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In the present study, the toxicity of receiving waters from a highly polluted urban watercourse, the Reconquista River, Argentina,
collected at a dam in the upstream part of the river was evaluated. Cnesterodon decemmaculatus, a widely distributed 
sh species
in Pampasic rivers proposed for use in ecotoxicological evaluations, was used as a test organism. A 96-h acute toxicity bioassay
with river water quality which has been characterized as moderately contaminated was performed. 	e treatment groups were
(1) whole surface river water; (2) whole surface river water with 2 mg Cd/L added as a simulated metal contaminant pulse; (3)
a negative control using reconstituted moderately hard water (MHW); (4) a metal positive control, MHW + 2 mg Cd/L; and (5)
a positive genotoxicity control, MHW + 5 mg Cyclophosphamide/L (CP). 	e condition factor rate, micronuclei frequency, and
comet assay from peripherical blood, structural changes of the gill arrangement by scanning electron microscope (SEM) analysis,
histopathological changes in the liver and the glutathione-S-transferase, catalase, superoxide dismutase, glutathione, and protein
content from the body midsection (viscera) were evaluated. According to our results, for short term exposure, SEM analyses of gills
and liver histopathological analyses could be useful tools for the evaluation of target organ damage as well as comet assays for DNA
damage.We propose that the 96-h laboratory bioassay protocol described is useful for monitoring the deterioration of water quality
employing the teleost C. decemmaculatus and that the microscope analysis of gills and liver as well as the comet assay methodology
could be sensitive endpoint indicators.

1. Introduction

	e Reconquista River, which is part of the great del Plata
Basin, is a lowland watercourse in the Pampasic region
located in the north-east part of Buenos Aires province,
Argentina. It runs in a SW to NE direction, and in its route
of approximately 50 km it receives contributions from small
water courses [1]. 	is river is highly polluted with industrial
and domestic outputs from point and di
use sources. Rigacci
et al. [2], who studied the e
ect of a reservoir (Roggero dam)

located at the headwaters of the Reconquista River, observed
an increased water quality deterioration rate. 	ere is a
considerable decrease in biodiversity along the Reconquista
River, where the biota is a
ected by a chronically disturbed
environment with pollution hotspots and marked water-level
�uctuations [3]. One of a few 
sh species usually reported in
the river up to itsmiddle section is the ten-spotted live-bearer
Cnesterodon decemmaculatus (Jenyns 1842) (Cyprinodontif-
ormes, Poeciliidae). 	is species can be found in pristine as
well as in severely degraded habitats [4], and it has been
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successfully used as a bioindicator to evaluate the toxicity
of pesticides [5–7], metals, and receiving waters [3, 8–12].
At the regional level, the number of studies in order to
characterize C. decemmaculatus as a neotropical test species
for ecotoxicological evaluations has increased in last years.

Cadmium (Cd) is a nonferrous metal with unknown
physiological function. It can replace essential metals such
as copper and zinc in several metalloproteins, altering the
protein conformation and a
ecting their activity, because
this element interacts ubiquitously with sul�ydryl groups
of amino acids, proteins, and enzymes [13]. 	us, the toxic
e
ects of Cd are related to changes in the natural physio-
logical and biochemical processes in organisms, and it has
been proposed as a reference toxicant for C. decemmaculatus
in ecotoxicological assays [10, 12]. In water bodies, contami-
nation by several xenobiotics, such as pesticides and metals,
is mainly point-speci
c; therefore, their concentrations in
surface waters �uctuate and depend on the physicochemical
properties of the molecules and the physicochemical pro
le
of the receptor medium. Cd is rapidly made nonbioavailable,
mainly by complexation processes with particulate mate-
rial and humic substances present in natural waters; for a
short time it can be at lethal levels for the biota, and in
consequence the homeostatic capacity of individuals would
become responsible for dampening or not its e
ect [14]. Cd
is sometimes found at levels higher than those established by
guidelines for the protection of aquatic biota [3, 9].

It is well known that environmental contaminants can
alter homeostatic parameters in 
sh and some of these
parameters can be used as biomarkers. 	us, biochemical,
physiological, histological, morphological, and behavioral
measurements used as biomarkers become sensitive tools that
can be used to assess the adverse e
ects of several pollutants
or unknown mixtures thereof (like receiving waters) both
in situ and in laboratory experimental conditions. 	ese
biomarkers may be able to provide an early warning signal
well before severe environmental degradation has already
occurred [15].

	e analysis of micronuclei frequency (MN) and the
induction of DNA single-strand breaks by the comet assay are
the most frequently employed endpoints for detecting DNA
damage in circulating peripheral blood erythrocytes in 
sh
[5, 16, 17]. Likewise, histopathological changes in the gills and
liver have been proposed as useful tools for monitoring 
sh
health in polluted water bodies [18]. Particularly for 
shes,
injury changes in the gill epithelium and the hepatic tissue
were found to be good pollution indicators, as these are the
main target organs for xenobiotics [19, 20]. On the other
hand, the liver accumulates many toxic compounds, and it
is the primary organ for the biotransformation of organic
xenobiotics, excretion of harmful tracemetals, food digestion
and storage, and metabolism of sex hormones [21, 22].

