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Abstract

Object detection has seen huge progress in recent years,

much thanks to the heavily-engineered Histograms of Ori-

ented Gradients (HOG) features. Can we go beyond gradi-

ents and do better than HOG? We provide an affirmative an-

swer by proposing and investigating a sparse representation

for object detection, Histograms of Sparse Codes (HSC).

We compute sparse codes with dictionaries learned from

data using K-SVD, and aggregate per-pixel sparse codes

to form local histograms. We intentionally keep true to the

sliding window framework (with mixtures and parts) and

only change the underlying features. To keep training (and

testing) efficient, we apply dimension reduction by comput-

ing SVD on learned models, and adopt supervised training

where latent positions of roots and parts are given exter-

nally e.g. from a HOG-based detector. By learning and

using local representations that are much more expressive

than gradients, we demonstrate large improvements over

the state of the art on the PASCAL benchmark for both root-

only and part-based models.

1. Introduction

Object detection is a fundamental problem in computer

vision and has been a major focus of research activities.

There has been huge progress in object detection in recent

years, much thanks to the celebrated Histograms of Ori-

ented Gradients (HOG) features [8, 13]. The HOG fea-

tures are the basis of the original Dalal-Triggs person detec-

tor [8], the popular Deformable Parts Model (DPM) [13],

the Exemplar-SVM model [21], and pretty much every

other modern object detector. HOG is also seeing increas-

ing use in other domains such as pose estimation [34], face

recognition [35], and scene classification [32].

The HOG features, heavily engineered for both accu-

racy and speed, are not without issues or limits. They

are gradient-based and lack the ability to directly represent
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Figure 1: Can we find better features than HOG for ob-

ject detection? We develop Histograms-of-Sparse-Codes

(HSC), which represents local patches through learned

sparse codes instead of gradients and outperforms HOG by

a large margin in state-of-the-art sliding window detection.

richer (and larger) patterns. There are multiple ad-hoc de-

signs, such as 4-way normalization and 9 orientations, that

are non-intuitive and unappealing. More importantly, such

hand-crafted features are difficult to generalize or expand to

novel domains (such as depth images or the time-domain),

and they increasingly become a bottleneck as the Moore’s

Law drives up computational capabilities. There are evi-

dences that local features are most crucial for detection [23],

and we may already be saturating the capacity of HOG [36].

Can we learn representations that outperform a hand-

engineered HOG? In the wake of recent advances in feature

learning [16, 1] and its successes in many vision problems

such as recognition [19] and grouping [26], it is promising

to consider employing local features automatically learned

from data. However, feature learning for detection is a chal-

lenging problem, which has seen only limited successes so

far [7, 9], partly because the massive number of windows

one needs to scan. One could also argue that HOG is al-

ready a high dimensional representation (for the entire ob-

ject template), much higher than the number of typical pos-

itive training examples, and therefore it remains to be an-

swered whether a richer, learned representation would fur-
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ther improve detection performance.

In this work, we show that indeed a local representa-

tion can be effectively learned for object detection, and the

learned rich features outperform HOG by a large margin as

demonstrated on the PASCAL and INRIA benchmarks. We

compute per-pixel sparse codes using dictionaries learned

through K-SVD, and aggregate them into “histograms” of

sparse codes (HSC) in the spirit of HOG. For a fair compar-

ison, we keep to the HOG-driven scanning window frame-

work as much as possible, with identical settings for mix-

tures, parts, and training procedure. To enable efficient

training (especially for part-based models), we use a super-

vised training strategy: instead of iterating over latent root

and part locations in the semi-convex setting of DPM [13],

we assume these locations are given and fixed (computed

with a HOG-based detector). We also apply dimension re-

duction using learned models to effectively compress the

high dimensional sparse code representations.

The resulting HSC-based object detectors perform above

our expectations and go well beyond elaborate HOG-based

systems. Using root-only models, we improve the mean

average-precision on the 20 PASCAL2007 classes from

21.4% of HOG to 26.9% of HSC with identical settings.

