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Histological classifi cation and molecular genetics of 

meningiomas  

Markus J Riemenschneider, Arie Perry, Guido Reifenberger

Meningiomas account for up to 30% of all primary intracranial tumours. They are histologically classifi ed according 
to the World Health Organization (WHO) classifi cation of tumours of the nervous system. Most meningiomas are 
benign lesions of WHO grade I, whereas some meningioma variants correspond with WHO grades II and III and are 
associated with a higher risk of recurrence and shorter survival times. Mutations in the NF2 gene and loss of 
chromosome 22q are the most common genetic alterations associated with the initiation of meningiomas. With 
increase in tumour grade, additional progression-associated molecular aberrations can be found; however, most of 
the relevant genes are yet to be identifi ed. High-throughput techniques of global genome and transcriptome analyses 
and new meningioma models provide increasing insight into meningioma biology and will help to identify common 
pathogenic pathways that may be targeted by new therapeutic approaches.

Introduction 
Meningiomas are common tumours of the CNS that 
originate from the meningeal coverings of the spinal 
cord and the brain. Although the cell of origin has yet to 
be proven, meningiomas are probably derived from 
arachnoidal cap cells. These cells from the outer layer of 
the arachnoid mater and arachnoid villi show a striking 
cytological similarity to meningioma tumour cells.

Meningiomas account for about 30% of all primary brain 
tumours with an adjusted annual incidence of about 
4·5 per 100 000 individuals.1 These tumours are most 
commonly reported in elderly patients with peak incidence 
in the seventh decade of life. There is a clear bias towards 
women with a female to male ratio of about 2:1. Spinal 
meningiomas have an even greater predilection for females 
with a ratio of 10:1, particularly with tumours in the 
thoracic region. Less common subtypes and high-grade 
meningiomas are overrepresented in children and men.2

Most meningiomas are slow-growing benign lesions, 
and are typically associated with the symptoms of 
gradually increasing intracranial pressure. Headaches 
and seizures are common and other symptoms depend 
on the size and location of the tumour. On MRI, 
meningiomas are usually isointense to the cerebral cortex 
and avidly contrast enhancing.3

Ionising radiation is a clear cause of meningiomas and 
there is a potential role of sex hormones, particularly the 
progesterone receptor, but this remains unproven.4,5 
Another well-defi ned cause in those with young onset 
and no sex predilection is neurofi bromatosis type 2 
(NF2). Meningiomas (besides schwannomas) are hall-
mark features of this autosomal dominant disorder 
caused by germline mutations in the NF2 gene on 
chromosome 22q12.6 There are only a few families with 
an increased susceptibility to meningiomas, but without 
alterations of the NF2 locus.7 This suggests that there 
may be additional meningioma predisposition genes. 
Meningiomas have occasionally been reported in other 
hereditary syndromes, including Cowden, Gorlin, Li-
Fraumeni, Turcot, Gardener, von Hippel-Lindau, and 
multiple endocrine neoplasia type I.8,9 However, it 

remains unclear whether these uncommon associations 
are causal or merely coincidental.

Histological classifi cation
Clinical characteristics and WHO grading 
Although most meningiomas are benign, they have a 
surprisingly broad spectrum of clinical characteristics, 
and histologically distinct subsets are associated with high 
risk of recurrence, even after seemingly complete 
resection. In rare instances, meningiomas are malignant.

The WHO classifi cation aims to better predict the 
divergent clinical characteristics of meningiomas with a 
histological grading system based on statistically signi-
fi cant clinicopathological correlations (panels 1 and 2).10 
There are three types of meningiomas according to 
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Panel 1: The diff erent histological meningioma variants grouped by WHO grade10

Meningiomas with low risk of recurrence and aggressive growth (WHO grade I)

Meningothelial meningioma

Fibrous (fi broblastic) meningioma

Transitional (mixed) meningioma

Psammomatous meningioma

Angiomatous meningioma

Microcystic meningioma

Secretory meningioma

Lymphoplasmacyte-rich meningioma

Metaplastic meningioma

Meningiomas with greater likelihood of recurrence and/or aggressive behaviour 

(WHO grade II)

Atypical meningioma

Clear-cell meningioma 

Chordoid meningioma

Meningiomas with greater likelihood of recurrence and/or aggressive behaviour  

(WHO grade III)

Anaplastic (malignant) meningioma 

Rhabdoid meningioma

Papillary meningioma

Meningiomas of any type or grade with high proliferation index and/or brain invasion
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malig nancy grades: benign (WHO grade I), atypical 
(WHO grade II), and anaplastic (malignant; WHO 
grade III) meningiomas. 