Although organisms have defenses against reactive oxy-
gen species (ROS) overproduction, host exogenous processes
like environmental pollution cause disequilibrium between
the excessive ROS formation and the limited antioxidant
defenses [23]. ROS are generated during metabolism and
by numerous pollutants present in the aquatic environ-
ment, like heavy metals, pesticides, hydrocarbons, etc.,

leading to oxidative stress conditions in organisms. Fish pos-
sess well-developed antioxidant defense systems to remove
increased ROS. 	ese systems include antioxidant enzymes
such as superoxide dismutase (SOD) and catalase (CAT),
glutathione-S-transferase (GST), and reduced glutathione
(GSH) which is a low molecular weight thiol that can react
directly with ROS [24].	e evaluation of the levels and activ-
ities of these enzymes and molecules enable the detection of
adaptive responses to the formation of ROS triggered by the
entrance of toxic substances into the organisms [25].

	e aims of this study were (1) to provide information on
the response ability of a set of biomarkers in C. decemmac-
ulatus under short term exposure to receiving waters from
the Reconquista River; (2) to add information concerning
the characterization of responses to Cd, such as the toxic
reference; and (3) to assess these early-e
ects biomarkers as
endpoints in this neotropical test organism, thus contributing
to the validation of its use in biomonitoring acute stress
due to contamination. We employed MN analysis and the
alkaline comet assay as genotoxic endpoints. Additionally,
histopathological changes in the gills and liver were also
evaluated along with quanti
cation of the somatic index and
antioxidant defenses such as glutathione, catalase, superoxide
dismutase, and protein content.

2. Materials and Methods

2.1. Surface Water Sample from the Reconquista River. Sam-
ples of surface water were taken in autumn from the Rog-
gero dam (34∘40�16.47�� S, 58∘52�46.19�� W) located in the
boundary area between the upper and middle basins of the
Reconquista River. Although built to reduce over�ow due
to �ooding, the reservoir could be considered a depuration
system for transported material and, therefore, for water
quality. 	is is particularly signi
cant since water from
various streams enters the reservoir, transporting sewage
water among other contaminants [2].

For the bioassay, a 20-L water sample was collected in
plastic containers, stored at 4–8∘C, and used within 48 h
a�er sampling. Temperature, pH, and conductivity weremea-
sured in situ with an electrochemical portable device (HqD
Field case Hach). Surface water samples for physicochemical
analyses were conditioned in clean bottles and immediately
transported to the laboratory in coolers containing ice and
stored at 4–8∘C until analysis. Samples for heavy metal
determinations were collected in plastic bottles and kept
acidi
ed with HNO3 (pH ≤ 2), while those for pesticide
determinations were collected in amber-colored glass bottles.
No rainfall was recorded for 3 days before water sampling.

A water quality index (WQI) for organic pollution was
calculated based on the dissolved oxygen, chlorides, bio-
chemical oxygen demand, and ammonium [26]; it is unitless
and ranges from 0 (highly polluted) to 10 (high purity).

Screening of organochlorine and organophosphate
pesticides was performed on river samples using high-
resolution capillary gas chromatography (Hewlett Packard
61530 Plus A6890) a�er liquid-liquid extraction with
dichloromethane [27] and clean-up with Fluorisil [28]
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with appropriate capture detectors (electron capture, �ame
photometric, and nitrogen phosphorous) [27]. Screening
included the following pesticides: Organochlorines: aldrin,
DDT and their metabolites, dieldrin, �- and �-endosulfan,
endrin, heptachlor, heptachlor epoxide, hexachlorobenzene,
�- and �-hexachlorocyclohexane; Organophosphates: chlor-
fenviphos, chlorpyriphos, coumaphos, diazinon, ethylbro-
mophos, ethion, fentrothion, malathion, and methylpara-
thion. 	e detection limit was 0.03 �g/L for organochlorines
and 0.02 �g/L for organophosphates.

Concentrations of arsenic (As), zinc, (Zn), copper (Cu),
chromium (Cr), cadmium (Cd), and lead (Pb) (Methods
3111B, 3113 B, 3114) [27] in the river water sample, all assay
media, and the moderate hard water (MHW, controls) were
measured using a Perkin Elmer analyst 200 atomic absorp-
tion spectrophotometer. Arsenic content was determined by
atomic absorption using a FIAS 100 model �ow injection
module. Cd, Cr, and Pb were measured using a HGA900
model graphite furnace, while Cu and Zn were measured
using an air acetylene torch. Metal certi
ed standards were
used (1,000 g metal/L, Merck). Results are expressed as the
mean value of two or three readings. 	e detection limit was
in the range of 0.5–1.0 �g/L.