Using part-based models, we improve the mean AP from

30.1% to 34.3%. In both cases, we also lead the widely

used DPM system [14] by a considerable amount. We vali-

date the benefits of richer representation through the use of

increasingly large dictionary sizes and patch sizes. To the

best of our knowledge, our work is the first to show that

dictionary-based features can replace and significantly out-

perform HOG for general object detection.

2. Related Works

Object detection: Many contemporary approaches for

object detection have converged on the paradigm of linear

SVMs trained on HOG features [8, 13, 5, 21], as evidenced

by benchmark evaluations such as PASCAL [12]. Most ap-

proaches have explored model structure, either through non-

parametric mixtures or exemplars [21, 10], compositional

grammar structure [15], supervised correspondences [5, 2],

and low-dimensional projections [29, 25]. Alternative ap-

proaches explored the use of segmentation [20, 31]. Most,

if not all such approaches have relied on fixed feature set of

HOG descriptors. We focus on the underlying feature repre-

sentation, and hence our work could in principle be applied

to any of these models.

Image descriptors: Image descriptors for object recog-

nition have long been studied and are usually hand-

designed. A sampling of such descriptors include local bi-

nary patterns [17], integral channel features of gradients and

color cues [11], RGB covariance features [28], and multi-

scale spatial pyramids [4]. Such heterogeneous features are

often combined by concatenation or through multiple ker-

nels [30]. An alternative family of approaches directly learn

thresholded pixel values, often selected through boosting

[11] or randomized decision trees [22]. The closest to our

approach is that of Dikmen et al. [9], which replaces HOG

with a histogram of learned 3x3 filters with competitive per-

formance on PASCAL. We extensively compare to this ap-

proach and find that we are able to learn much richer struc-

tures on larger patches through sparse coding and achieve

substantial improvements over HOG.

Sparse features: Feature learning is an active field in-

creasingly capturing the attention of researchers with their

ability to utilize big data[16, 19]. Sparse coding is a pop-

ular way of learning feature representation [1, 24], com-

monly used in image classification settings [33, 6] but also

explored for detection [18]. More recent uses of sparse cod-

ing are toward the pixel level, learning patch representations

to replace SIFT features [3]. Such patch representations can

be applied to other problems such as contour detection [26].

3. Feature Learning for Object Detection

Histograms of Oriented Gradients (HOG) are highly spe-

cialized features engineered for object detection, extremely

popular and used in virtually every object detection system.

The core of HOG is the representation of local patterns at

every pixel using gradient orientations, originally developed

for detecting people [8] and extended to contrast-sensitive

gradients for general objects [13].

While HOG is very effective in capturing gradients, long

known to be crucial for vision and robust to appearance and

illumination changes, images are clearly more than just gra-

dients. How to build a richer local representation that out-

performs HOG is a key challenge for detection, which re-

mains open despite efforts of designing features [17], learn-

ing them [9], or combining multiple features [30].

We seek to replace HOG with features automatically

learned from data. A feature learning approach is attrac-

tive for its scalability and adaptivity: if we can effectively

learn local features for detection, it would be relatively easy

to expand such a feature set to higher dimensions and larger

patches, and also adapt a detection system to specialized

domains or novel sensor data such as RGB-D cameras.

In this section we will develop Histograms-of-Sparse-

Codes (HSC), which resembles HOG but is based on well-

developed sparse coding techniques that represent each lo-

cal patch using a sparse set of codewords. The codewords

(dictionary) are learned in an unsupervised way from data.

Once per-pixel sparse codes are computed, we aggregate the

codes into “histograms” on regular cells and use them to re-

place HOG in the standard Deformable Parts Model [13].

3.1. Local Representation via Sparse Coding

We use K-SVD [1] for dictionary learning, a standard

unsupervised dictionary learning algorithm that generalizes
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Figure 2: Dictionaries learned through K-SVD for three

patch sizes. As patch size and dictionary size grow, in-

creasingly complex patterns are represented in the dictio-

nary. The ability to directly represent large, complex pat-

terns gives us hope for outperforming HOG in detection.

