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Abstract

Background: Eukaryotic gene expression is a complex process involving multiple cis and trans

activating molecules to either facilitate or inhibit transcription. In recent years, many studies have

focused on the role of acetylation of histone proteins in modulating transcription, whereas

deacetylation of these same proteins is associated with inactivation or repression of gene

expression. This study explores gene expression in HepG2 and F9 cell lines treated with

Trichostatin A (TSA), a potent histone deacetylase inhibitor.

Results: These experiments show that TSA treatment results in clear repression of genes involved

in the cholesterol biosynthetic pathway as well as other associated pathways including fatty acid

biosynthesis and glycolysis. TSA down regulates 9 of 15 genes in this pathway in the F9 embryonal

carcinoma model and 11 of 15 pathway genes in the HepG2 cell line. A time course study on the

effect of TSA on gene expression of various enzymes and transcription factors involved in these

pathways suggests that down regulation of Srebf2 may be the triggering factor for down regulation

of the cholesterol biosynthesis pathway.

Conclusion: Our results provide new insights in the effects of histone deacetylases on genes

involved in primary metabolism. This observation suggests that TSA, and other related histone

deacetylase inhibitors, may be useful as potential therapeutic entities for the control of cholesterol

levels in humans.

Background
Histone deacetylases (HDACs) are important chromatin
remodeling enzymes that are generally involved in tran-
scriptional repression [1]. Mammalian HDACs are classi-
fied into three main categories depending on their
primary homology to Saccharomyces cerevisiae HDACs
(RPD3, HDA1 and SIR2). Histone deacetylase inhibitors
(HDACIs) tend to show equal effects on gene activation
and repression [2-4]. HDACIs have been shown to induce
differentiation, apoptosis or growth arrest in a variety of

transformed cell lines [5]. This is generally attributed to
the ability of these inhibitors to induce an open chroma-
tin conformation facilitating transcription of regulatory
genes like p21 which inhibit tumor cell growth [6]. These
qualities make HDACIs promising targets for chemother-
apeutic intervention.

Recently many different types of HDAC inhibitors have
been discovered (Figure 1). These include short chain fatty
acids (sodium butyrate, phenylbutyrate, valproic acid)
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[7], hydroxamic acids (trichostatin A (TSA), suberoylani-
lide hydromaxic acid (SAHA), pyroxamide, cyclic
hydroxamic acid-containing peptides (CHAPs), cinnamic
acid bishydroxamic acid (CBHA) and scriptaid) [8,9],
cyclic tetrapeptides (trapoxin, apicidin, depsipeptide) [10-
13,13], and benzamides (MS-275)[14,15]. Most HDAC
inhibitors (HDACIs) developed to date inhibit both Class
I and II HDACs equally with the exceptions being valproic
acid (5 fold more selective for HDAC1 vs HDACs 5 and 6)
and FK-228 (Class I selective). Class I and II HDACs are
inhibited by trichostatin A (TSA) and related compounds
whereas Class III HDACs are not. As noted, HDACIs have

been shown to promote cell cycle arrest, differentiation,
and apoptosis in many transformed cultured cell types. In
animal models, HDACIs have been shown to inhibit
growth of breast, prostate, lung and stomach cancers, as
well as neuroblastomas and leukemias, with little toxicity
[16,17]. In a previous study looking at the combination
regimen of all trans retinoic acid (RA) with the HDACI,
Trichostatin A (TSA), we identified several new targets for
HDACIs [18]. We also identified critical differences in
gene regulation subsequent to treatment with these two
agents and a novel promoter module associated with the
regulation of a subset of these differentially regulated

Structures of common HDAC inhibitorsFigure 1
Structures of common HDAC inhibitors.
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genes. These analyses focused on the anticancer therapeu-
tic potential of these compounds alone or in combina-
tion. Recent analysis of these data identified certain
crucial metabolic pathways that have not previously been
shown to respond to HDACI treatment and which may be
critical in identifying new therapies for cardiovascular
health. In this report we discuss the possible role of HDAC
inhibition on cholesterol metabolism.