2.2. Animal Source andExperimental Design. Specimens ofC.
decemmaculatusmostly female were collected from our own
outdoor culture [29] and transferred to an indoor culture for
a holding period in dechlorinated tap water with controlled
temperature and photoperiod (21±1∘C; 16 h light/8 h dark).
At the beginning of the 15-d acclimation period, 
sh were
randomly distributed in 14x14x20-cm aquaria (ten 
sh per
aquarium, load <1 g/L) which contained reconstituted MHW
(pH: 7.4-7.8; hardness: 80-100 mg CaCO3/L; alkalinity: 60-
70 mg CaCO3/L) [30]. 	is media was chosen because it
is similar to river water composition. Aquaria were placed
inside a permanently aerated incubation chamber at the same
temperature and photoperiod. Fish were fed daily on crushed
�ake food (TetraFin�). Access to food was ad libitum during
the holding and acclimation periods and it was restricted to
2% w/w during the bioassay. Fish used in the experiment
had a mean ± SEM (standard error media) weight and
total length of 113.62 ± 4.98 mg and 25.89 ± 0.33 mm,
respectively. Of the total of the animals used, 75-85% were
females.

	e bioassay was performed in accordance with previ-
ously described experimental design [11]. At the beginning
of the experiment, 
sh were exposed in duplicate for 96 h
to one of the following treatments: (1) whole surface river
water (RR); (2) whole surface river water with 2 mg Cd/L
added as a simulated metal contaminant pulse (RR+Cd),
a concentration of heavy metals frequently found in our
rivers; (3) a negative control using moderately hard water
(NC); (4) a metal positive control, MHW + 2 mg Cd/L
(Cd); and (5) a positive genotoxicity control, MHW + 5
mg Cyclophosphamide/L (CP). Ten individuals were used
for each replicate. Hardness, dissolved oxygen (DO), pH,
conductivity, and Cd concentration were monitored daily in
each replicate.

2.3. Biological Parameters. A�er the exposure period, ani-
mals were anesthetized by placing them in ice water. 	en,
they wereweighed (mg) and their length (mm)wasmeasured
to calculate Fulton’s condition factor [K = 100 x body

weight/(total length)3].
Fish were euthanized by incision behind the operculum.

	is method of euthanasia was chosen in order to avoid
factors that may confuse the enzymatic response, and it fol-
lows the recommendation of the National Institutes of Health
Guidelines [31] (Resolution 672-15, National University of
Lujan). A drop of blood was smeared onto precleaned slides
for MN detection, and another drop was collected in an
Eppendorf microtube for comet assay (see Section 2.3.2).
	en, for the determination of biochemical biomarkers, the
body midsection (M) of the 
sh comprising the section
behind the operculum up to the anus containing the viscera
was used. 	is methodology was adopted considering the
small size of the animals and has been previously used by
other authors [6, 32].

At the end of exposure time a subgroup of 
sh was
destined for histology and other subgroup for the remaining
biomarkers.

2.3.1. Histological Preparation of the Gills and Body Mid-
section. Gills were carefully excised and histologically pro-
cessed. Brie�y, the gills were washed repeatedly at room
temperature in 1% phosphate bu
er 0.1 M (pH 7.2) to remove
residuals, 
xed with 2.5% glutaraldehyde for 2 h, and 
nally
washed with the same bu
er for 48 h. Subsequently, gills
were dehydrated in a graded ethanol series (10-30-50-70%)
and stored in 70% ethanol until being dried by the critical-
point technique, coated with gold-palladium, and mounted
on bronze stubs [33]. Gills were examined under a Philips XL
series 30 or a Carl Zeiss NTS SUPRA 40 scanning electron
microscope.

For hepatic histological evaluation, the body midsection
of some individuals was 
xed in Bouin for 24 h, dehydrated
through a graded series of ethanol, cleared in xylene, and
embedded in para�n. Para�n cross-sections were cut into
5-�m thick slices and stained with hematoxylin and eosin.
Samples were examined under a light microscope (Carl
Zeiss Primo Star) and photomicrographs were taken with a
digital camera (Canon) using the AxioVision 4.8 so�ware.
For assessing hepatic damage, two or three sections per
specimen and four randomly selected 
elds per section
were examined. 	e following histological alterations were
chosen to quantify damage: hepatocytes with pyknotic nuclei,
melanomacrophage centers, hyperemia, and hemorrhages
[34]. A total of 18 to 21 
elds were examined per each
treatment and the records were contrasted against control.

2.3.2. Micronuclei Frequency and Comet Assay. One drop of
peripheral blood from each animal was smeared onto clean
slides, then air dried, 
xed with 100% (v/v) cold methanol
(4∘C) for 20 min, and stained with 5% Giemsa solution for
15 min. 	e micronuclei frequency (MN) was determined
by analyzing 1500 mature erythrocytes from each 
sh as
suggested previously [5, 11] and expressed as the total amount
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of MN per 1000 cells. MN frequency was scored using
previously described criteria [35].