Benign meningioma: WHO grade I
About 80% of all meningiomas are slow-growing tumours 
of WHO grade I. Any histological variant is compatible 

with WHO grade I, except for the chordoid, clear-cell, 
papillary, and rhabdoid meningiomas, which are 
consistently associated with more aggressive clinical 
features. The histological variants most commonly 
diagnosed in pathology specimens are meningothelial, 
fi brous, and transitional meningioma (fi gure 1, panel 1). 
Meningothelial meningiomas are histologically composed 
of characteristic uniform tumour cells that form lobules 
surrounded by thin collagenous septae. Within the lobules, 
epithelioid tumour cells have fuzzy ill-defi ned cell borders 
that resemble a syncytium. Characteristic nuclear changes 
include clear spaces (that seem empty of karyoplasm) and 
rounded eosinophilic cytoplasmic protrusions, referred to 
as pseudoinclusions. Fibrous meningiomas are mainly 
composed of spindle-shaped cells that resemble fi bro-
blasts and form intersecting fascicles embedded in a 
collagen-rich and reticulin-rich matrix. Transitional 
(mixed) meningiomas combine features of both subtypes 
and usually present with extensive whorl formation, 
wherein tumour cells wrap around each other forming 
concentric layers. The latter have a tendency to hyalinise 
and calcify to form the characteristic concentric 
calcifi cations known as psammoma (“sand-like”, based on 
their gritty, gross appearance) bodies. Tumours that are 
mostly composed of the latter are referred to as 
psammomatous meningiomas. In addition to these 
common meningioma subtypes, several other benign 
variants can be distinguished (fi gure 1, panel 1).  

The neurofi bromatosis type 2 protein is the only 
tumour suppressor that has been fi rmly implicated in 
the development of benign meningiomas. However, the 
frequency of NF2 gene mutations varies in the diff erent 
histological variants. Although fi broblastic and trans-
itional meningiomas carry NF2 mutations in up to 80% 
of patients, these can be detected in only about 25% of 
meningothelial meningiomas.11 NF2 mutations are also 
rare in the secretory meningioma variant, which is 
histologically characterised by glandular metaplasia and 
pseudopsammoma bodies (fi gure 1).12 

Benign meningiomas of WHO grade I can invade the 
dura, dural sinuses, skull, and even extracranial 
compartments, such as orbit, soft tissue, and skin. 
Although these types of invasion make it more diffi  cult 
to resect the tumour, they are not considered as atypical 
or malignant. By contrast, brain invasion is associated 
with recurrence and mortality rates similar to atypical 
meningiomas in general, even if the tumour seems 
completely benign otherwise.13 Although more common 
in advanced meningioma variants, brain invasion has 
not been associated with any particular genetic change 
yet, but has been reported in tumours without obvious 
chromosomal imbalance.14 

Atypical meningioma and other WHO grade II variants
Atypical meningiomas constitute 15–20% of meningi-
omas. Following gross total resection, benign men-
ingiomas are associated with 5-year recurrence rates of 

Figure 1: Histology of the diff erent benign meningioma variants (WHO grade I) 

Variants of WHO grade I: meningothelial (A), fi brous (B), transitional (C), psammomatous (D), angiomatous (E), 

microcystic (F), secretory (G), lymphoplasmacyte-rich (H), and metaplastic (I). (A–D, F, H, I: hematoxylin-eosin; E: 

immunostaining for endothelial cells with anti-CD34 antibody; G: periodic acid Schiff  stain). Note syncytial growth of 

meningothelial cells (A), fascicular growth of fi broblast-like spindle cells (B), formation of multiple meningeal whorls 

(C), presence of numerous calcifi ed psammoma bodies (D), numerous densely packed blood vessels (E), prominent 

microcystic degeneration (F), production of periodic acid Schiff  positive pseudopsammoma bodies (G), extensive 

chronic infl ammatory infi ltrates (H), and xanthomatous changes of tumour cells (I).