Results
Microarray results from F9 cell treatments

Of the 12,451 mouse genes on the Affymetrix MU74Av2
microarray, 1248 genes (upregulated expression of 489
genes and decreased expression of 759 genes) were found
to be significantly differentially expressed following TSA
treatment. Of these, only 463 genes were found to be dif-
ferentially expressed at an arbitrary two-fold or greater
level of expression (226 genes up; 237 genes down)
(Tables 1 &2, Additional file 1). The raw CEL files for the
microarray data are available for download at the Gene
Expression Omnibus under series GSE1437. Genes for
which up regulated expression was noted were involved in
retinoid binding and/or metabolism (e.g., Crabp2, Rbp1,

Cyp26), the immune response (H2-Q7, H2-Dma, H2-L,
Cmkor1, H-2D4(q), MHC H-2K-f class 1 antigen); extracel-
lular matrix regulation (Col5a1, Col13a1, Gsn, Prhp1,
Tuba3, t-PA, Cpe, Tm4sf6, Atp1b2, Dsc2); transcription and
maintenance of chromatin structure (Cbx4, Msx2, H1f0,
Elf3, Zfpm), signal transduction (Il11ra2, PLD1), apopto-
sis (Cidea, Zac1), cell growth regulation (IGF-II, Igfbp3,
Reck, Meis1, Scgf), and embryonic development (Sema3e,
Hoxb1 & 4, Stra8, Hoxa1, Cdx-1). Similarly, genes that were
down regulated post-TSA treatment included genes
involved in extracellular matrix degradation (MMP10,
Adam23), transcriptional regulation (Foxd3, UTF1, SF1/
Nr5a1, Msc, Mybbp1a, HMGI-C, lyl1), signal transduction
(Tdgf1, Fst, Gna14, Il12rb2, Il5ra, Map3k4, Vegfc), and cell
cycle deregulation (Myb, Mybl2, Tal1). Interestingly, we
also found down regulated genes involved in pyrimidine
biosynthesis (Dhodh) and in the cholesterol metabolism
pathway (Mvk, Lss, Hmgcr, Fasn and Sqle) (Figure 2). This
latter finding was intriguing and we decided to extend our
investigations beyond the pluripotent mouse EC cells.
These experiments were repeated using the more relevant
human hepatocarcinoma derived HepG2 cells, since these
are hepatic in origin and the liver is the primary source for

Table 1: Genes upregulated by TSA treatment in F9 cells (representative genes from total of 226 genes at 2-fold level of expression)

