.

Assuming a stationary background, there is no optical flow

in the background. Using the magnitude-based addition to

each bin, we can simply compute the optical flow histogram

on the whole frame rather than requiring to pre-compute a

segmentation of the moving person. The number of bins,

B, is a parameter of choice. Generally we observe that with

histogram time-series of at least 30 bins per histogram, we

are able to achieve good recognition results.

3.1. Kernels for comparing HOOF

HOOF features provide us with a normalized histogram

ht = [ht;1,ht;2, . . . ,ht;B ]⊤ at each time instant t. In order



to use such histograms for recognition purposes, we need

to have a way of comparing two histograms. To that end,

notice that histograms cannot be treated as simple vectors

in a Euclidean space. Histograms are essentially probabil-

ity mass functions, hence they must satisfy the constraints
B

∑

i=1

ht;i = 1 and ht;i ≥ 0,∀i ∈ {1, . . . , B}. At first sight,

one may think that this space is still simple enough. How-

ever, the space of histograms H is actually a Riemannian

manifold with a nontrivial structure.

The problem of equipping the space of probability den-

sity functions (PDFs) with a differential manifold structure

and defining a Riemannian metric on it has been an ac-

tive area of research in the field of information geometry.

The work by Rao [21] was the first to introduce a Rieman-

nian structure to this statistical manifold by introducing the

Fisher-Rao metric. The Fisher-Rao metric, however, is ex-

tremely hard to work with due to the difficulty in computing

geodesics on this space [26].

Even though the space H turns out to be difficult to work

with, we know that it is not the only possible representation

for PDFs. There are many different re-parameterizations of

PDFs that are equivalent. These include the cumulative dis-

tribution function, log density function and square-root den-

sity function. Each of these parameterizations will lead to

a different resulting manifold. Depending on the choice of

representation, the resulting Riemannian structure can have

varying degrees of complexity and numerical techniques

may be required to compute geodesics on the manifold.

For the sake of computational simplicity, in this pa-

per we will restrict our attention to similarity measures

built by mapping the histogram h ∈ H to a high dimen-

sional (possibly infinite) Hilbert space, F , using the map

Φ : H → F . Since F is a Hilbert space, all the natural

notions of finding distances between two points can be em-

ployed for comparison. Most of the time, however, the map

Φ cannot be found. Mercer kernels [23] have the special

property of being positive definite kernels that induce an in-

ner product in a higher dimensional spaceunder the map Φ.

This space is called the Reproducing Kernel Hilbert Space

(RKHS) for the kernel. More specifically, for points lying

on the non-linear manifold H, the Mercer kernel is given

by k(h1,h2) = Φ(h1)
⊤Φ(h2) and hence a similarity mea-

sure on the RKHS can be computed by simply computing

the kernel function on the original representation without

knowing the mapping Φ. We now briefly describe some

popular kernel measures used on the space of histograms.

The histogram, ht = [ht;1, . . . ,ht;B ] can be reparam-

eterized to the square root representation for histograms,

√
ht := [

√

ht;1, . . . ,
√

ht;B ] such that

B
∑

i=1

(
√

ht;i)
2 = 1.

This projects every histogram onto the unit B-dimensional

hypersphere or S
B−1. The Riemannian metric between

two points R1 and R2 on the hypersphere is d(R1, R2) =
cos−1(R⊤

1 R2). Thus a kernel between two histograms can

be defined as an inner product on their square root represen-

tations:

kS(h1,h2) =

B
∑

i=1

√

h1;ih2;i. (3)

Note that this is precisely the kernel that can be achieved by

using the RBF kernel, k(h1,h2) = exp(−d(h1,h2)), on

the Bhattacharya distance between the two histograms.