Panel 2: WHO criteria for meningioma grading10

Benign meningioma (WHO grade I)

● Histological variant other than clear-cell, chordoid, papillary, or rhabdoid 

● Lacks criteria of atypical and anaplastic meningioma

Atypical meningioma (WHO grade II) (any of three criteria)

● Mitotic index ≥ four mitoses/ten high-power fi elds (HPF)

● At least three of fi ve parameters:

    Increased cellularity

    High nuclear/cytoplasmatic ratio (small cells)

    Prominent nucleoli

    Uninterrupted patternless or sheet-like growth

    Foci of spontaneous necrosis (ie, not induced by embolisation or radiation) 

● Brain invasion

Anaplastic (malignant) meningioma (WHO grade III) (either of two criteria)

● Mitotic index ≥20 mitoses/10 HPF

● Anaplasia (sarcoma, carcinoma, or melanoma-like histology)
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only 5%. In contrast, the estimated recurrence rate for 
totally resected atypical meningiomas is about 40% at 
5 years and this continues to increase with additional 
follow-up time.13,15 Thus, the diagnosis of atypical 
meningioma should shorten the intervals of postsurgical 
clinical follow-up. 

The most reliable histological correlate of recurrence 
risk is increased mitotic activity—ie, four or more 
mitoses per ten high-power fi elds (fi gure 2). Nevertheless, 
in the absence of increased mitotic activity, other 
histological features are associated with the likelihood of 
recurrence and therefore have grading implications. 
With the WHO 2000 defi nitions, presence of three of the 
fi ve following criteria may lead to the diagnosis of 
atypical meningioma: increased cellularity, high nuclear 
to cytoplasmic ratio (small cells), prominent nucleoli, 
uninterrupted patternless or sheet-like growth, and foci 
of spontaneous (not induced by embolism) necrosis. The 
issue of brain invasion was less clearly specifi ed in the 
WHO scheme, although the similar clinical implications 
suggest that this could be used as another criterion for 
atypical meningioma (panel 2).

Clear-cell and chordoid variants of meningioma are 
associated with higher recurrence rates even in the 
absence of the above criteria.16,17 Thus, these meningiomas 
are graded as WHO grade II by defi nition (panel 1, 
fi gure 2). Clear-cell meningioma is composed of sheets 
of polygonal cells with clear, glycogen-rich cytoplasm 
positive for periodic acid Schiff , and dense perivascular 
and interstitial collagenisation (fi gure 2). Chordoid 
meningiomas have regions that are histologically similar 
to chordoma, with cords of small epithelioid tumour cells 
that contain eosinophilic or vacuolated (ie, resembling 
physaliferous cells) cytoplasm embedded in a basophilic, 
mucin-rich matrix (fi gure 2). Clear-cell meningiomas are 
most common in the spinal cord and posterior fossa, 
whereas chordoid meningiomas are typically supra-
tentorial. Although genetic features associated with clear- 
cell meningiomas are still unknown, an unbalanced 

translocation der(1)t(1;3)(p12–13;q11) has been proposed 
as a specifi c cytogenetic marker for the chordoid variant.18 
However, this fi nding is still to be validated and the genes 
targeted by the translocation are unknown.

Anaplastic (malignant) meningioma and other WHO 
grade III variants
Anaplastic meningiomas account for 1–3% of all 
meningioma cases.10 These tumours have clinical charac-
teristics similar to other malignant neoplasms, which can 
widely infi ltrate neighbouring tissues and form metastatic 
deposits. Anaplastic meningiomas are associated with 
recurrence rates of up to 50–80% after surgical resection 
and median survival is less than 2 years.13

Histologically, anaplastic meningiomas have features 
of malignancy with a mitotic index of 20 or more mitoses 
per ten microscopic high-power fi elds being diagnostic 
(fi gure 3). Some anaplastic meningiomas are diffi  cult to 

recognise as meningothelial neoplasms as they can 
resemble sarcoma, carcinoma, or melanoma. Anaplastic 
meningiomas usually have large zones of geographic 
necrosis. However, therapeutic embolisation (iatrogenic) 
should be excluded as an alternative explanation before 
grading (panel 2).19  

Certain meningioma variants are consistently associated 
with malignant behaviour and therefore invariably 
correspond to WHO grade III (panel 1, fi gure 3). Papillary 
meningiomas, which usually occur in children, show 
invasion of the brain and other local structures in 75% of 
patients, recurrence in 55%, and metastasis in 20%.20,21 
These meningiomas are histologically defi ned by a 
discohesive growth, which results in a perivascular 
pseudopapillary pattern and even pseudorosette-like 
structures similar to those in ependymoma (fi gure 3). 
Another highly aggressive meningioma variant is the 
rhabdoid meningioma, which contains rhabdoid cells 
with abundant eosinophilic cytoplasm, eccentrically placed 
nuclei, and paranuclear inclusions that ultrastructurally 
correspond to whorled bundles of intermediate fi laments 
(fi gure 3). Both papillary and rhabdoid features may be 
viewed as progression-associated changes, because they 
usually present for the fi rst time at recurrence and increase 
in prominence over time.20–23 