Treatment type EtOH TSA

Systematic FC Norm SE Norm SE Gene GB Acc

93714_f_at 14.5 1.64 1.0 23.82 3.1 H2-L AI117211

100127_at 18.0 1.08 0.2 19.37 3.4 CRABP2 M35523

92770_at 18.3 0.83 0.2 15.28 2.0 S100A6 X66449

95471_at 23.2 0.75 0.3 17.30 2.4 CDKN1C U22399

93981_at 12.8 1.07 0.3 13.72 3.0 PLAT J03520

92275_at 10.2 1.00 0.3 10.16 0.5 TCFAP2C X94694

92502_at 7.6 1.00 0.1 7.60 0.8 ZAC1 X95504

100139_at 6.6 0.92 0.3 6.11 0.7 PCSK1N AI841733

98758_at 6.0 0.82 0.2 4.92 0.4 ALOX15 L34570

160547_s_at 5.7 0.98 0.1 5.60 0.7 TXNIP AI839138

94545_at 5.5 1.02 0.2 5.60 0.1 RTN1 AW123115

99906_at 4.8 0.93 0.2 4.48 0.4 ESX1 AF085715

93875_at 4.7 1.03 0.2 4.84 0.9 HSP70-3 M12571

161482_f_at 4.7 1.21 0.2 5.65 1.1 PRPH1 AV068234

104716_at 3.8 0.99 0.2 3.82 0.1 RBP1 X60367

99642_i_at 3.6 0.94 0.2 3.40 0.2 CPE X61232

94881_at 3.3 0.77 0.3 2.59 0.1 CDKN1A AW048937

99643_f_at 3.2 0.99 0.1 3.16 0.3 CPE X61232

98067_at 3.2 0.77 0.2 2.43 0.1 CDKN1A U09507

92501_s_at 3.0 1.01 0.2 3.04 0.5 ZAC1 X95503

93120_f_at 2.9 1.04 0.1 3.01 0.3 H2-K; H-2K V00746

97487_at 2.8 0.94 0.1 2.60 0.2 SERPINE2 X70296

96704_at 2.6 0.95 0.1 2.52 0.4 SFN AF058798

93888_at 2.5 0.84 0.2 2.10 0.1 HOXB1; HOX-2.9 X53063

95297_at 2.3 1.06 0.3 2.48 0.3 HOXA1 M22115

93278_at 2.1 1.03 0.2 2.21 0.6 SCP2 M91458

104580_at 2.1 0.79 0.2 1.67 0.1 PLCD U85711

FC: fold change; Norm: Normalized signal, SE: std error of normalized signal; GB Acc: GeneBank Accession number

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AI117211
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M35523
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=X66449
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=U22399
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=J03520
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=X94694
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=X95504
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AI841733
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=L34570
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AI839138
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AW123115
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF085715
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M12571
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AV068234
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=X60367
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=X61232
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AW048937
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=X61232
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=U09507
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=X95503
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=V00746
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=X70296
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF058798
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=X53063
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M22115
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M91458
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=U85711
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cholesterol and fatty acid metabolism in humans. While
these are not primary hepatocytes, this cell line offers the
ability to both explore the hereto unknown effects of TSA
on cholesterol metabolism and also look at the previously
known targets of this drug.

Microarray results from HepG2 experiments

Of the 54,613 human genes on the Affymetrix HU133
plus 2.0 array, only 6,513 showed significant differential
expression following TSA treatment (p value < 0.05). The
raw CEL files for the microarray data are available for
download at the Gene Expression Omnibus under series
GSE4465. TSA treatment of this cell line resulted in 1561
genes being up regulated and 4952 genes being down reg-
ulated at this level of significance (Figure 3). This observa-
tion was surprising since the current paradigm of HDAC
inhibition suggests equal effects on gene activation and
repression after treatment with an HDAC inhibitor [3,4].
Furthermore, using a two-fold cutoff, the genelist was
reduced to 3229 genes with 254 up and 2975 down regu-
lated (see Tables 3 and 4; Additional file 1) further
emphasizing the extreme extent of gene expression down
regulation following HDACI treatment. Genes that
showed up regulated expression include phospholipid
transfer protein (Pltp), tissue inhibitors of metalloprotein-
ase 1 and 2 (Timp1, Timp2) and transforming growth fac-
tor beta 1 (Tgfβ1). Perhaps more importantly, the

interesting downregulated genes included thymidylate
synthetase (Tyms), formyltetrahydrofolate dehydrogenase
(Fthfd), dihydroorotate dehydrogenase (Dhodh) and CTP
synthase II (CTPSII) (all of which are related to pyrimi-
dine biosynthesis) as well as genes related to lipid trans-
port and fatty acid metabolism including low density
lipoprotein receptor (ldlr), enoyl-Coenzyme A hydratase,
acyl-Coenzyme A dehydrogenase (Acadm), apolipopro-
teins A5, C3, L1, high density lipoprotein binding protein
(vigilin); and 3-hydroxy-3-methylglutaryl-Coenzyme A
synthase 1 (Hmgcs1), farnesyl-diphosphate farnesyltrans-
ferase 1 (Fdft1), squalene epoxidase (Sqle), sterol regula-
tory element binding transcription factor 2 (Srebf2) and 7-
dehydrocholesterol reductase (Dhcr7). Notably 11 of
these genes are involved in cholesterol metabolism (Fig-
ure 2).