K-means. Given a set of image patches Y = [y1, · · · , yn],
K-SVD jointly finds a dictionary D = [d1, · · · , dm] and an

associated sparse code matrix X = [x1, · · · , xn] by mini-

mizing the reconstruction error

min
D,X

‖Y −DX‖2F s.t. ∀i, ‖xi‖0 ≤ K (1)

where xi are the columns of X , the zero-norm ‖ · ‖0 counts

the non-zero entries in the sparse code xi, and K is a pre-

defined sparsity level. K-SVD solves this optimization by

alternating between computing X and D. Given the dictio-

nary D, computing the codes X can be efficiently solved

using the greedy Orthogonal Matching Pursuit (OMP) [24].

Given the codes X , the dictionary D is updated sequentially

by singular value decomposition. We subtract the mean

from the patches in advance.

Once the dictionary D is learned, we again use Orthogo-

nal Matching Pursuit to compute sparse codes at every pixel

in an image pyramid. The batch version of the OMP algo-

rithm [27] provides considerable speed-up by precomputing

the inner products between patches and codewords.

Examples of the dictionaries learned are shown in Fig. 2.

Comparing to the special-purpose algorithm developed

in [9], K-SVD effectively learns common structures without

any need for tweaking such as selecting sampling. As the

patch size and dictionary size grow, more and more inter-

esting structures are discovered (such as corners, thin lines,

line endings, and high-frequency gratings).

3.2. Aggregation into Histograms of Sparse Codes

The sliding window framework of object detection di-

vides an image into regular cells (8x8 pixels) and computes

a feature vector of each cell, to be used in a convolution-

based window scanning. We keep as close as possible to

HOG for aggregating per-pixel sparse codes.

Let X be the sparse code computed at a pixel, whose

dimension equals the dictionary size. For each non-zero en-

try xi in X , we use soft binning (bilinear interpolation as

in HOG, which we find is slightly better than hard binning)

to assign its absolute value |xi| to one of the four spatially-

surrounding cells. The result is a (semi-)dense feature vec-

tor F on each cell averaging codes in a 16x16 neighbor-

hood, which we call Histograms of Sparse Codes (HSC).

We normalize F with its L2 norm. Finally, we apply a

power transform on each element of F

F̄ = Fα (2)

as is sometimes done in recognition settings [26]. The

power transform makes the distribution of F ’s values more

uniform and increases the discriminative power of F .

For general object detection in the PASCAL setting, we

find that only using |xi| is not enough. Just as in the use

of contrast-sensitive gradients in HOG, and the cosine and

absolute cosine metrics in [9], we need signed values of xi

to differentiate white-on-black and black-on-white patterns.

We add two half-wave rectified values before feeding them

into bilinear aggregation. That is, each codeword i in the

dictionary now has three values in the HSC:

[ |xi|, max(xi, 0), max(−xi, 0) ] (3)

It is worth noting that there are very few ad-hoc design

choices in these HSC features. We can do away with sev-

eral engineering designs in HOG, such as 4-way normal-

ization, truncation of gradient energy, and the asymmetry

of horizontal/vertical directions from using 9 orientation

bins. This illustrates the power of learning richer features on

larger patches, which captures more information than gra-

dients and has less need for manually designed transforms.

Moreover, it is straightforward to change the settings, such

as dictionary size, patch size or sparsity level, allowing the

HSC features to adapt to the needs of different problems.

In Fig. 3 we visualize the HSC features using dominant

codewords, and compare them to HOG. HSC features cap-

ture oriented edges using learned patterns, and can better

localize them in each cell (the edges can be off-center).

Moreover, HSC features can represent richer patterns such

as corners (the girl’s feet) or parallel lines (both horizontal

and vertical in the negative image). While these two images

may be confusing in the HOG space, an HSC-based model

has no trouble telling them apart, as shown in the responses

to a standard linear SVM trained on INRIA.