Minimum Difference of Pairwise Assignment (MDPA)

[5] is similar to the Earth Mover’s Distance (EMD) [22]

and is a metric on the space of histograms that implicitly is

a summation of distances between points on an underlying

metric space from which the histograms were created. For

ordinal histograms, i.e., histograms created from linearly

varying data (as opposed to modular data, e.g. the modu-

lar group Zp
.
= {0, 1, . . . , p − 1}), the MDPA distance is

dMDPA(h1,h2) =
B

∑

i=1

∣

∣

∣

∣

∣

∣

i
∑

j=1

(h1;j − h2;j)

∣

∣

∣

∣

∣

∣

. (4)

Another popular distance between two histograms is the

χ2 distance which is defined as

dχ2(h1,h2) =
1

2

B
∑

i=1

|h1;i − h2;i|
h1;i + h2;i

(5)

We can use the RBF kernel to create kernels as similarity

measures from these distances.

Finally, the Histogram Intersection Kernel (HIST) [12] is

another Mercer kernel [23] on the space of histograms and

is defined for normalized histograms as

kHIST =

B
∑

i=1

min(h1;i,h2;i). (6)

The inner product of the square-root representations is

by construction an inner product and hence is a Mercer ker-

nel. Also, the χ2 and HIST kernels are provably Mercer

kernels [32], [12]. However, to the best of our knowledge,

the positive-definiteness of the MDPA kernel has not been

established [32].

3.2. Kernels for comparing HOOF time series

Since HOOF features ht = [ht;1,ht;2, . . . ,ht;B ]⊤ are

defined at each frame of the video, our actual representa-

tion is a time series of these histograms {ht}N−1
t=0 . Our goal

is to compare these time series in order to perform classi-

fication of actions. But rather than comparing these time

series directly, we want to exploit the temporal evolution

of these histograms in order to distinguish different actions.



We posit that each action induces a time-series of HOOF

with specific dynamics, and that different actions induce

different dynamics. Therefore, we propose to recognize ac-

tions by comparing the dynamics of HOOF time series.

There are two important technical challenges in develop-

ing a framework for the classification of HOOF time series.

The first one is that, because each histogram ht lives in a

non-Euclidean space H, we cannot model its temporal evo-

lution with LDSs. We address this issue in §4 by using the

previously defined kernels in H to define a NLDS. The sec-

ond challenge is how to compute a distance between HOOF

time series. We address this issue in §5, where we extend

Binet-Cauchy kernels to NLDSs.

4. Modeling HOOF Time Series with Non-

Linear Dynamical Systems

Modeling Euclidean feature trajectories with LDSs has

been very useful for dynamical system recognition. How-

ever we need NLDSs to model non-Euclidean feature tra-

jectories like histograms.

Consider the Mercer kernel, k(yt,y
′
t) = Φ(yt)

⊤Φ(y′
t)

on the non-Euclidean space such that the implicit map, Φ,

maps the original non-Euclidean space H to an RKHS.

We can therefore transform the non-Euclidean features,

{yt}N−1
t=0 , to features in the RKHS{Φ(yt)}N−1

t=0 and assume

that the transformed trajectories follow a linear dynamical

system
{

xt+1 = Axt + Bvt

Φ(yt) = Cxt + wt
(7)

The main difference between (7) and (1) is that we do

not necessarily know the embedding Φ, hence we cannot

identify (A, C) as before. Moreover, even if we knew Φ,

C : R
n → F is now a linear operator, rather than simply a

matrix, because F is possibly infinite dimensional.

Therefore, the goal is to identify the parameters (A, B),
the sequence xt, and some representation for C by exploit-

ing the fact that we only know the kernel k. In [7], an

approach based on Kernel PCA (KPCA) [24] that paral-

lels the PCA approach for learning LDS parameters in [11]