Quantitative PCR results

Sybr green qPCR was used to validate microarray expres-
sion data for a subset of the differentially expressed genes.
The expression patterns of 10 genes from the F9 microar-
ray data set and 21 from the HepG2 microarray data set
(Figure 4) were all confirmed by qPCR. Furthermore we
decided to examine the levels of gene expression at early
and late time points for 11 of these genes that have a role
in cholesterol and lipid metabolism. The relative gene
expression was obtained for these genes at 3 h, 6 h, 9 h, 12

Table 2: Genes downregulated by TSA treatment in F9 cells (representative genes from total of 237 genes at 2-fold level of 

expression)

Treatment type EtOH TSA

Systematic FC Norm SE Norm SE Gene GB Acc

92889_r_at -25.8 1.00 0.2 0.04 0.05 FOXD3 AF067421

100700_s_at -6.3 0.97 0.1 0.15 0.06 NR5A1 AB000490

94712_at -5.3 1.15 0.2 0.22 0.08 VEGFC U73620

101578_f_at -4.9 1.25 0.44 0.26 0.09 ACTB M12481

99963_at -4.6 1.26 0.28 0.28 0.11 ZFP101 U07861

93731_at -4.5 0.96 0.13 0.21 0.07 FKBP9 AF090334

100701_r_at -3.8 0.94 0.1 0.25 0.07 NR5A1 AB000490

99323_at -3.7 1.01 0.1 0.27 0.10 IL12RB2 U64199

98817_at -3.7 1.02 0.2 0.28 0.11 FST Z29532

99058_at -3.7 1.05 0.2 0.29 0.11 HMGA2 X99915

95632_f_at -3.3 0.91 0.3 0.28 0.08 MVK AW122653

93002_r_at -3.2 0.86 0.2 0.27 0.07 TDGF1 M87321

102220_at -2.8 0.90 0.1 0.33 0.08 UTF1; AI505934 AB017360

160737_at -2.7 1.13 0.2 0.41 0.07 LSS AW060927

99425_at -2.6 0.91 0.2 0.35 0.07 HMGCR X07888

93065_at -2.6 1.17 0.23 0.45 0.12 IL11RA1 U14412

103683_at -2.5 0.90 0.2 0.35 0.07 DHODH AF029667

104285_at -2.3 1.02 0.2 0.44 0.08 HMGCR M62766

160832_at -2.3 0.97 0.16 0.43 0.06 LDLR Z19521

98575_at -2.2 1.06 0.2 0.48 0.08 FASN X13135

94322_at -2.2 0.97 0.1 0.44 0.07 SQLE D42048

93234_at -2.1 1.11 0.2 0.52 0.07 MSC AF087035

FC: fold change; Norm: Normalized signal, SE: std error of normalized signal; GB Acc: GeneBank Accession number

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF067421
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB000490
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=U73620
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M12481
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=U07861
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF090334
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB000490
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=U64199
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=Z29532
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=X99915
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AW122653
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M87321
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB017360
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AW060927
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=X07888
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=U14412
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF029667
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M62766
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=Z19521
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=X13135
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=D42048
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF087035
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Map of cholesterol biosynthesisFigure 2
Map of cholesterol biosynthesis. TSA down regulates 9 of 15 genes in this pathway in the F9 embryonal carcinoma model 
and 11 of 15 pathway genes in the HepG2 cell line.
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h, and 48 h to serve as early and late time frames in com-
parison to the 24 h treatments (Figure 5). Hmgcr which is
the rate limiting enzyme in cholesterol biosynthesis was
repressed 2-fold after 12 h of TSA treatment and showed

increasing down regulation over 24 h (4 fold) and 48 h
(5.3 fold) time points. Hmgcs levels showed increased
repression (2.8–3.8 fold) by TSA treatment over 6–24
hours (the amplification reactions failed for the 12 h and