Immunohistochemistry
Immunohistochemistry may be of particular diagnostic 
value in cases of anaplastic meningioma, although it 
should be emphasised that even immunohistochemical 
evidence of meningothelial diff erentiation can be lacking 
in some patients. Moreover, there is also a role for immuno-
histochemistry in meningioma variants dominated by 

Figure 2: Histology of WHO grade II meningiomas 

Atypical meningioma with increased mitotic activity (A), clear-cell meningioma with clear, glycogen-rich 

cytoplasm (B), and chordoid meningioma showing chordoma-like growth of tumour cells in a myxoid matrix (C). 

All are stained with hematoxylin-eosin.

Physaliferous cells

Tumour cells with an eosinophilic, 

vacuolated cytoplasm embedded 

in a basophilic, mucin-rich matrix.  

Physaliferous cells are typical for 

chordoma

Unbalanced translocation

The unequal exchange of material 

between two chromosomes 

resulting in loss or gain of genetic 

material

Figure 3: Histology of WHO grade III meningiomas 

Anaplastic meningioma with cellular anaplasia and numerous mitotic fi gures (A), rhabdoid meningioma 

containing large rounded tumour cells with eccentric nuclei (B), and papillary meningioma that shows a 

pseudopapillary growth pattern (C ); A and C are stained with hematoxylin-eosin and B is toluidine blue, 

semithin section.
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unusual features. The most commonly used marker in 
meningioma diagnostics is epithelial membrane antigen, 
which yields at least patchy positivity in most 
meningiomas.24 Depending on the diff erential diagnostic 
context, vimentin staining can also be helpful, as all 
meningiomas strongly express this intermediate 
fi lament.25 Unfortunately, epithelial membrane antigen or 
vimentin are not specifi c and therefore additional markers 
of meningothelial diff erentiation are sorely needed.

Another important role for immunohistochemistry in 
meningioma diagnostics lies in the assessment of the 
proliferative index, which in clinical pathology is usually 
measured with the antibody MIB-1, the clone that 
targets the proliferation marker Ki-67 in paraffi  n-
embedded tissue. Raised MIB-1 labelling indices are 
associated with increased risk of recurrence. Although 
the specifi c counting techniques and cut-off  levels are 
not exactly defi ned and bear a considerable degree of 
interlaboratory variability, MIB-1 labelling indices above 
5% suggest a greater likelihood of recurrence and can 
be especially helpful as an adjunct to grading in 
borderline atypical cases.26,27 Expression of the pro-
gesterone receptor is inversely associated with 
meningioma grade and therefore may also be useful in 
borderline cases. However, the role of this receptor 
in routine meningioma diagnostics is not well 
established.28–30  

A new immunohistochemical method that can help 
meningioma grading is the mitosis-specifi c antibody 
against phosphohistone-H3. Immunostaining with this 
antibody highlights mitotic fi gures and helps to focus the 
pathologist’s attention on the most mitotically active 
areas within the specimen, also allowing for easy and 
objective diff erentiation of mitotic fi gures from apoptotic 
nuclei.31

Molecular genetics of meningiomas
Chromosome 22q, the NF2 gene, and its gene product 
merlin  
Monosomy of chromosome 22 is the most common 
genetic alteration in meningiomas and was one of the 
fi rst cytogenetic alterations described in solid tumours.32 
About half of meningiomas have genetic losses that 
involve the chromosomal band 22q12.2.33,34 NF2 was 
identifi ed as the major gene in this region, with 
mutations identifi ed in virtually all NF2-associated 
meningiomas and about 50% of sporadic meningi-
omas.35–38 The results of one study39 of sporadic 
meningiomas suggested that epigenetic NF2 alterations 
are an additional mechanism of NF2 inactivation. 

 The NF2 gene product belongs to the 4.1 family of 
structural proteins that associate integral membrane 
proteins to the cytoskeleton.40 It shows strong similarity 
to the proteins ezrin, radixin, and moesin (ERM proteins) 
and therefore was named merlin, for moesin-, ezri n- 
and radixin-like protein.41 Merlin is also known as 
schwannomin for its role in schwannoma formation.42 

