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Histometrics: Improvement of the dynamic range

of fluorescently stained proteins resolved in

electrophoretic gels using hyperspectral imaging

Most image-based analyses, using absorbance or fluorescence of the spatial distrib-
ution of identifiable structures in complex biological systems, use only a very small
number of dimensions of possible spectral data for the generation and interpretation
of the image. We here extend the concepts of hyperspectral imaging, being developed
in remote sensing, into analytical biotechnology. The massive volume of information
contained in hyperspectral spectroscopic images requires multivariate analysis in
order to extract the chemical and spatial information contained within the data. We
here describe the use of multivariate statistical methods to map and quantify common
protein staining fluorophores (SYPRO Red, Orange and Tangerine) in electrophoretic
gels. Specifically, we find (a) that the ‘background’ underpinning limits of detection is
due more to proteins that have not migrated properly than to impurities or to ineffective
destaining, (b) the detailed mechanisms of staining of SYPRO red and orange are
apparently not identical, and in particular (c) that these methods can provide two
orders of magnitude improvement in the detection limit per pixel, to levels well below
the limit observable optically.
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1 Introduction

The post-genomic era has led to the requirement and
development of new systems for detection and rapid
data analysis, and for their processing into meaningful
information. Typically, the wider and more extensive
applications of the powerful two-dimensional electro-
phoresis approaches to analyse complex biological sys-
tems at the level of the proteome have greatly increased
our understanding of the workings of the living cell [1–10].
Nevertheless, a major limiting factor is the poor dynamic
range of the detection of proteins, many of which are pres-
ent in biological systems in relatively miniscule amounts
[11, 12].

Leaving aside radioisotopic detection of proteins in gels,
the commonest or most popular means for detection of
proteins employ stains that are assayed optically, either
via absorbance, for example colloidal Coomassie Blue
[13] and silver [14], or fluorimetrically for modern stains
such as the Cy dyes [15] and SYPRO Orange, Red, Tan-

gerine and Ruby [16–24]. In all cases, the number of
channels used to quantify a given protein from a partic-
ular cell extract (even if extracts are differentially pre-
labelled [25]) is one, i.e. absorbance or fluorescence are
measured at just one wavelength or waveband. A similar
strategy is used in flow cytometric detection of particular
proteins [26]. However, prototype automatic analysis of
polyacrylamide slab gels imaged through a novel optical
detection system has recently been developed [27]. The
design of this prototype sequencer allows direct optical
coupling over the entire read area of the gel and spectro-
graphic separation and detection of the fluorescence
emission.

The remote sensing community [28] has recently been
developing techniques of hyperspectral imaging as a
means of mapping otherwise indistinguishable spatial
features by means of their spectral content [29–41], and
we have begun to apply these ideas to problems in fer-
mentation technology and microbial speciation [42–45].
Since the availability of spectral properties at each spatial
location allows a far more precise spatial discrimination, it
occurred to us that we could exploit these methods in his-
tology and other cases where biological materials are to
be stained (see also [46]). We refer to this combination of
histology and chemometrics as histometrics, and here
apply it to the problem of staining proteins in electro-
phoretic gels, with highly encouraging results.
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2 Materials and methods

2.1 Sample preparation

Protein molecular weight markers (P6649) were obtained
from Molecular Probes (Molecular Probes, Eugene, OR,
USA). The proteins separated in the gels and their respec-
tive molecular weights are myosin (205 kDa), �-galacto-
sidase (116 kDa), phosphorylase b (97 kDa), transferrin
(80 kDa), bovine serum albumin (66 kDa), glutamate dehy-
drogenase (55 kDa), ovalbumin (45 kDa), carbonic anhy-
drase (30 kDa), and trypsin inhibitor (21 kDa). Immediately
prior to electrophoresis, 100 �L of the markers were
mixed with 400 �L SDS sample buffer (5% w/v SDS,
45% glycerol, 50 mM DTT, 0.05% bromophenol blue,
25 mM Tris-HCl pH 6.8) and denatured by boiling for
5 min. The samples were then serially diluted two-fold
with the sample buffer.