3.3. Supervised Training of Part Models

We intentionally only change the underlying local fea-

tures and keep everything else identical in our own imple-
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(a) (b) (c) (d)

Figure 3: Visualizing HSC vs HOG: (a) image; (b) domi-

nant orientation in HOG, weighted by gradient magnitude;

(c) dominant codeword in HSC, weighted by histogram

value; (d) per-cell responses of HSC features when multi-

plied with a linear SVM model trained on INRIA (colors

are on the same scale).

mentation of the standard sliding window detection frame-

work, following the DPM model of [13]. Let pi =
(xi, yi, si) be the position and scale of part i, p = {pi :
i ∈ V } be the placement of all parts, and let m be the

mixture assignment of an image window I . The score of

a deformable-part object detector S(I, p,m) is

∑

i∈V

wm
i φ(x, pi) +

∑

ij∈E

wm
ijψ(pi, pj) + bm (4)

The graph G = (V,E) specifies the connectivity of parts, a

star graph connecting all parts to the root. φ(I, pi) are the

local features, where we exchange HOG for HSC. ψ(pi, pj)
is the deformation cost constraining part locations. The so-

lution maximizing S(I, p,m) can be computed using dy-

namic programming as in [13]. The computational cost is

linear in the feature dimension of φ(I).
A lot of parameters need to be learned in the detector

above, including appearance filters {wm
i }, spring parame-

ters {wm
ij }, and mixtures biases {bm}. The standard way

of training the model is the latent SVM approach in [13].

The main challenge for learning is that many things are un-

known about positive examples: part location, mixture as-

signment, and to some extent root location (due to impre-

cise bounding boxes). The learning procedure needs to it-

erate over training the model and assigning latent variables

in the positive images, resulting in an elaborate and slow

process, sometimes fragile due to the non-convex nature of

the formulation. This poses a major challenge for training

with appearance features that are more expressive, higher

dimensional, and possibly redundant (as in our case).

We circumvent all the issues with non-convex learning

by resorting to supervised training, assuming that every-

thing is known about positive images, given by an exter-

nal source. Injecting supervision has been a trend in detec-

tion, such as in poselets [5] or the HOG-based face detec-

tor [35]. For general object detection, it is difficult to obtain

extensive human labels, and we instead use the state-of-the-

art HOG-based detection system [14], where the outputs of

their final detectors are used as “groundtruth”. By fixing the

latent variables in the part-based model, we make a fair and

direct comparison of detection using HSC vs HOG features.

With latent variables fixed, learning the detection model

can be defined as a convex quadratic program

argmin
β,ξn≥0

1

2
β · β + C

∑

n

ξn (5)

s.t. ∀n ∈ pos β · Φ(In, zn) ≥ 1− ξn

∀n ∈ neg, ∀z β · Φ(In, z) ≤ −1 + ξn

with slack penalties ξn. We use the dual-coordinate solver

of [34], which in practice needs a single iteration over nega-

tive training images to converge. This allows us to train our

supervised models much faster than the latent hard-negative

mining approach of [14], making it feasible to work with

high dimensional appearance features in part-based models.

3.4. Dimension Reduction using Learned Models

For root-only experiments on PASCAL, we use a dic-

tionary of 100 codes over 5x5 patches, resulting in a 300-

dimensional feature vector, an order of magnitude higher

than HOG. We find it convenient to reduce the dimension

down when training full part-based models. However, un-

supervised dimension reduction, such as principal compo-

nent analysis (PCA) on the data, tends not to work well for

either gradient features or sparse codes. One way of doing

proper dimension reduction in the SVM setting would be to

consider joint optimization such as in the bilinear model of

[25], but it requires an expensive iterative algorithm.

We find a simple way of doing supervised dimension re-

duction making use of models we have learned for the root-

only case. Let us write each learned filter wm
i as an N ×nf

matrix Wm
i , where N = nxny (the number of spatial cells

in a part filter) and nf is the size of our HSC feature F . We

wish to factor each filter into a low-rank representation:

Wm
i ≈ Cm

i B where Cm
i ∈ RN×P , B ∈ RP×nF (6)

where B is analogous to a PCA-basis that projects F to a

smaller dimension set P ≪ nf and Cm
i is the appearance

filter in this reduced space. We can simultaneously learn

a good subspace for all filters of all classes by computing
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the SVD of the concatenated set of matrices, obtaining a

universal projection matrix B that captures the essence (and

removes the redundancy) in the HSC features. We integrate

B into feature computation such that it is transparent to the

rest of the system, making training (and testing) part-based

models much faster without sacrificing much accuracy.