Merlin contains an aminoterminal protein 4.1 cell-
surface glycoprotein-binding domain (FERM domain; 
residues 1–313) followed by a predicted alpha-helical 
region and a non-conserved carboxyterminal domain. 
The FERM domain of merlin is composed of three 
subdomains that probably mediate interactions with 
critical partners.43,44 Merlin is localised to the cell 
membrane at regions that regulate cell–cell contact and 
motility. Several merlin-interacting proteins have been 
identifi ed. One class includes cell-surface proteins that 
bind to FERM-containing proteins, such as CD44 and 
β1-integrin.45,46 Another class is represented by molecules 
involved in cytoskeleton dynamics (βII-spectrin, paxillin, 
actin, and syntenin).47–50 Lastly, molecules have been 
identifi ed that may be important for regulation of ion 
transport, such as the sodium–hydrogen exchange 
regulatory factor,51 and endocytosis, such as the hepatocyte 
growth factor-regulated, tyrosine kinase substrate.52 

Although the functions of many of these merlin-
binding partners have not been studied in vivo, there is 
recent evidence that the cell-surface glycoprotein CD44 
aff ects merlin-mediated inhibition of cell proliferation 
and cell motility. The cytoplasmic tail of CD44 binds to 
merlin at the cell membrane and this seems to be 
important for providing a growth-arrest signal.46,53 This 
CD44–merlin association is tightly regulated by protein 
phosphorylation.53–56 In addition, the association between 
merlin and the actin cytoskeleton is important for the 
proper subcellular location of merlin. The merlin–actin 
cytoskeleton interaction may be mediated by several 
merlin-binding molecules, including βII-spectrin, 
paxillin, actin, and syntenin. Data from one study57 have 
suggested that the association between merlin and 
paxillin is particularly critical for proper subcellular 
localisation.

Other protein 4.1 family members
Besides NF2 mutations with loss of merlin expression, 
other protein 4.1 family members are also down regulated 
in meningioma. Loss of protein 4.1B (DAL-1) expression 
is a common aberration detected in meningiomas of 
all WHO grades,58 although one group found it pre-
dominantly in higher grade forms.59 By contrast to loss of 
DAL-1 protein expression, mutations in the corresponding 
gene are rare, with only three mutations detected in 
83 sporadic meningiomas.60 These fi ndings suggest that 
other inactivating mechanisms—eg, epigenetic changes 
can account for the common DAL1/4.1B silencing in 
sporadic meningiomas. Another study61 similarly found 
no evidence of DAL-1 inactivation either by mutation or 
loss of heterozygosity in a cohort of tumours from 
patients with multiple meningiomas.61

Recent data suggest that protein 4.1B acts as a tumour 
suppressor by activating Rac1-dependent c-Jun-NH2-
kinase signalling.62 Of note, TSLC1 (tumour suppressor 
in lung cancer-1), a gene originally identifi ed as deleted 
in non-small cell lung cancer and that closely interacts 
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with 4.1B, also has reduced expression levels in high-
grade meningiomas.63 Moreover, another family member, 
protein 4.1R is commonly downregulated in menin-
giomas and inhibits meningioma cell growth in vitro.64 
Thus, meningioma development seems to be closely 
associated with the inactivation of one or more of the 
protein 4.1 family members.

Putative alternative tumour suppressor genes on 
chromosome 22q
Although NF2 is the most frequently altered gene and 
probably the most important tumour suppressor on 
chromosome 22q, the frequency of deletions in this 
chromosomal location exceeds that of NF2 mutations in 
meningioma. Furthermore, reports of interstitial 

deletions on chromosome 22 that do not involve the NF2 
region include a case of multiple meningiomas resected 
from a single patient; no NF2 gene mutations were 
detected in this case despite chromosome 22q loss.65 As a 
consequence, a second gene involved in the disease on 
chromosome 22q may exist. Several candidate genes 
have been proposed. The BAM22 (ADTB1, β-adaptin) 
gene maps in closest proximity to NF2 on 22q12.2.66 This 
gene is a member of the human β-adaptin gene family, 
which is involved in the regulation of the intracellular 
transport of proteins in the trans-Golgi network. In a 
series of 71 sporadic meningiomas, the BAM22 gene was 
inactivated in about 13% of the cases.66 However, a 
mutational analysis did not reveal mutations in 
110 meningiomas.67 Other possible candidates are MN1, 
the LARGE gene, and INI1. The MN1 gene is located on 
22q12.1 and was reported to be lost in a patient with 
multiple meningiomas, which bore an intact NF2 gene.68 
Protein function, however, seems to be that of a 
transcription factor rather than a tumour suppressor. As 
the name implies, the LARGE gene on 22q12.3 is one of 
the largest human genes69 and mutational analysis is still 
needed. Lastly, the INI1 gene on 22q11.23 was analysed 
for mutations in 126 meningiomas with 3% of cases 
bearing an identical mutation in exon 9.70 