was proposed to learn the system parameters for equation

(7). Briefly, given the output feature sequence, {yt}N−1
t=0 ,

the intra-sequence kernel matrix, K = {k(yi,yj)}N−1
i,j=0 is

computed, where k(yi,yj) = Φ(yi)
⊤Φ(yj). The centered

kernel matrix, that represents the kernel between zero-mean

data in the high-dimensional space, is thus computed as

K̃ = (I − 1
N ee⊤)K(I − 1

N ee⊤) where e = [1, . . . , 1]⊤ ∈
R

N . After performing the eigenvalue decomposition K̃ =
V DV ⊤, the j-th eigenvector vj can be used to obtain the

j-th kernel principal component as

N
∑

i=1

αi,jΦ(yi), where

αi,j represents the i-th component of the j-th weight vector,

αj = 1√
λj

vj , assuming that the eigenvectors are sorted in

descending order of the eigenvalues {λj}N
j=1.

Given α and K̃, the sequence of hidden states X =
[x0,x1, . . . ,xN−1] and the state-transition matrix, A, can

be estimated as

X = α⊤K̃ (8)

A = [x1,x2, . . . ,xN−1][x0,x1, . . . ,xN−2]
† (9)

The state noise at time t is estimated as v̂t = xt − xt−1,

and the noise covariance matrix as Q = 1
N−1

∑N−1

i=1 v̂tv̂
⊤
t .

Using a Cholesky decomposition on Q, B is estimated as

BB⊤ = Q. For details on estimating R and other parame-

ters, refer to [7].

Notice, however, that we have not shown how to esti-

mate C or a representation of it, though it is clear that C

is somehow implicitly represented by the kernel matrix K̃.

Since our goal is to use the NLDS in (7) for recognition,

rather than synthesis, we do not actually need to compute

C. All we need is a way of comparing two linear opera-

tors C, which can be done by comparing the corresponding

kernel matrices K̃, as we show in the next section.

5. Comparing HOOF Time Series with Binet-

Cauchy Kernels for NLDS

Vishwanathan et al. [29] presented the family of Binet-

Cauchy kernels for LDSs. In this section we briefly review

the main concepts of the Binet-Cauchy kernels for LDSs

and then develop extensions for the case of NLDSs.

From the family of Binet-Cauchy kernels, the trace

kernel, KT
LDS, for comparing two infinitely long zero-

mean Euclidean time-series generated by the LDSs M =
(x0, A,C, B, R), and M′ = (x′

0, A
′, C ′, B′, R′) is defined

as

KT
LDS({yt}∞t=0, {y′

t}∞t=0) = KT
LDS(M,M′)

:= Ev,w

[

∞
∑

t=0

λty⊤
t y′

t

]

. (10)

Here 0 < λ < 1 and E represents the expected value of the

infinite sum of the inner products w.r.t. the joint probability

distribution of vt and wt. It was shown in [29] that if the

two LDSs have the same underlying and independent noise

processes, with covariances Q and R for the state and out-

put, respectively, then the Binet-Cauchy trace kernel can be

computed in closed form as

KT
LDS(M1,M2) = x⊤

0 Px′
0 +

λ

1 − λ
trace(QP + R), (11)

where

P =

∞
∑

t=0

λt(At)⊤C⊤C ′A′t (12)



If λ|||A||| |||A′||| < 1, where |||.||| is a matrix norm, then P

can be computed by solving the Sylvester equation [29],

P = λA⊤PA′ + C⊤C ′. (13)

Notice that as a result of the system parameter learning

method [11], the second term on the right side of equation

(13), C⊤C ′, is the matrix of all pairwise inner products of

the principal components of the matrix Y = [y0 − ȳ,y1 −
ȳ, . . . ,yN−1 − ȳ] and the matrix Y ′ = [y′

0 − ȳ′,y′
1 −

ȳ′, . . . ,y′
N ′−1 − ȳ′], where ȳ is the mean of the sequence

{yt}N−1
t=0 and so on. Hence, the (i, j)-th entry of C⊤C ′ is

c⊤i c′j , where ci is the i-th principal component of Y and c′j
is the j-th principal component of Y ′.