Table 3: Genes upregulated by TSA treatment in HEPG2 cells (representative genes from total of 254 genes at 2-fold level of 

expression)

Treatment type EtOH TSA

Systematic FC Norm SE Norm SE Gene GB Acc

214023_x_at 18.5 1.00 0.1 18.61 1.2 TUBB AL533838

201008_s_at 10.2 0.94 0.1 9.60 1.1 TXNIP AA812232

227404_s_at 9.5 1.00 0.1 9.50 0.3 EGR1 AI459194

218280_x_at 6.5 0.92 0.1 5.97 0.4 HIST2H2AA NM_003516

221059_s_at 4.6 0.95 0.1 4.36 0.2 CHST6 NM_021615

208581_x_at 4.4 0.96 0.1 4.20 0.2 MT1X NM_005952

203158_s_at 3.9 1.00 0.1 3.91 0.2 GLS AF097493

206907_at 3.7 1.09 0.1 4.07 0.3 TNFSF9 NM_003811

202075_s_at 3.6 0.98 0.1 3.48 0.2 PLTP NM_006227

201666_at 2.8 1.01 0.1 2.84 0.2 TIMP1 NM_003254

203085_s_at 2.3 1.02 0.1 2.35 0.2 TGFB1 BC000125

203167_at 2.3 1.00 0.1 2.25 0.0 TIMP2 NM_003255

FC: fold change; Norm: Normalized signal, SE: std error of normalized signal; GB Acc: GeneBank Accession number

Table 4: Genes downregulated by TSA treatment in HEPG2 cells (representative genes from total of 2975 genes at 2-fold level of 

expression)

Treatment type EtOH TSA

Systematic FC Norm SE Norm SE Gene GB Acc

205890_s_at -30.7 0.975 0.05 0.032 0.02 UBD NM_006398

220437_at -12.6 0.976 0.08 0.078 0.06 LOC55908 NM_018687

223493_at -11.5 1.056 0.07 0.092 0.06 FBXO4 AF129534

226388_at -11.4 1.015 0.06 0.089 0.03 TCEA3 AI675780

202589_at -9.6 1.07 0.09 0.11 0.04 TYMS NM_001071

203979_at -8.7 1.007 0.08 0.115 0.05 CYP27A1 NM_000784

226216_at -7.2 0.887 0.11 0.123 0.06 INSR W84556

209608_s_at -6.3 1.034 0.06 0.163 0.03 ACAT2 BC000408

203924_at -6.2 0.974 0.05 0.158 0.04 GSTA2 NM_000846

205208_at -6.9 1.03 0.08 0.15 0.06 FTHFD NM_012190

219366_at -5.6 0.954 0.14 0.169 0.06 AVEN NM_020371

205820_s_at -5.3 1.02 0.06 0.19 0.04 APOC3 NM_000040

209546_s_at -5.2 0.99 0.06 0.19 0.07 APOL1 AF323540

224243_at -4.6 1.10 0.12 0.24 0.05 APOA5; RAP3 AF202889

200789_at -4.0 0.96 0.11 0.24 0.03 ECH1; HPXEL NM_001398

221750_at -3.8 0.99 0.05 0.26 0.04 HMGCS1 BG035985

202068_s_at -3.6 1.00 0.06 0.28 0.04 LDLR; FH; FHC NM_000527

225012_at -3.1 0.99 0.09 0.32 0.04 HDLBP BE378479

213577_at -3.1 1.03 0.09 0.34 0.05 SQLE AA639705

202067_s_at -2.9 0.88 0.12 0.30 0.16 LDLR AI861942

202502_at -2.8 0.97 0.05 0.35 0.03 ACADM; MCAD; NM_000016

201248_s_at -2.6 1.00 0.08 0.39 0.04 SREBF2; SREBP2 NM_004599

209218_at -2.5 1.01 0.06 0.40 0.04 SQLE AF098865

222916_s_at -2.3 0.92 0.12 0.40 0.06 HDLBP AF116718

201791_s_at -2.2 0.99 0.07 0.45 0.04 DHCR7; SLOS NM_001360

FC: fold change; Norm: Normalized signal, SE: std error of normalized signal; GB Acc: GeneBank Accession number