Genes and chromosomes involved in meningioma 
progression
There is strong evidence that most gene alterations 
discussed above are early events in meningioma 
tumorigenesis. For instance, in atypical and anaplastic 
meningiomas, NF2 gene mutations occur in about the 
same number of cases as in benign WHO grade I 
meningiomas, which suggests that NF2 is involved in 
meningioma initiation rather than progression. 
However, the genetic alterations associated with 
atypical and anaplastic meningioma are complex, with 
numerous genomic losses, gains, and amplifi cations 
implicated (fi gure 4). Losses on chromosomes 1p, 6q, 
10, 14q, and 18q and gains (DNA copy number increases) 
on 1q, 9q, 12q, 15q, 17q, and 20q are common in atypical 
meningiomas. Anaplastic meningiomas share these 

chromosomal aberrations, but show more frequent 
losses on 6q, 10, and 14q, additional losses on 9p, and 
gains or amplifi cations on 17q23.14,71–73 

Loss of 1p is the second most common chromosomal 
abnormality in meningiomas. Two main target regions 
on 1p33–34 and 1p36 are involved.74 Recent fi ne-mapping 
narrowed the smallest region of overlapping deletion on 
1p33–p34 to 2·8 megabases.75 The region on 1p36 spans 
about 8·21 megabases of chromosomal sequence.76 
Several candidate genes on 1p have been screened, 
including TP73, CDKN2C (encoding p18INK4c), RAD54L, 
and ALPL.77–80 However, none of these genes showed any 
consistent structural alterations; thus, evidence for a 
major role is lacking. One possible explanation is that the 
methylation status of most of these genes has not yet 
been assessed. Of note, a recent study on DNA 
methylation of multiple promoter-associated CpG islands 

in meningiomas found increased levels of aberrant 
promoter methylation in tumours with 1p loss.81 The 
possibility of gene methylation as a relevant molecular 
mechanism in meningioma progression is also 
corroborated by the fact that promoter methylation of the 
TP73 gene was detected in 13 of 30 cases with 1p 
deletions.82 

Several putative target genes located on other 
chromosomal regions deleted or gained in advanced 
meningioma have been studied for abnormalities in these 
tumours. Loss on chromosome 9p represents one of few 
examples clearly associated with specifi c genes; namely, 
the genes CDKN2A (encoding p16INK4a), ARF, and 
CDKN2B (encoding p15INK4b) (all located at 9p21). Although 
INK4a and INK4b inhibit cell-cycle progression at the 
G1/S-phase checkpoint through negative eff ects on the 

Arachniodal (meningeal) cell

Benign meningioma

Atypical meningioma

Anaplastic meningioma

–22q, NF2 mutations

4.1B, 4.1R, TSLC1 loss of expression

EGFR/PDGFRB activation

–1p, –6q, –10, –14q, –18q

+1q, +9q, +12q, +15q, +17q, +20q

Notch, WNT, IGF pathway activation

PR loss of expression telomerase/hTERT activation

More frequent –6q, –10, –14q

NDRG2 hypermethylation

–9p (CDKN2A/B, p14ARF deletion)

amplification on 17q23 (RPS6KB1, others)

Figure 4: Genetic alterations associated with meningioma initiation and 

progression 

Meningiomas probably arise from arachnoidal cap cells or meningothelial 

progenitor cells. The most common genetic events that lead to meningioma 

initiation comprise losses on chromosome 22q, NF2 mutations, and alterations 

of other members of the protein 4.1 superfamily. In addition, a plethora of 

molecular changes and genetic pathways that conveys the progression from 

benign to atypical and anaplastic meningioma have been identifi ed.  

Interstitial deletion

Loss of a circumscribed genomic 

region from within a 

chromosome

CpG island

A region of DNA rich in CpG 

dinucleotide sites, often located 

in the 5’-end of genes and 

promoter regions. Methylation 

of CpG sites may reduce the 

transcriptional gene activity and 

is thus critical to the regulation 

of gene expression
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cyclin-dependent kinases Cdk4 and Cdk6,83 p14ARF 
functions as a negative regulator of the Mdm2 oncoprotein, 
thereby inhibiting p53 degradation (fi gure 5).84 
Homozygous deletions or mutations of CDKN2A, ARF, 
and CDKN2B are found in most anaplastic meningiomas, 
which indicates that inactivation of the cell-cycle 
checkpoint is essential for malignancy.78 About 70% of 
patients whose anaplastic meningiomas have 9p21 
deletion have a substantially shorter survival than patients 
whose anaplastic meningiomas lack this alteration.85 
CDKN2C (encoding p18INK4c) on 1p32 is mutated in only 
rare cases of atypical or anaplastic meningioma.78  