We now develop the Binet-Cauchy trace kernel for

NLDSs. From equation (10), we see that the Binet-Cauchy

trace kernel for LDSs is the expected value of an infinite

series of weighted inner products between the outputs of

two systems. We can similarly write the Binet-Cauchy trace

kernel for NLDSs as the expected value of an infinite series

of weighted inner products between the outputs after em-

bedding them into the high-dimensional (possibly infinite)

space using the map Φ. Specifically,

KT
NLDS(M,M′) := Ev,w

[

∞
∑

t=0

λtΦ(yt)
⊤Φ(y′

t)

]

= Ev,w

[

∞
∑

t=0

λtk(yt,y
′
t)

]

, (14)

where k is the kernel defined on the non-Euclidean space of

outputs H.

If we look at equation (13), we see that in the case of

NLDSs the equivalent form for the trace kernel is not im-

mediately obtainable, because C and C ′ are unknown, and

hence the term C⊤C ′ cannot be evaluated directly. How-

ever, notice that C⊤C ′ is now the product of the matri-

ces formed from the kernel principal components from the

NLDS identification process as opposed to the principal

components as in the case of LDSs. Thus, similar to the

approach used in [7], the (i, j)-th entry of C⊤C ′ can be

computed as

[C⊤C ′]i,j = v⊤i v′j

=

[

N
∑

k=1

αk,iΦ(yk)

]⊤




N ′

∑

l=1

α′
l,jΦ(y′

l)





= α⊤
i Sα′

j (15)

where S is the matrix of all inner products of the

form [Φ(yk)⊤Φ(y′
l)]k,l = [k(yk,y′

l)]k,l, where k ∈
{1, . . . , N}, l ∈ {1, . . . , N ′}. Before computing the entries

of C⊤C ′ in equation (15), we need to center the kernel com-

putation S. This is done by computing, α̃i = αi −
e⊤αi

N
e

and α̃′
j = α′

j −
e⊤α′

j

N ′
e and evaluating, F = α̃⊤Sα̃′

Hence, the Binet-Cauchy kernel for NLDS requires the

computation of the infinite sum,

P̄ =
∞
∑

t=0

λt(At)⊤FA′t, (16)

If λ|||A||| |||A′||| < 1, where |||.||| is a matrix norm, then

P̄ can be computed by solving the corresponding Sylvester

equation:

P̄ = λA⊤P̄A′ + F (17)

and the Binet-Cauchy trace kernel for NLDS is

KT
NLDS(M1,M2) = x⊤

0 P̄x⊤
0 +

λ

1 − λ
trace(QP̄ +R) (18)

Notice that equation (18) is a general kernel that takes

into consideration the dynamics of the system encoded by

(A, C), the noise processes, Q and R, and the initial state,

x0. The effect of the initial state in a periodic time series is

to simply delay the time series. Since in activity recognition

it does not matter, e.g., at which part of the walking cycle

the video begins, we would like a kernel that is independent

of the initial states and the noise processes. Hence we de-

fine the Binet-Cauchy maximum singular value kernel for

NLDS as

Kσ
NLDS = maxσ(P̄ ) (19)

which is the maximum singular value of P̄ and is a ker-

nel only on the dynamics of the NLDS. Furthermore, we

can show that the Martin distance used by [7] (and all sub-

space angles based distances between dynamical systems)

are special cases of the Binet-Cauchy kernels [8].

6. Experiments

To test the performance of our proposed HOOF features

on activity recognition using the Binet-Cauchy kernel for

NLDS, we perform a number of experiments on the Weiz-

mann Human Action dataset [15]. This dataset contains 94

videos of 10 different actions each performed by 9 differ-

ent persons. The classes of actions include running, side

walking, waving, jumping, etc. Optical flow was computed

using OpenCV on each of the sequences and HOOF his-

tograms were extracted from each frame leading to a HOOF

time series for each video sequence.