For the comet assay, a drop of peripheral blood was
collected in an Eppendorf microtube with 1.5 mL phosphate
bu
ered saline (PBS) and centrifuged at 2000 rpm for 8
min at room temperature. 	e pellet was resuspended in
a 
nal volume of 70 �L of 0.5% low-melting-point agarose
and layered on a slide precoated with 100 �L of 0.5%
normal-melting-point agarose. 	e slide was covered with
a coverslip and placed at 4∘C for 12 min, then the coverslip
was removed and the slide was covered with a third layer of
50 �L 0.5% low-melting-point agarose. A�er solidi
cation,
the coverslip was removed, and slides were immersed in
a lysis solution (2.5 M NaCl, 100 mM Na2EDTA, 10 mM
Tris, pH 10, 1% Triton X-100 and 10% DMSO) and lysed
in darkness for 1 h at 4∘C. 	en, slides were placed in an
electrophoresis bu
er (1 mMNa2EDTA, 300mMNaOH) for
15 min at 4∘C followed by electrophoresis in the same bu
er
and temperature for 10 min at 25 V and 250 mA. Finally,
the slides were neutralized with a solution comprising 0.4
mM Tris-HCl at pH 7.5 and stained with 4�,6-diamino-2-
phenylindole (DAPI; Vectashield mounting medium H1200;
Vector Laboratories, Burlingame, CA, USA) immediately
before observation under the microscope.	e extent of DNA
damage was quanti
ed by the length of DNA migration,
which was visually determined in 100 randomly selected and
nonoverlapping cells. DNA damage was classi
ed into four
types (0-I undamaged, II minimum damage, III medium
damage, and IV maximum damage). Data were expressed
as the percentage of damaged cells (sum of types II-IV).
We also calculated the genetic damage index (GDI) using
the formula GDI = [(I) + 2∗(II) + 3∗(III) + 4∗(IV)]/N,
where N represents the total number of cells scored [36].
Slides were coded and blind-scored under a Carl Zeiss Primo
Star microscope and a Carl Zeiss HBO50 epi�uorescence
microscope at 1000X magni
cation for the MN and comet
assay techniques, respectively.

2.3.3. Biochemical Biomarkers. Enzyme extracts for the body
midsections were prepared from individual 
sh according
to Ossana et al. [37]. Brie�y, sections were homogenized in
phosphate bu
er at a pH of 7.4.	e samples were centrifuged
at 10,000 G and 4∘C for 10 min, and the resultant supernatant
was used to assess the biochemical determinations. Protein
content was determined according to Lowry et al. [38],
using bovine serum albumin as a standard. CAT activity was
determined using H2O2 as a substrate at 240 nm following
Baudhuin et al. [39]. SOD activity was calculated as the
50% inhibition of cytochrome C reduction by competition
with SOD for the superoxide anion radical formed by the
xanthine/xanthine oxidase system at 550 nm following the
method suggested by McCord and Fridovich [40]. GST was
determined using 1-chloro-2,4-dinitrobenzene as substrate
at 340 nm, following Habig et al. [41]. Glutathione content
(GSH) was determined using trichloroacetic acid, and thio-
late anion formation was determined at room temperature at
412 nm following Ellman’s method [42]. All measurements
were carried out in triplicate and calculations were made on

the basis of the average percentage of the normalized values.
Enzyme activities were calculated in terms of the sample
protein content.

2.4. Statistical Analyses. Data on biomarkers are reported
as the mean ± SEM. Assumptions of normality and
homoscedasticity were tested with the Kolmogorov–Smirnov
and Bartlett tests, respectively [43]. Statistical comparisons
between treatments and control values were analyzed using
the parametric analysis of variance (ANOVA) followed by
Tukey’s multiple comparison test or the nonparametric
Kruskal–Wallis test followed by Dunn’s multiple comparison
test [43]. 	e signi
cance level was set at p < 0.05. Data were
statistically analyzed with the InfoStat program [44].

3. Results

3.1. Physicochemical Pro�le of River Water Sampled and the
Media of the Bioassays. Table 1 shows the values of the physic-
ochemical parameters measured and the WQI calculated
from the surface water sample of the Reconquista River. 	e
recorded water temperature is in agreement with the climate
station, indicating that there was no thermal contamination
in the proximity of the sampling site. Values of the total
alkalinity and hardness indicate that carbonates/bicarbonates
and Ca (with a relatively small contribution of Mg) were the
dominant ions. Pesticide concentrations were lower than the
analytical technique detection limit; therefore, they were not
included in Table 1. Of the total of measured variables, low
DO, high ammonium, and high Cu levels stand out.	eWQI
is 7.3, indicating a moderate degree of contamination.

In the bioassay media, the average e
ective values of
cadmium in each exposure treatment (mean ± SEM; n = 4)
were < 0.5 �g/L for NC and CP, < 0.5 �g/L for RR, 2450 ±
50 �g/L for RR+Cd, and 2550 ± 50 �g/L for Cd. 	e range
of the daily controlled parameters was DO: 7.1–8.9 mg O2/L;
pH: 7.4–7.9 U pH; and hardness: 65–100 mg CaCO3/L. Only
18% mortality was registered in the Cd treatment.

3.2. Gill and Liver Histopathology. Scanning electron pho-
tomicrographs of the gills of C. decemmaculatus reveal
remarkable structural di
erences between theNCand treated
individuals (Figure 1). In the NC (Figures 1(a)–1(c)), gills
exhibited a normal arrangement of primary and secondary
lamellae. 	e primary lamellae or gill 
laments are ori-
ented perpendicular to and along the gill arch (GA), while
the secondary lamellae resemble thin semi-circular “lapels”
arranged in bilateral symmetry with respect to the former.
	e secondary lamellae of C. decemmaculatus are relatively
short compared to those of another teleost [33].	epavement
cells, which are the dominant cell type, have concentric
microridges (MR) on their surface and are surrounded by
tight junctions. Some mucous cells (MO)—less exposed to
the surface—are scattered in the epithelium. 	e gills of Cd-
treated 
sh show epithelial disorganization, edema in the pri-
mary and secondary lamellae, and fusion of adjacent lamellae
(Figures 1(d)–1(f)). Epithelial disorganization involves li�ing,
swelling, and shedding of the cells, which become spherical



Journal of Toxicology 5

Table 1: Physicochemical parameters and water quality index (WQI) of the water sampled at the Reconquista river.