2.2 SDS-PAGE

Electrophoresis was performed using a discontinuous gel
system as first described by Laemmli [47]. In order to
improve the resolution, a homogeneous polyacrylamide
(12%) running gel containing 0.1% SDS was overlaid
with 1.5% stacking gels. The gels were cast using a Bio-
Rad (Hercules, CA, USA) mini-electrophoresis system
allowing 10 loadings per gel. Samples were applied in
equivalent volumes (20 �L) containing variable amounts
of protein loading ranging from 0.9 ng to 2.5 �g. Protein
quantities were measured using bicinchoninic acid as
described by Smith and coworkers [48]. In each gel, the
last two lanes were mock loaded with sample buffer with-
out protein. The electrophoretic run was conducted by
applying a current of 20 mA and continued until the lead-
ing bromophenol blue frontjust ran through the gel.

2.3 Gel staining and destaining

One gel was stained with Coomassie Brilliant Blue R250
to provide a visual comparison; staining and destaining
was carried out as described by Chen and colleagues
[13]. The remaining three gels were individually stained
as described in the manufacturer’s protocol using 10 �L
of either SYPRO Tangerine, Red or Orange stains
(S-12012 SYPRO starter kit: Molecular probes) each
diluted with 50 mL of 7.5% v/v acetic acid solution. These
gels were left overnight to stain and during this process
any background staining was eliminated. These stains
are considered to allow detection of nano- to micrograms
of protein per band in gels with little protein-to-protein
signal variability, minimal stain fluorescence in aqueous
solutions and bright fluorescence upon binding to deter-
gent-coated proteins in gels.

2.4 Protein detection of SYPRO stained gels

The SYPRO Red (ex300/550, em630), Orange (ex300/
470, em570) and Tangerine (ex300/490, em 640) dyes
have excitation and emission bands in the spectral range
from 400–700 nm and can be visualized with most CCD
camera-based imagers. These SYPRO fluorescent
stained protein gels were viewed individually using the
model 2920 Arthur multiwavelength fluorimager (Perkin
Elmer (Wallac), Norwalk, CT, USA; http://www.wallac.
com/catalog/art.htm) [24, 49]).

2.5 Hyperspectral imaging

The required hyperspectral images were also taken using
the Arthur (now known as ProXpress) multiwavelength
fluorimager [24, 49]. This CCD camera-based device
uses excitation and emission filters and a white light
source to allow six different illumination wavelengths
across the visible region from violet (420 nm) through to
red (635 nm), and six receiver frequencies over a range
slightly longer in wavelength than the illumination range
(450–680 nm), allowing imaging of fluorescence over 20
separate and valid excitation/emission combinations.
The images thus produced are stacked into a hyperspec-
tral datacube such that the depth dimension of the data-
cube denotes the relevant excitation/emission frequency
pair.

In the present study, the excitations were at 420, 480,
510, 540, 580 and 635 rim, while the emissions were at
450, 480, 530, 575, 630 and 680 nm (each ± 15 nm). The
machine was run under a macro written in-house to allow
this entire range of valid excitation/emission combin-
ations to be recorded automatically with no further user
input after initialisation of the machine. Further details
are given in Section 3.

3 Results and discussion

3.1 Improvement of raw images, from the Arthur

fluoroimager

The Arthur constructs a large area image (27 cm�23 cm
or 1456 pixels�1210 pixels) from 8�10 tiles of the smal-
ler area of the CCD camera’s field of view (182 pix-
els�121 pixels) [49]. Due to the non-uniform illumination
by the light source, these tiles have a background ‘foot-
print’ of strongly varying intensity and consequently do
not match up at the edges, leading to sharp lines of differ-
ent shading criss-crossing the image. This intensity varia-
tion and these edge discontinuities must be modelled
away before any numerical analysis can be carried out
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Figure 1. Images of the 480/575 slice of the hyperspectral stack for the gels dyed with SYPRO Tangerine (top left), Red (top
right), Orange (bottom left) and nonfluorescent Coomassie Blue (bottom right). (a) Original gel image; (b) image after defoot-
printing.

on the hyperspectral images, free from artefacts. There is
a ‘defootprinting’ facility provided on the device, but this
was very far from being perfect at the time these experi-
ments were performed, so algorithms were developed in-
house to improve this before further analysis. (The latest
versions of this instrument have a better camera and
shade correction system, with fewer tiles, but the method
we describe is of general utility for systems of this type.)