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AL533838
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AA812232
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AI459194
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_003516
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_021615
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_005952
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF097493
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_003811
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_006227
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_003254
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC000125
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_003255
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_006398
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_018687
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF129534
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AI675780
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001071
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_000784
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=W84556
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BC000408
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_000846
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_012190
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_020371
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_000040
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF323540
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF202889
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001398
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BG035985
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_000527
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BE378479
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AA639705
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AI861942
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_000016
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_004599
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF098865
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF116718
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001360


BMC Genomics 2008, 9:507 http://www.biomedcentral.com/1471-2164/9/507

Page 7 of 14

(page number not for citation purposes)

48 h time points). Levels of Mvk (2.1 fold) and Srebf2 (1.8
fold) were down regulated at 3 h with maximal repression
at 9 h (13.6 fold and 23.6 fold respectively) after which
the levels then came back to normal over the next 39
hours. Srebf2 levels at 6 h, 12 h and 24 h were 2.4 fold, 4.5
fold and 2.4 fold respectively. Genes involved in lipid and
fatty acid metabolism such as ApoA5 and Acat2 were
found to be maximally down regulated at 12 h (12 fold)
and 24 h (16 fold) time points respectively while ApoL1
was down regulated (11 fold) at 12, 24 and 48 h time
points. Fabp which is involved in fatty acid metabolism
showed increasing down regulation after 12 h (1.9 fold)
while Pparγ was found to be increasingly repressed at 9 h
(2.8 fold) followed by reversal after 12 h (3.5 fold). The
Pparγ levels after 48 h of TSA treatment were still almost 2

fold down regulated as compared to untreated cells. Lev-
els of Cyp27A1 or sterol 27-hydroxylase which participates
in the conversion of cholesterol to bile acids was also
found to be initially down regulated at 6 h (1.8 fold) and
increasingly over the 12 (8.8 fold) and 24 h (10.3 fold)
time points. TSA treatment did not show any significant
effect on Ldlr expression until 24 h (2.8 fold).

Discussion
In a previous study we had used microarray analyses to
examine the effects of RA and TSA on embryonal carci-
noma cell growth and differentiation using the prototypi-
cal EC cell line F9 [18]. Results from these studies
identified several important genes and pathways differen-
tially regulated by these compounds. In this report we

(A)Hierarchical clustering of HepG2 cells treated with ethanol or TSA shows that the majority of genes are down regulated (green) by TSA treatment in contrast with the current paradigm of the role of HDACs in gene repressionFigure 3
(A)Hierarchical clustering of HepG2 cells treated with ethanol or TSA shows that the majority of genes are 
down regulated (green) by TSA treatment in contrast with the current paradigm of the role of HDACs in gene 
repression. Gene Ontology analysis of the terms related too "biological process" (p-value < 0.05) shows a significant differ-
ence in the genes being up-regulated (B) or down-regulated (C) by TSA. The down regulation of metabolic processes includes 
cholesterol, lipid and fatty acid metabolism.
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identify new target pathways for TSA treatment based on
further analysis of this data. Most importantly, the regula-
tory pathways that are affected include pyrimidine metab-
olism and cholesterol biosynthesis. The pyrimidine
pathway is of interest because one of the rate limiting
enzymes in this pathway, dihydroorotate dehydrogenase
(dhodh), has been targeted for inhibition in murine mod-
els of rheumatoid arthritis as well as in the human T-lym-
phoblastoma cell line (A3.01) [21,22]. Dhodh catalyzes
the fourth committed step in the de novo biosynthesis of
pyrimidines. Activated lymphocytes expand their pyrimi-
dine pool by eightfold during proliferation [23]. In rheu-
matoid arthritis, inflammation and degradation of
synovial tissue are initiated by the influx of lymphocytes
(B cells, CD4+, CD8+ and T cells) [24]. Thus, inhibiting
activated T-cells by decreasing their supply of pyrimidines
via TSA treatment could provide an attractive alternative
method for treating rheumatoid arthritis. Interestingly,
HDACIs (TSA and phenylbutyrate) were used as treat-
ments in a rat model of rheumatoid arthritis, and resulted
in reduced inflammation, and inhibition both of synovial