Parameters Units Methodology Reconquista River water
Argentine
Guidelinesa

(mg/L)

Temperature ∘C 11.5 ≤ 45
pH UpH Hanna 
eld meter 7.9 ± 0.1 (3) 6.5–10

Conductivity �S/cm Hach 
eld meter 720 ± 5 (3)
Turbidity UNF 94 ± 2 (3)
Hardness mg CaCO3/L EDTA titration 65 ± 5 (3)
Alkalinity mg CaCO3/L H2SO4 titration 678.6 ± 5.8 (3)
Chlorides mg Cl-/L AgNO3 titration 27 ± 1 (3)
DO mg O2/L Iodometric 3.4 ± 0.1 (3)
Ammonium mg N-NH4

+/L Colorimetry 0.41 ± 0,03 (3) 0.05–0.47

Nitrites mg N-NO2
-/L Colorimetry 0.05 ± 0.01 (3) ≤ 0.06

PRS mg P-PO4
3-/L Colorimetry 0.29± 0.004 (3)

BOD5 mg O2/L Iodometric 1.93 ≤ 50
COD mg O2/L Colorimetry 18 ≤ 250
COD/BOD5 9.33

WQI 7.33

Heavy metal mg/L Atomic absorption spectrophotometry

Cr < 0.005 0.002

Pb < 0.010 0.001

Cd < 0.005 0.0001–0.0004

Cu 0.010 0.002–0.004

Zn 0.013 ≤ 0.030
As 0.009 ≤ 0.03
aArgentine Surface Water Guidelines for protection of aquatic life or maximum allowable content in e�uents disposed in a water body. Data are expressed as
mean ± SEM of three readings.

in shape especially at the tip of primary lamellae. 	e gills
of 
sh exposed to RR samples show more labile intercellular
junctions, a larger number of chloride cells (CC), andmucous
cells (MO) and the presence of aneurysms (AN) in vessels
of the secondary lamellae in comparison to the control

sh (Figures 1(g)–1(i)). 	ese pathological changes are more
severe in the gills of 
sh exposed to the RR+Cd treatment;
this treatment also caused important desquamation of the
epithelium together with fewer microvilli on the surface of
pavement cells (Figures 1(j)–1(l)).

Figure 2 shows cross-sections of the livers of C. decem-
maculatus exposed to the NC and to RR with and without
a contamination pulse of 2 mg Cd/L. Table 2 shows the
quanti
cation of the histological damage in terms of the
number of melanomacrophage centers, hemorrhages, and
pyknotic hepatocytes. 	e liver of C. decemmaculatus is a
simple unlobed organ without a portal system, as in most
teleost. In the NC, the liver (L) is found in a ventrolateral
position, partially surrounding the intestine (I) and occu-
pying a large proportion of the abdominal cavity, whereas
the kidney (K) is placed below the epiaxial musculature
and the vertebral column (Figure 2(a)). When viewed at

highermagni
cation (Figure 2(b)), parenchymal hepatocytes
are observed to be arranged in cord-like structures with
a normal architecture; hepatocytes present a homogeneous
cytoplasm and a large central or subcentral spherical nucleus
with concentric nucleoli.	ehistological analysis of the livers
of 
sh exposed to the RR treatment (Figure 2(c)) revealed
hyperemia (congestion) of hepatic veins (hv) and adjacent
sinusoids and a signi
cant increase in hepatocytes with
pyknotic nuclei (pn), as compared to the control (Table 2).
	e RR+Cd treatment increased karyopyknosis (Figure 2(d))
by an order of magnitude (Table 2).