Several approaches were investigated, including linear
and nonlinear time-domain lowpass filtering methods,
2-D curve fitting, and 2-D Fourier-filtering of a separately
recorded reference tile. The Fourier-filtering was found to
give the best combination of accuracy, speed of calcu-
lation and freedom from requirement for user specifica-
tion of parameters.

It was also noted that the instrument response could vary
with time so that the reference footprint often did not
accurately reflect the footprints of the tiles in the main
image. This problem was solved by the pixelwise con-
struction of a ‘median footprint’ derived from the back-
ground footprints of all the tiles in the main image itself,
which is then used to remove the tiling effect, hence elim-
inating time variation of instrumental response. (This
assumes that most pixels are not spots or bands, and
this is true here.) If this footprint is then smoothed using a
Fourier-filter as above, then an almost perfect defoot-
printing can be achieved. Since the median footprinting
method also requires no user input, the entire defootprint-
ing procedure can be (and was) automated.

Construction of a median footprint also has the advan-
tage of automatically and completely eliminating
blemishes in the footprint. Linear image processing tech-
niques such as Fourier-filtering merely smooth blemishes
in the reference footprint, thus reducing and widening
them without eliminating them. The median footprint is
applicable to all cases where an image is (or is consid-
ered) sparse enough that any given pixel in a tile repre-
sents background in more than half the total number of
tiles. If this is not the case, then a separate reference foot-
print must be used and imperfect defootprinting toler-
ated. There was also a small positional irreproducibility
between tiles in the same image and the median footprint
approach minimised this problem, although it could not
completely eliminate it. To do this a local heuristic based
on minimising change at the known edge positions of the
tiles and interpolating the background level across the
tiles from these corrected values is required. An indication
of the benefits of this approach is given in Fig. 1 which
shows typical pictures of the 480/575 slice of the data-
cube for the gels dyed with SYPRO Tangerine, Red,
Orange and the nonfluorescent Coomassie Blue.

3.2 Identification of residual protein in back-

ground areas of fluorescent gels

The human eye has a very poor dynamic range for detec-
tion of grey scales, the number that can typically be dis-
tinguished in images lacking sharp edges being about 30
[50]. This may be contrasted with the 65 536 levels of grey
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available in a 16-bit camera as used herein. Direct obser-
vation of protein gels is thus normally a very poor strategy
for assessing them! The first question we wished to ask
was whether the limit of detection was due to (i) inade-
quate staining, (ii) a background caused by inadequate
destaining, (iii) the presence of numerous proteins at low
levels which had migrated to their ‘proper’ positions, or
(iv) to poorly resolved proteins which had been ‘left
behind’ en route to doing so. The latter in particular is a
very realistic but under-recognised possibility as it is well
known from nucleic acid electrophoresis that the uneven
pore size of gels and the presence of charged impurities
causes molecules to get ‘stuck’ and thus be lost from the
discrete migrating zone (strategies such as field inversion
being required to allow migration past the blockage [51]).
We refer to this as the ‘slime trail’ effect. The above hyper-
spectral gel images were first rotated and aligned using
the Matlab Image Processing Toolbox (MathWorks, Cam-
bridge, UK) so that the tracks were parallel to the sides of
the image matrices. They were then defootprinted as
described in Section 3.1. Finally each separate image in
the datacube was normalized to the brightest band in that
image, but no further normalization (e.g. to unit variance
between equivalent pixels in a given image) was carried
out.

Each separate image in the datacube was then unfolded
into a linear column vector with each element represent-
ing a single pixel. The datacube was thus reshaped into
rectangular matrix Xrect with the rows representing the
spectral frequencies and the columns representing the
individual pixels, so that each row contained a spectrum
at a particular pixel.

Principal components analysis (PCA) [52, 53] involves
projecting the original data-matrix (N samples; p vari-
ables) onto a d-dimensional subspace using a projection
(or loading) matrix, thus creating object coordinates (a
scores matrix) in a new coordinate system. This is
achieved by the method known as singular value decom-
position (SVD) of X:

XN�p � UN�d�d�dL
T
p�d � TN�dL

T
p�d

where, U is the unweighted (normalized) score matrix and
T is the weighted (or biased) score matrix. L is the loading
matrix where, the columns of L are known as eigenvec-
tors or loading-PCs. A is a diagonal matrix (i.e. all of the
off diagonal elements are equal to zero) containing the
square roots of the first d eigenvalues of the covariance
matrix (XTX) where, d � N and d � p.