Because deletions on chromosome 10 are a common 
fi nding in high-grade meningiomas, the PTEN gene on 
10q23 has been studied extensively. However, mutations 
were only detected in rare cases and no homozygous 
deletions were found.86 Alterations of the TP53 gene are 
also uncommon, although there have been some allelic 
losses of 17p in high-grade meningiomas.78,87 By contrast, 
the long arm of chromosome 17 has recently attracted 
interest since gains are reported in atypical meningioma 
and 17q21 amplifi cations are common in anaplastic 
meningiomas.14 Two independent studies addressed the 
role RPS6KB1, which encodes for the ribosomal S6 
kinase, as a candidate oncogene within this region.71,88 
Gains and amplifi cations could be detected in a few 
anaplastic meningiomas. However, RPS6KB1 may not be 
the major target of this amplicon, which suggests that 
other genes on 17q are more important.

Nowadays, advances in high-throughput expression 
profi ling techniques allow simultaneous screening of 
thousands of genes within a single tumour. In other 
brain tumour entities, such as malignant gliomas, gene 

expression-based classifi cation may correlate better with 
prognosis than histological classifi cation.89 High-
throughput techniques therefore have the potential to 
yield relevant gene expression signatures for diagnostic 
use or may even pave the way for a combined histological 
and molecular meningioma classifi cation. Of note, 
hierarchical clustering based on distinct sets of genes 
(many of them associated with cell-cycle regulation and 
cellular proliferation) accurately distinguished higher-
grade meningiomas from benign meningiomas.90,91 Also, 
in line with cytogenetics, genes on chromosome 1p and 
14q were commonly downregulated in anaplastic 
meningiomas.92 Moreover, expression profi ling has 
identifi ed new candidate genes involved in meningioma 
progression. For example, the NDRG2 gene localised to 
14q11.2 is consistently downregulated in anaplastic 
meningiomas and clinically aggressive atypical 
meningiomas at both the transcript and protein levels. 
Furthermore, loss of NDRG2 expression was signifi cantly 
associated with promoter hypermethylation. NDRG2 
therefore serves as a putative meningioma progression 
associated tumour suppressor gene.92

Telomerase activation is implicated as a further 
mechanism in promotion of tumour progression. 
Telomerase is an enzymatic complex, which is 
specifi cally involved in maintenance of telomeres, the 
very ends of  chromosomes. Activation of the reverse 
transcription subunit hTERT (reverse telomerase 
transcriptase) has been extensively studied in 
meningiomas.93,94 Although activation of hTERT was 
only found in up to 37% of benign meningiomas, it was 
signifi cantly increased in WHO grade II and III tumours 
(up to 95%), which correlates with higher risk of 
recurrence and malignancy.95 Moreover, hTERT may 
serve as a potential predictor of recurrence because its 
activation was signifi cantly correlated with a shorter 
progression-free survival.96 

Pathway-associated alterations
Understanding signalling pathways that are disturbed in 
meningiomas is crucial for the development of new 
targeted therapies. This applies especially to those 
patients with high-grade lesions for which surgical 
resection might not be curative. Although in other CNS 
tumours, such as gliomas, these pathways have been 
extensively studied, our knowledge of signalling pathways 
in meningioma tumorigenesis is still limited. High-grade 
meningiomas commonly have alterations in the retino-
blasmtoma protein (pRB)-dependent and p53-dependent 
pathways via dysregulation of p16INK4a, p15INK4b, and p14ARF 

(fi gure 5).78 The pRB pathway has a central role in the 
regulation of G1 to S-phase transition. Under mitogenic 
stimuli cyclin D expression is upregulated and the cyclin 
Ds bind either to Cdk4 or Cdk6, thereby phosphorylating 
pRB and releasing E2F transcription factors, resulting in 
the activation of S-phase genes like cyclin E.97 In anaplastic 
meningiomas, inhibition of the Cdk4/cyclinD complex is 
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usually impaired by alterations in the genes CDKN2A 
and CDKN2B.78 The pRB pathway is connected to the p53 
cell-cycle regulatory pathway via p14ARF.98 Physiologically, 
the release of E2F transcription factors on phosphorylation 
of pRB induces the transcription of p14ARF, thereby 
inhibiting murine double minute 2 protein (MDM2)-
mediated degradation of p53. Thus, the p53 pathway is a 
type of “emergency brake” on the cell cycle in case of 
aberrant pRB pathway activation. However, in anaplastic 
meningiomas, this regulatory mechanism is distributed 
by frequent homozygous deletions of P14ARF.78