3.3. Genotoxic Biomarkers. 	e results of the MN assays are
presented in Figure 3, and the results of the comet assay are
shown in Figures 4 and 5. 	e frequency of MN increased
signi
cantlywith respect to theNC in theCP, RR+Cd, andCd
treatments. 	e GDI increased signi
cantly in all treatments
compared to the NC (p < 0.001). 	e statistical analysis
indicated that the increase in the GDI was due to an increase
in the frequency of type II-IV comets (p < 0.05) and a
concomitant decrease in the frequency of type 0-I comets (p
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Figure 1: Gill 
laments histological sections of Cnesterodon decemmaculatus exposed to di
erent treatments for 96 h. Treatments: NC
(negative control, MHW); RR (surface water of the Reconquista River); RR+Cd (surface water of the Reconquista River with 2 mg Cd/L);
Cd (2 mg Cd/L). Photomicrographs were taken under a Philips XL series 30 or a Carl Zeiss NTS SUPRA 40 scanning electron microscope.
Slides (a), (b), and (c) correspond to 
sh exposed to NC: (a) normal arrangement of primary lamellae (PL) and secondary lamellae (SL) on
the gill arc (GA) (350 X); (b) enlarged portion of (a): pavement cell (PV), concentric microridge (MR); mucous cell (MO) (3500X); (c) apical
portion of a PL (2000X). Slides (d), (e), and (f) correspond to 
sh exposed to Cd: (d) primary (PL) and secondary lamellae (SL) (200 X); (e)
aspect of a portion of PL with its SL, evident heeling (SC), and disorganization of the epithelium (3500X); (f) apical portion of a PL, showing
epithelium disorganization, li�ing and swelling of the pavement cells (2000X). Slides (g), (h), and (i) correspond to 
sh exposed to RR: (g)
primary (PL) and secondary lamellae (SL) (350 X); (h) enlarged portion of a PL showing pavement cell (PV), concentric microridge (MR),
mucous cell (MO), and chloride cell (CC) (4000X); (i) apical portion of a PL showing edema and abundant mucous cells (MO) �anked by
pavement cells (3000X). Slides (j), (k), and (l) correspond to 
sh exposed to RR+Cd: (j) primary (PL) and secondary lamellae (SL) (500 X),
(k) enlarged portion of a PL showing marked epithelium disorganization (5000X); (l) apical portion of a PL showing di
erent degrees of
epithelium disorganization, varying from edema to complete disorganization of epithelial architecture (1000X).
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Figure 2: Hematoxylin-eosin stained cross-sections of the mid-section of Cnesterodon decemmaculatus exposed to di
erent treatments for
96 h. Treatments: NC (negative control, MHW); RR (surface water of the Reconquista River); RR+Cd (surface water of the Reconquista River
with 2mg Cd/L). (a) Fish exposed toNC (5X): liver (L); intestine (I); kidney (K); epiaxial muscle (EM); and spine (S). (b) Liver of 
sh exposed
toNC (40X): normal hepatocytes (hp) with one nucleus (n) each. (c) Liver of 
sh exposed to RR (40X): hepatic vein (hv) and hepatocyteswith
pyknotic nuclei (pn) in the parenchyma and thin sinusoids in the parenchyma. (d) Liver of 
sh exposed to RR+Cd (40X): marked increase
in the number of hepatocytes with pyknotic nuclei (pn).

Table 2: Quanti
cation of liver damage: values of the lesions induced by the di
erent treatments. Data are expressed as mean ± SEM.
Treatments: NC (negative control, MHW); RR (surface water of the Reconquista River); RR+Cd (surface water of the Reconquista River
with 2 mg Cd/L).

Lesions NC RR RR+Cd

Melanomacrophage centers 0.76 ± 0.25 (21) 0.67 ± 0.28 (18) 0.30 ± 0.17 (20)
Hyperemia 3.05 ± 0,47 (21) 2.89 ± 0.40 (18) 3.10 ± 0.64 (20)
Hemorrhages 0.76 ± 0.25 (21) 0.17 ± 0.12 (18) 0.45 ± 0.21 (20)
Hepatocytes with pyknotic nuclei 11.47a ± 1.46 (21) 37.22b ± 4.14 (18) 123.20c ± 7.34 (20)
Number of microscopic 
elds examined is given in parentheses. Di
erent letters indicate signi
cant di
erences among treatments (p < 0.05).
Number of individuals analyzed in each treatment: 17-20.

< 0.05). 	e percentage of nondamaged erythrocytes in the
NC was about 70% whereas it decreased to 10 to 20% in 
sh
exposed to the CP, Cd, RR+Cd, and RR treatments.

3.4. Condition Factor and Biochemical Biomarkers. 	e val-
ues of the condition factor and biochemical biomarkers

obtained from body midsections are shown in Figure 6.
No signi
cant di
erences in Fulton’s condition factor (K),
SOD activity, and protein content were found among all
treatments.

Fish exposed to the RR treatment showed a signi
cant
decrease in CAT with respect to the NC, RR+Cd and Cd
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Figure 3: Analysis of micronuclei frequency in peripheral blood
erythrocytes of Cnesterodon decemmaculatus exposed to di
erent
treatments. Treatments: NC (negative control, MHW); CP (positive
control, 5 mg cyclophosphamide/L); RR (surface water of the
Reconquista River); RR+Cd (surface water of the Reconquista River
with 2 mg Cd/L); Cd (2 mg Cd/L). ∗ p < 0.05 compared to NC.
Number of individuals analyzed in each treatment: 16-22.
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Figure 4: Analysis of DNA damage measured by comet assay
in peripheral blood erythrocytes of Cnesterodon decemmaculatus
exposed to di
erent treatments, as indicated by the genetic damage
index (GDI). Treatments: NC (negative control, MHW); CP (pos-
itive control, 5 mg cyclophosphamide/L); RR (surface water of the
Reconquista River); RR+Cd (surface water of the Reconquista River
with 2 mg Cd/L); Cd (2 mg Cd/L). ∗ ∗ ∗ Signi
cant di
erences
with respect to control values at p < 0.001. Number of individuals
analyzed in each treatment: 8-10.

treatments. Signi
cant di
erences in GST were observed
between the RR+Cd and Cd treatments. Compared to the
NC, a statistically signi
cant decrease in GSH was observed
(p < 0.05) in the RR, RR+Cd, and Cd treatments, with the
latter showing the largest decrease.