The principal components (PCs) can be considered as a
basis set used to project the original data matrix, X, onto
the scores, T. In other words the new coordinates are lin-
ear combinations of the original variables. The influence

of each of the original variables on the new principal com-
ponents (i.e. the contents of the loading matrix) is deter-
mined on the basis of the maximum variance criterion.
The first PC is considered to lie in the direction describing
maximum variance in the original data. Each subsequent
PC lies in an orthogonal direction of maximum variance
that has not been considered by the former components.
The number of PCs computed for a given data set is up to
the analyst. However, usually as many PCs are calculated
as are needed to explain a pre-set percentage of the total
variance in the original data (the number of PCs is always
less than or equal to the number of original variables).

PCA was then carried out on this Xrect matrix to produce a
pixel-wise multivariate decomposition. The scores of
each PCA factor were then examined. The first principal
component in un-shade corrected images from this
instrument (i.e. those not subjected to defootprinting)
often reflects the variance in intensity due to the camera
footprint tiling, nominally provides another way of shade
correction (not exploited here) and is not of present inter-
est; our attention is thus focused on the second two prin-
cipal components of the variance.

For the SYPRO Tangerine and Orange, score plots [53]
showed that pixels representing background areas of gel
lanes containing proteins clustered in a different place
from pixels representing blank gel tracks as shown in
Fig. 2, indicating that the background areas of active
tracks are not merely empty gel, but contain trace con-
centrations of protein. This strongly supports the ‘slime
trail’ model.

The SYPRO Red dye did not cluster as well, there being
only a shift of the centroid of the clusters rather than the
clear separation seen in the other two dyes. It is possible
that the reduced number of active fluoresent excitation/
emission frequency combinations in the datacube for
this dye did not give sufficient data to the multivariate
model to enable clear separation. Alternatively, and more
likely, the exact mechanism of staining of SYPRO Red dif-
fers from that of SYPRO Orange (it is of course known to
differ form that of SYPRO Tangerine). If the matrices were
then transposed and reanalyzed such that the pixels were
now represented by PCA loadings [53] rather than by
scores, the loadings plots also showed very similar clus-
tering (not shown).

3.3 Prediction of protein concentration in

fluorescent gel bands

A set of four identical gels was run, similar to Section 2.3
but with all tracks included in the concentration series,
with no blank tracks. Three of the gels were stained with
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Figure 2. Multivariate analysis of the staining of protein
gels using SYPRO dyes in terms of the clustering of
background pixels; a = background pixel from active
lane; b = pixel from blank lane (A) Tangerine; (B) Orange;
(C) Red.

SYPRO Red dye and the remaining gel with the nonfluores-
cent Coomassie Blue both to act as visual comparison and
as a nonfluorescent reference gel for assessing the varia-
tion in illumination for defootprinting. The gels were then
imaged and the images preprocessed as in Section 2.5.
Additionally the images were passed through a 2-D med-
ian filter, a program written in-house, to remove blemishes
and noise spikes. Each gel image contained 10 tracks
which represent a geometric increase in concentration of
the protein markers run up the track, over a concentration
range 5, 12.5, 25, 50, 125, 250, 500, 1250, 2500, 5000 ng
protein/band. Automatically identifying the position of
each band and aligning these bands unambiguously
throughout all three datacubes is an image-registration
problem beyond current technology. A method of unam-
biguously assigning concentration data to the training of a
multivariate model must therefore be found.