4. Experiments

We use both the INRIA Person Dataset [8] and the

PASCAL2007 challenge dataset [12] for validating our

Histograms-of-Sparse-Codes (HSC) features and exten-

sively compare to HOG in identical settings. For INRIA, we

use root-only models and evaluate the HSC settings such as

dictionary size, sparsity level, patch size, and power trans-

form. For PASCAL2007, we use both root-only and part-

based models with supervised training, measure the im-

provements of HSC over HOG for the 20 classes, and com-

pare to the state-of-the-art DPM system [14] which uses the

same model but with additional tweaks (such as symmetry).

4.1. INRIA Person Dataset

The INRIA Person Dataset consists of 1208 positive

training images (and their reflections) of standing people,

cropped and normalized to 64x128, as well as 1218 negative

images and 741 test images. This dataset is an ideal setting

for studying local features and comparing to HOG, as it is

what HOG was designed and optimized for, and training is

straightforward (there is no need for mixture or latent posi-

tions for positive examples). The dual solver requires less

than two passes over the negatives. The baseline average

precision (AP) of our system using HOG is 80.2%.

Sparsity level and dictionary size. Do we need a spar-

sity level K>1? This is an intriguing question and illus-

trates the difference between reconstructing signals (what

sparse coding techniques are designed for) and extracting

meaningful structures for recognition. Fig. 4(a) shows the

average precision on INRIA when we change the sparsity

level along with the dictionary size using 5x5 patches. We

observe that when the dictionary size is small, a patch can-

not be well represented with a single codeword, and K > 1
(at least 2) seems to help. However, when the dictionary

size grows and includes more structures in its codes, the

K = 1 curve catches up, and performs very well. There-

fore we use K = 1 in all the following experiments, which

makes the HSC features behave indeed like histograms us-

ing a sparse code dictionary.

Patch size and dictionary size. Next we investigate

whether our HSC features can capture richer structures us-

ing larger patches. Fig. 4(b) shows the average precision as

we change both the patch size and the dictionary size. It is

encouraging to see that indeed the average precision greatly

increases as we use larger patches (along with larger dic-

tionary size). While 3x3 codes barely show an edge over
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Figure 4: Investigating the use of sparse codes on INRIA.

(a) Average precision (AP) of sparsity level vs dictionary

size; sparsity=1 works well when the dictionary is large.

(b) Patch size vs dictionary size; larger patches do code

richer information but requires larger dictionaries. (c) Dic-

tionary learning with K-SVD works better than K-means.

(d) Power transform significantly improves the discrimina-

tive power of the sparse code histograms.

HOG, 5x5 and 7x7 codes work much better, and the trend

continues beyond 200 codewords. 9x9 patches, however,

may be too large for our setting and do not perform well.

The ability to code and make use of larger patches shows

the merits of our feature design and K-SVD learning com-

paring to the spherical k-medoids clustering in [9], which

had considerable trouble with larger patches and observed

decreases in accuracy going beyond the small size 3x3.

K-SVD vs K-means. With K = 1, one can also use

K-means to learn a dictionary (after normalizing the magni-

tude of each patch). Fig. 4(c) compares the detection accu-

racy with K-SVD vs K-means dictionaries on 5x5 patches.

K-SVD dictionaries have a clear advantage over K-means,

probably because the reconstruction coefficient in sparse

coding allows for a single codeword to model more appear-

ances including the change of sign.

Power transform. Fig. 4(d) shows the use of power

transform (Eq. 2) on the sparse features with varying ex-

ponent. Power transform does make a crucial difference,

and an exponent around 0.3 performs the best, consistent

with findings from other recognition contexts. We use 0.25.

Final results with root-only models. In Table 1 we

show the average precision of our root-only models on the

INRIA dataset comparing to the DPM system [14] (with

parts, without context rescoring). We use dictionary size

100 for 3x3 patches, 150 for 5x5, and 300 for 7x7. Our
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HOG HSC3x3 HSC5x5 HSC7x7 [14]

80.2% 80.7% 84.0% 84.9% 84.9%

Table 1: Average precision of HSC vs HOG (root-only) on

the INRIA dataset. HSC-based detectors outperform HOG,

especially with larger patch sizes, and are competitive with

the state-of-the-art DPM system (with parts).

results are competitive with the state of the art, while only

using a single root filter with no parts.