4. Discussion

Fish are largely being used for the assessment of the quality of
aquatic environment and as such can serve as bioindicators of
environmental pollution. Our results show that the use of set
of biomarkers could contribute to establish which sensitive
endpoint indicators would be better to detect pollution in
contaminated waters.
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Figure 5: Percentage of DNA damage in peripheral blood ery-
throcytes of Cnesterodon decemmaculatus exposed to di
erent
treatments, based on 
ve types of nucleoids (0+I; II; III and IV).
Treatments: NC (negative control, MHW); CP (positive control,
5 mg cyclophosphamide/L); RR (surface water of the Reconquista
River); RR+Cd (surface water of the Reconquista River with 2 mg
Cd/L); Cd (2 mg Cd/L). Signi
cant di
erences with respect to
control values at ∗ p< 0.05,∗∗ p< 0.01, and∗∗∗ p < 0.001. Number
of individuals analyzed in each treatment: 8-10.

	e geographical distribution of C. decemmaculatus cov-
ers the entire Pampasic region, inhabiting a variety of habitats
including some extremely polluted areas [7]. In fact, C.
decemmaculatus has been found in aquatic environments
with concentrations of heavy metals and pesticides well
above the maximum limits allowed [11, 45]. 	is species has
been proposed as a test species for monitoring bioassays
and is in the process of validation, so, it is necessary to
increase the knowledge of its responses to di
erent pollu-
tants, experimental conditions, and assessment processes.We
investigated the e
ect of receiving waters at the headwaters of
the Reconquista River with and without a contaminant pulse
of Cd on di
erent biomarkers in adult C. decemmaculatus,
including a positive control for Cd.

	e analysis of the samples used in this study indicated
a moderate contamination level based on the WQI value
(Table 1), copper and ammonium concentrations above the
recommended levels for the protection of aquatic biota, and
a low DO concentration. Our results showed that in our
experimental conditions the water quality of the headwaters
of the Reconquista River did not a
ect 
sh survival. Other
studies conducted in the area using 
sh and amphibians have
reported similar results [11, 46–48]. In spite of the nonlethal
e
ect, several of the biomarkers tested have been signi
cantly
modi
ed in regard to the NC, especially the branchial
morphology, hepatic parenchyma, and DNA damage.

It is known that 
sh gills are involved in many important
functions such as respiration, osmoregulation, and excretion.
	ey are particularly sensitive to changes in the quality
of the water because their large surface area is in close
contact with the external environment and because the
respiratory exchange takes place through a thin epithelium.
Hence, they are the primary target organs for pollution
[49]. Regarding 
sh respiratory physiology, changes in gill
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Figure 6: Biomarkers and morphological parameters of oxidative stress in Cnesterodon decemmaculatus exposed to di
erent treatments for
96 hs. Treatments: NC (negative control,MHW); RR (surfacewater of the Reconquista River); RR+Cd (surface water of the Reconquista River
with 2 mg Cd/L); Cd (2 mg Cd/L). Values are expressed as mean ± SEM. Treatments not sharing a common letter are statistically di
erent
from each other (ANOVA followed by Tuckey test, p < 0.05). Number of individuals analyzed in each treatment: 16-22.

tissue are characterized by an increased di
usion distance
for oxygen (water–blood) and a smaller respiratory surface,
which may lead to functional hypoxia [50, 51]. In our study,
SEManalysis of Cd-exposed 
sh gills showed epithelial disor-
ganization, mainly desquamation of the epithelium together
with a decreased number of microvilli on the surface of
pavement cells, and fusion of adjacent secondary lamellae.
Comparable results were found in another teleost exposed
to Cd [33]. 	e gill epithelium of RR-exposed 
sh exhibited
a higher abundance of chloride and mucous cells. Chloride
cell proliferation has been observed in 
sh exposed to heavy
metals, which can be interpreted as a compensation response
for ion loss or as a mechanism to increase the excretion rate
of toxicants [52]. Secondary lamellae also su
ered vascular
lesions such as aneurysms, which result from the disruption
of pillar cells and cause hemorrhage. 	ese results suggest a

decreased respiratory capacity and the occurrence of osmotic
imbalance due to toxicant stress. Lamellar fusion, as a result
of the excessive proliferation of epithelial cells of the 
lament,
shown in Cd-treated 
sh gills is a natural defense mechanism
to protect the lamellar epithelium from direct contact with
toxic agents [53].

	e liver has been recognized as a target organ for
di
erent pollutants. In our study, the hepatic histopatholog-
ical analysis revealed hyperemia and congestion of blood
vessels, which might be associated with circulatory dis-
turbances related to pathological conditions of blood and
tissue �uid �ow and regressive changes [54]. Interestingly,
we found karyopyknosis in 
sh exposed to the water of
the Reconquista River, either with or without Cd addition.
Although the RR+Cd treatment induced a larger number
of pyknotic nuclei, the hepatic function of 
sh inhabiting
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the Reconquista River may be impaired. Karyopyknosis,
which is the irreversible condensation of chromatin in the
nucleus of a cell undergoing necrosis or apoptosis, is most
likely due to the deposition of lipids and glycogen in the
hepatocytes [55]. Comparable results have been reported for
the liver of Carassius auratus exposed to Cr [55] and for C.
decemmaculatus chronically exposed to chlorpyrifos [56] or
17�-ethinylestradiol [57].