Accordingly strips 10 pixels wide were picked from the
centre of each track to form truncated hyperspectral
images. The resulting truncated images were unfolded

such that each row contained the equivalent row of pix-
els from the images at all frequencies in the datacube,
concatenated end to end. An unambiguous concentra-
tion figure representing all the data in this row can then
be assigned. Continuing this process for all rows in
the hyperspectral images produces three large 2-D
matrices, one for each datacube, with each row in the
matrix associated with a particular concentration. These
matrices were then assigned as training, validation and
test sets and a partial least squares regression (PLS)
model [53–55] formed on the training and validation
sets. PLS is related to PCA (see Section 3.2) except
that the factors which are extracted are known as latent
variables and are extracted (here) on the basis of the
variance in both the spectral and the concentration
(target) variables. This model was then used to predict
the test set. It was found to produce a very precise
prediction of the higher concentrations but a poor-to-
negligible prediction of the dimmer/invisible gel bands
corresponding to the lower concentrations as shown in
Fig. 3a.
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Figure 3. (A) PLS predicted vs real concentrations of lin-
ear gel data on log axes; (B) Prediction of logarithm of gel
data on log axes. (C) Best univariate regression obtained
from this dataset. The units of concentration are given as
the natural logarithm of the concentration in ng.

When the logarithm of the intensity data was used to lin-
earise the geometric concentration dependence then the
PLS model trains to proportional rather than absolute
error and greatly improved the prediction of the lowest
concentrations (dimmest bands) at the cost of a slight
loss in precision at the highest concentrations (brightest
bands). This prediction was precise to a root mean square
error of prediction (RMSEP) compared to the true concen-
tration values of just 6.4% using only three PLS factors
as shown in Fig. 3b. Carrying out a univariate prediction
equivalent to the multivariate prediction of Fig. 3b on the
logarithm of each individual column of the truncated
images produced a null prediction. The best linear predic-
tion equivalent to Fig. 3a had an RMSEP of 23% and is
shown in Fig. 3c.

Study of the first factor PLS loadings of the prediction of
Fig. 3b, as shown in Fig. 4, clearly shows the model is
forming exclusively on those variables corresponding to
the pixels in protein bands and ignoring those corres-

Figure 4. First factor loadings of PLS model on hyper-
spectral gel tracks. The peaks correspond to gel bands
in the tracks, showing that the model forms predom-
inantly on these peaks.
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Figure 5. Truncated hyperspectral image: (A) true data and (B) hyperspectral prediction.

ponding to background pixels, and shows that the
method is able to select and model the protein bands
itself without user assistance. Mutual Information (MI)
(see [56–59]) is a generalised version of correlation.
Whereas correlation assumes linear relationships and
Gaussian-distributed data, MI makes no assumptions
about the two data series being compared. It is based on
calculating the information content of one signal that is
also contained in the other. Mathematical details are
given in [56–59]. The same variables as described above
were also picked out as having the highest MI of the data-
cube with the known concentration data (not shown).
What is particularly important is that the PLS model can
form precise predictions of protein bands at concen-
trations so low that they are not visible by eye on either
the images produced from the Arthur multiwavelength
fluorimager or visually in the Coomassie Blue stained gel.
If the predicted dataset is reconstructed into an image
from the datacube, it is almost indistinguishable from the
true hyperspectral image. One example image from the
actual truncated datacube of the test set is shown in
Fig. 5a and the equivalent from hyperspectral prediction
is Fig. 5b.

4 Concluding remarks

The separation of principal component scores originating
from blank gel tracks with no protein from those scores
originating from background areas of tracks which have
had protein run up them clearly show that these back-
ground areas are not merely empty gel but contain traces
of protein residue. The only possible source of this protein
is as a result of the migration of bands through these
regions (‘slime trail’ model). Univariate analyses of ab-

sorbance or fluorescence signals cannot discriminate
signals that come from background from signals due to
stain, and only the application of chemometrics to hyper-
spectral images has indicated this difference. The result
shows that backround areas of blank tracks cannot be
treated as if they are merely protein-free empty areas of
pure gel, and has significant implications for our under-
standing of, and improvement in, the dynamic range of
proteome gels.

PLS modelling on datacubes clearly demonstrates an
ability to quantify fluorophores precisely in gels at far
lower concentrations and greater sensitivity than are
either visible in the images themselves or can be deter-
mined via the integration of band intensities in univariate
images. It is able to produce a precise prediction to 6.4%
error over a range of three orders of magnitude of concen-
tration, from 5.10–9 g protein/band to 5.10–6 g protein/
band (above which the gel spots are so bright as to be
easily quantifiable by most methods). This represents an
improvement in the dynamic range per pixel of two orders
of magnitude.
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