4.2. PASCAL2007 Benchmark

The PASCAL2007 dataset (comp3) includes 20 object

classes in a total of 9963 images, widely used as the stan-

dard benchmark for general object detection. There are

large variations across classes in terms of the consistency

of shape, appearance, viewpoint or occlusion. We use the

trainval positive images and the train negative images, and

evaluate on the test images. For supervised training, we use

the reported part locations of the voc-release4 system [14].

Final results with root-only models. We use a K-SVD

dictionary of size 100 over 5x5 patches. With the expan-

sion to to half-wave rectified codes, the feature dimension

is 300. Our system does not handle the symmetry of filters

explicitly, instead we flip the positive images and double the

size of the training pool. We need 6 root filters to match a

mixture of 3 filters from the DPM system.

Table 2(a) shows the average precision evaluation of our

root-only models comparing the HSC features with HOG.

The results are heartening: under identical settings, the HSC

features improve AP by a large margin across the board,

over 8% for many classes, and achieve a mean AP of 26.9%
over 21.4%. The improvement is also universal: HSC do

better than HOG on 19 out of the 20 classes. Our results

also outperform the state-of-the-art DPM system [14] with

root-only models (fully trained on all trainval images.).

Fig. 6 shows some examples of the objects detected us-

ing HSC comparing to HOG. In general, we observe that

HSC features help detect objects under challenging con-

ditions and tend to avoid “silly” mistakes such as finding

cats in a blue sky. Qualitatively, HSC-based detection pro-

duces results quite different from those of HOG, suggesting

that there may be room for improvement by combining the

strengths of both worlds.

Supervised dimension reduction. As described in Sec-

tion 3.4, we learn a projection of HSC features to a lower di-

mension (universally applied to all cells) by utilizing mod-

els learned in the root-only case, and integrate it into feature

extraction. Fig. 5 compares root-only models using model-

based SVD with standard unsupervised SVD (computing

SVD on the HSC features), on PASCAL as well as INRIA.

For PASCAL, we select four classes (bus, cat, diningtable,

motorbike). The results clearly show the advantage of our
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Figure 5: Comparing the effectiveness of dimension reduc-

tion: SVD-data is the standard way of unsupervised dimen-

sion reduction computing SVD on data; SVD-model com-

putes SVD on learned root filters.

model-based dimension reduction. It is more effective on

INRIA, suggesting that detecting person requires lower di-

mensional features than general objects. We use feature di-

mension 100 (reduced from 300) for our part-based models.

Final results with part-based models. Table 2 (b)

shows the average precision of HSC vs HOG for part-based

models. As in the root-only case, using HSC features leads

to large improvements across the board, improving mAP

from 30.1% to 34.3%. It is also consistent: HSC improves

over HOG on 18 classes, over 6% in many cases, and only

does slightly worse on 2 classes (within margin of error).

Here, HOG refers to our in-house implementation of our

supervised part-based model (5). Our results also compare

favorably to the state-of-the-art DPM system [14]1, improv-

ing 17 out of 20 classes. Not surprisingly, we see large

improvements on the challenging classes that have a low

baseline, such as bottle, cat, and diningtable.

Caching feature pyramids. To facilitate efficient train-

ing of multiple classes as in PASCAL, we precompute the

feature pyramids and cache them. We find that it is suffi-

cient to store each feature value in a single byte (compar-

ing to 8 in a double), scaled to be between 0 and 1. The

HSC features are within this range with a near uniform dis-

tribution after power transform. Single-byte caching not

only makes the training process faster, but also suggests

that there is high redundancy in the feature values and there

likely exists much faster ways of computing them.

Running time. For a 300x300 image, single-scale HSC

computation takes ∼110ms on an Intel 3930k (single-core);

for a typical scale pyramid of 40 levels, it takes ∼4 seconds.

This is slower than HOG (understandably) but manageable.