	e MN test detects irreparable lesions that manifest
as chromosome aberrations and/or aneugenic e
ects [58].
Previous studies have demonstrated the genotoxic e
ect
of Cd on 
sh [59, 60]. RR treatment did not a
ect MN
frequency, but a signi
cant increase in the MN frequency in
the erythrocytes of 
sh exposed to the Cd and RR+Cd treat-
ments was observed. 	ese results con
rm others reported
previously with the same experimental conditions [11] and
reinforce the role of Cd as a toxic referent for this species.
	ese 
ndings are in concordance with previous studies in
which Cd was evaluated. In an early study, we found that
concentrations of 0.5 mg Cd/L increased the frequency of
MN in juveniles of the common carp Cyprinus carpio [61].
Also, acute toxicity of Cd has been reported in root tip cells of
Allium cepa by increasing the frequency of MN [62], and Cd
exposure increased the frequency of MN in polychromatic
erythrocytes in rats [63] as well as in the laboratory model
zebra
sh Danio rerio exposed to environmentally relevant
concentrations of Cd [64]. Our results are in accord with
these observations highlighting the genotoxic potential of Cd
as a toxic element for living organisms.

	e comet assay is a rapid, simple, and sensitive test that
can detect primary DNA lesions and repair in any eukaryotic
cell type a�er xenobiotic exposition. In the present study,
we observed a signi
cant increase in the frequency of single
strand breaks introduced into DNA as well as an increase in
the frequency of GDI in the blood cells of 
sh exposed to
the RR, RR+Cd, and Cd treatments. It is well known that
oxidative damage occurs when an excessive generation of
ROS occurs, which 
nally attacks subcellular components,
including the DNA molecule [65]. In the present study, we
found that all river water treatments have high genotoxicity,
revealed by the cometmethodology, leading to the generation
of single strand breaks.	e genotoxicity found could possibly
be due to the increased bioavailability of several toxic com-
pounds which can further induce intracellular generation
of ROS, revealed by an inhibition of CAT as well as by an
increase in the GST levels, and consequently generate high
levels of cellular oxidative damage [65].

Antioxidant enzymes and nonenzymatic systems are
essential for the conversion of ROS into harmless metabolites
and to protect and restore normal metabolism and cell func-
tion. CAT andGST are among themost-used antioxidant and
biotransformation enzymes, respectively. We observed that
CAT activity decreased in animals exposed to the RR treat-
ment, whereas GST activity increased in those exposed to the
RR+Cd treatment. In theCd treatment, neither CATnorGST
response di
ered from the NC, as previously reported [11].
CAT and GST activities can be increased or inhibited under
chemical stress conditions, with responses depending on the
intensity and duration of exposure as well as on the species

susceptibility [66]. For example, CAT inhibition has been
found in the livers of Rhamdia quelen exposed to glyphosate
[67] and in C. carpio exposed to di
erent concentrations
of atrazine and chlorpyrifos [68]. Scarcia et al. [69] studied
the impact of exposure to contaminated sites in a Pampean
river on juveniles of C. carpio and Pimelodella laticeps and
found a signi
cant increase in GST, though CAT remained
unchanged.

Fulton’s condition factor showed no di
erences among
the treatment groups; values ranged from 0.6 to 0.7, which
are close to those reported by other authors [11, 15].

A decrease in GSH in the RR, RR+Cd, and Cd treatments
was observed. 	e observed GSH decrease is probably an
indicator of its exhaustion in phase II biotransformation as
con
rmed by increased GST activity [70]. River water is a
complex matrix and the addition of a Cd pulse does not
necessarily lead to increased oxidative stress for individuals
exposed to this medium.

5. Conclusions

Under experimental lab conditions, adults of C. decemmac-
ulatus exposed for 96 h to receiving waters from its distri-
bution area presented alterations in markers of genotoxicity,
tissue injury of target organs, and oxidative damage. 	ese
quanti
able early e
ects could have a negative impact on
the resistance of 
sh to environmental stressors and their
susceptibility to diseases, potentially reducing their capacity
to respond to environmental change and, ultimately, their
survival. Interestingly, our results suggest that the population
of C. decemmaculatus living behind the Roggero dam, at
the headwaters of the Reconquista River, is most likely
under conditions of chemical stress, despite the fact that this
reservoir is considered as only slightly polluted based on
the WQI and physicochemical parameters. According to our
results, for short term exposure, the SEM analysis of gills
and histopathological analysis of the liver could be useful
tools for target organ damage evaluation as well as the comet
assay for DNA damage. We propose, for the biomonitoring
of water bodies in the Pampasic region here described, a 96-
h laboratory assay protocol using C. decemmaculatus as the
test organism model. Similarly, microscope analyses of gills
and livers as well as the comet methodology in 
sh could
be considered as sensitive endpoint indicators for detecting
pollution in contaminated waters.
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Bistoni, “Histopathological changes in the gills and liver of
Prochilodus lineatus from the Salado River basin (Santa Fe,
Argentina),” Fish Physiology and Biochemistry, vol. 38, no. 3, pp.
693–702, 2012.

[19] M. L. Ballesteros, G. E. Bianchi, M. Carranza, and M. D. L.
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