6.1. Classification Results

We use each of the kernels described in section §3.1 to

perform Kernel PCA on the HOOF time series extracted
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Figure 3. Misclassification rates when using distances between

HOOF means

from each video. We then use the Binet-Cauchy maxi-

mum singular value kernel, Kσ
NLDS, to compute all pair-

wise similarity values. We normalize the similarity val-

ues such that K(M,M′) = 1, if M = M ′ by comput-

ing, K ′(M,M′) =
K(M,M′)

√

K(M,M), K(M′,M′)
and find-

ing pair-wise distances between systems by computing,

d(M,M′) = 2(1 − K(M1,M2)). Classification is then

performed with Leave-one-out, 1-Nearest Neighbor classi-

fication using these distance values.

As a baseline, Figure 3 shows the performance of using

the distance between the temporal means to perform classi-

fication. The temporal means were computed by averaging

the histogram time-series h̄ = 1
N

∑N−1

i=0 hi. Notice that h̄

is also a histogram and we can apply the distance metrics

in section §3.1 to compare them. Although using the mean

histograms to represent the activity profile ignores any dy-

namics of the motion, we see that the HOOF features give

low error rates.

Figure 4 shows the error rates for the inner product of the

square root representations, or the Geodesic kernel, across

all bin sizes. We can see that the Binet-Cauchy maximum

singular value kernel gives the lowest error rate of 5.6%

achieving a recognition rate of 94.4%. The corresponding

confusion matrix is shown in Figure 5. One sequence each

is misclassified for the classes jump and run and three se-

quences of class wave1 were misclassified as wave2. Table

1 compares the performance of three state of the art activ-

ity recognition algorithms on the Weizmann database with

similar experimental setups. We can see that the proposed

method performs better than two of the methods with any

choice of the Mercer kernel on the space of histograms. Fur-

thermore, the proposed method performs almost as well as

the best method in [15]. The small decrease in performance

is because of the fact that [15] requires the accurate extrac-

3 13 23 33 43 53 63 73 83 93
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of bins, b

Er
ro

r r
at

e

Geodesic kernel

 

 
Martin
Max SV kernel
Temp Means

Figure 4. Misclassification rates with Geodesic kernel on NLDS

Proposed method - Geodesic kernel 94.44

Proposed method - MDPA distance 93.44

Proposed method - χ2 distance 95.66

Proposed method - HIST kernel 92.33

Gorelick et al. [15] 97.83

Ali et al. [2] 92.60

Niebles et al. [20] 90.00

Table 1. Comparison of recognition rates with state of the art meth-

ods on the Weizmann database

tion of the silhouette of the moving person at every time

instant which is a very strong assumption. Our method, on

the other hand, is very general and does not require any pre-

processing steps and still gives better results than all state-

of-the-art methods, except [15].

Riemannian metric with Binet Cauchy kernel, Leave−one−out 1−NN
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Figure 5. Confusion matrix for recognition on Weizmann database,

average recognition rate is 94.4%



7. Conclusions and Future Work

We have presented an activity recognition method that

models the activity in a scene as a time-series of non-

Euclidean Histograms of Oriented Optical Flow features.

We have shown that these features do not need any pre-

processing, human detection, tracking and prior back-

ground subtraction and represent the activity comprehen-

sively. The HOOF features are scale-invariant as well as

independent of the direction of motion. Since the space of

histograms is non-Euclidean, we have modeled the tempo-

ral evolution of HOOF features using NLDSs and learnt the

system parameters using kernels on the original histograms.

More importantly, we have extended the Binet-Cauchy ker-

nels for measuring the similarities between two NLDSs and

shown that the Binet-Cauchy kernels can also be computed

by evaluating pairwise Mercer kernels on the non-Euclidean

space of features. We have applied our framework to our

proposed HOOF features and have achieved state of the art

results on the Weizmann Human Gait database. Currently

we are working on extending our method to multiple dis-

connected motions in a scene by tracking and segmenting

optical flow activity in the scene as well as accounting for

the motion of the camera.
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