Once features are computed, the computational cost is that

of DPM, linearly scaling with feature dimension. For our

PASCAL models with 6 mixture components and 8 parts,

total test time is ∼9 seconds. As for training, we only need

to go through negative images once using the supervised

approach, which takes about a day per class (single-core),

1The average precisions of [14] are lower than reported on the authors’

website, mainly because we exclude bounding box reprediction.
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aero bike bird boat bttl bus car cat chair cow table dog hors mbik prsn plnt shep sofa train tv avg

HOG 20.5 47.7 9.2 11.3 18.3 35.4 40.8 4.0 12.2 23.4 11.2 2.6 41.0 30.3 21.0 6.6 11.8 16.0 31.5 32.5 21.4

HSC 25.3 49.2 6.2 15.4 24.0 44.3 45.6 12.0 15.6 27.7 16.1 10.8 43.3 42.7 28.5 10.8 20.9 25.1 34.4 39.8 26.9

∆HSC +4.7 +1.5 -3.0 +4.0 +5.6 +8.9 +4.9 +8.0 +3.4 +4.3 +4.9 +8.2 +2.3 +12.5 +7.5 +4.2 +9.1 +9.2 +2.8 +7.3 +5.5

[14] 25.2 50.2 5.8 11.8 17.2 41.4 43.6 3.5 15.9 21.0 15.6 7.9 44.1 34.8 30.3 9.9 14.6 18.4 36.4 33.7 24.1

(a) Root-only models: HOG, HSC, their difference ∆HSC (HSC-HOG); and DPM [14]

aero bike bird boat bttl bus car cat chair cow table dog hors mbik prsn plnt shep sofa train tv avg

HOG 30.3 56.4 9.7 15.6 23.2 49.1 51.1 14.9 19.6 21.6 19.6 10.7 56.0 47.3 40.0 12.8 16.7 27.9 41.0 39.5 30.1

HSC 32.2 58.3 11.5 16.3 30.6 49.9 54.8 23.5 21.5 27.7 34.0 13.7 58.1 51.6 39.9 12.4 23.5 34.4 47.4 45.2 34.3

∆HSC +1.9 +1.9 +1.8 +0.7 +7.4 +0.8 +3.7 +8.7 +1.9 +6.1 +14.3 +3.0 +2.2 +4.2 -0.1 -0.4 +6.8 +6.5 +6.4 +5.7 +4.2

[14] 30.7 58.9 10.4 14.4 24.8 49.0 54.1 11.1 20.6 25.3 25.2 11.0 58.5 48.4 41.3 12.1 15.5 34.4 43.4 39.0 31.4

(a) Part-based models, with dimension reduction

Table 2: Results on the PASCAL2007 dataset. HSC and HOG results are from our supervised training system using identical

settings and directly comparable. We achieve improvements over virtually all classes, in many cases by a large margin.

Figure 6: A few examples of HOG (left) vs HSC (right) based detection (root-only), showing top three candidates (in the

order of red, green, blue). HSC behaves differently than HOG and tends to have different modes of success (and failure).

comparable to that of DPM. A smaller set of negative im-

ages would speed up training without losing much accuracy.

5. Discussions

In this work we demonstrated that dictionary based fea-

tures, learned from data unsupervisedly, can replace and

outperform the hand-crafted HOG features for general ob-

ject detection. The detection problem is long thought to

be a challenging case for feature learning, with millions of

windows to consider. Through effective codebook learn-

ing, streamlined feature design and efficient training, we

successfully showed how to build and use Histograms-of-

Sparse-Codes (HSC) features in the spirit of HOG, which

are capable of representing rich structures beyond gradients

and lead to large improvements on virtually all classes on

the PASCAL benchmark.

Our work is the first to clearly demonstrate the advan-

tages of feature learning for general object detection, which

come at a reasonable computational cost. Our studies show

that large structures in large patches, when captured in a

large dictionary, generally improve object detection, call-

ing for future work on designing and learning even richer

features. The sparse representation we use in the current

HSC features are simple relative to what exits in the feature

learning literature. There are a variety of more sophisti-

cated schemes for coding, pooling and codebook learning

that could potentially boost detection performance, and we

believe this is a crucial direction toward solving the chal-

lenging detection problem under real-world conditions.
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