Recently, gene expression profi ling data indicated that 
the Notch signalling pathway might also be dysregulated 
in meningiomas. HES1 (hairy/enhancer of split), the 
Notch2 and Notch1 receptors, and the Jagged1 ligand 
transcripts and proteins were expressed in meningiomas 
of all grades, whereas TLE2 (transducin-like enhancer 
of split) and TLE3 were only expressed in higher-grade 
meningiomas.99 Another study implicated several 
members of the WNT (wingless) and insulin-like 
growth factor (IGF) signalling cascades, associated with 
losses on chromosomes 10 and 14 in higher grade 
meningiomas.90 Both IGF-II and IGFBP2 are expressed 
in meningiomas, with increased concentrations of IGF-
II associated with invasiveness and malignant 
progression (fi gure 4).91,100,101

Numerous studies have shown increased expression of 
other growth factors, their receptors, and respective 
kinases. For instance, the epidermal growth factor 
receptor is widely expressed on meningioma cells and 
tumours.102–105 Moreover, meningioma cells are capable of 
autocrine expression of the ligands of the epidermal 
growth factor receptor, such as TGF-α and EGF, 
associated with aggressive growth.106,107 Also, the platelet-
derived growth factor receptor β is activated in 
meningiomas108 and aberrantly stimulated by an autocrine 
loop as described for the epidermal growth factor 
receptor.109,110

Model systems
A major obstacle in understanding the molecular changes 
that lead to meningioma formation and progression is the 
lack of appropriate in vitro and in vivo model systems. 
Stable in vitro growth of cell lines derived from benign 
meningiomas could not be achieved because of senescence 
of these cells in vitro. Thus, until recently most in vitro 
studies on meningiomas relied on primary early passage 
cell lines or a few established cell lines derived from 
aggressive variants of meningiomas.111,112 This problem 
was overcome by retroviral transduction of primary 
human meningioma cells with the hTERT gene, thereby 
bypassing cellular senescence.113,114 Meningioma cell lines 
that were immortalised in this manner maintained classic 
meningothelial morphological features, including whorl 
formation, desmosomes, and interdigitating cell processes 
as well as expression of epithelial membrane antigen, 
vimentin, and desmoplakin. Karyotyping by array 

comparative genomic hybridisation (array-CGH) revealed 
similar genetic changes to primary meningiomas—eg, 
chromosome 22q loss. Moreover, when transplanted 
subdurally into nude mice, tumours were generated with 
typical histological features of meningothelial 
meningiomas. Thus, these cell lines represent promising 
new tools for further understanding the molecular 
pathogenesis of meningiomas and providing preclinical 
screening of new therapeutic approaches.

Although NF2 knockout mice have provided insight 
into the role of the NF2 gene during development, they 
have been less instructive in elucidating the role of NF2 
in the formation of meningiomas. Recently, a promising 
conditional knockout mouse was reported, using Cre 
recombinase technology to specifi cally inactivate the NF2 
tumour suppressor in arachnoidal cells. These mice 
developed a range of meningioma subtypes fairly similar 
to those in human beings.115 These conditional NF2 
knockouts, when crossed with other strains of knockout 
or transgenic mice may provide crucial insights into the 
synergistic or additive eff ects of NF2 gene inactivation. 
Thus, these new in vitro and in vivo models may help to 
gain mechanistic insights into NF2-associated tumori-
genic pathways and may contribute to a better 
understanding of the complex processes that drive 
meningioma initiation and progression.116 

Summary and outlook
The WHO classifi cation of meningiomas is still primarily 
based on morphological parameters. As delineated in 
this review, however, there has been tremendous progress 
in our understanding of the molecular mechanisms that 
underlie meningioma tumourigenesis and progression. 
Several chromosomal regions and new candidate genes 
have been identifi ed; these must be further validated 
as diagnostically and prognostically relevant markers, 
and may eventually facilitate combined histological and 
molecular meningioma classifi cation. The use of array-
based approaches of global genomic and gene expression 
analyses and new in vitro and in vivo models will no 
doubt accelerate progress and contribute to the 
development of new targeted therapies, particularly for 
patients for whom surgical and radiation options have 
been exhausted. 
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detect relevant literature crosslinks. Articles were also 
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literature published in English was reviewed.
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