hyperplasia and bone or cartilage destruction [25]. The
authors also found that HDACIs inhibited the expression
of tumor necrosis factor-α, which functions to stimulate
matrix degradation in rheumatoid arthritis [26], therefore
suggesting a mechanism by which HDACIs may alleviate
some effects of rheumatoid arthritis. Further extending
and supporting these results, in this study, we found that
TSA itself could significantly inhibit the expression of
dhodh even in non-lymphatic cells (60% in F9 and 25% in
HepG2), providing an alternative (or synergistic) mecha-
nism by which HDACI might suppress rheumatoid arthri-
tis in both mice and men. Moreover, the mRNA levels of
thymidylate synthetase (Tyms), another key enzyme in
this pathway, were decreased 8 fold in HepG2 cells (2.4
fold in F9 cells) further potentiating this effect of TSA
treatment. A previous study using chondrocytes showed
that HDACIs such as TSA and sodium butyrate, blocked
the induction of matrix metalloproteinases (MMP-1,
MMP-13) as well as aggrecan-degrading enzymes
(Adamts4, Adamts5 and Adamts9) [27]. Both of these
enzyme families mediate cartilage destruction. In our

Real Time qPCR verification of the gene expression levels of various genes involved in (A) lipid transport and fatty acid synthe-sis, (B) cholesterol metabolism and (C) pyrimidine biosynthesis in HepG2 cellsFigure 4
Real Time qPCR verification of the gene expression levels of various genes involved in (A) lipid transport and 
fatty acid synthesis, (B) cholesterol metabolism and (C) pyrimidine biosynthesis in HepG2 cells. Fold expression 
is relative to ethanol control. TSA treatment showed down regulated expression of 14 genes by both qPCR and microarray.
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Time course of gene expression in response to TSA treatment of HepG2 cells for 3, 6, 9, 12, 24 and 48 hFigure 5
Time course of gene expression in response to TSA treatment of HepG2 cells for 3, 6, 9, 12, 24 and 48 h. Values 
are represented as fold change relative to ethanol treated controls at the respective time points.
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study with HepG2 cells, we also found that TSA treatment
resulted in a modest decrease in the expression of MMPs
(MMP-1, MMP-2, MMP-11, MMP-12) (1.2–1.5 fold) and
Adamts9 (1.6 fold). This, coupled with increased expres-
sion (2.8 fold) of a collagenase inhibitor (tissue inhibitor
of MMP: TIMP1, TIMP2), might further promote mainte-
nance of a growth regulating matrix. Interestingly, TSA
treatment also resulted in down regulation of LPS induced
TNFα levels (2 fold) as well as suppression of the
cytokines IL-12 and IL-8 (2.7 and 2 fold respectively). This
result is consistent with a report by Leoni et al. [28] on the
anti-inflammatory properties of SAHA (another
hydroxamic acid based HDACI) in Balb/c mice and
human PBMCs induced with LPS.

The pathway most significantly affected by TSA treatment
in F9 EC cells is that of cholesterol biosynthesis, most spe-
cifically those steps involved in the synthesis of low den-
sity lipoprotein. There are two main types of lipoproteins
that transport cholesterol in the blood: low density lipo-
proteins (LDL) and high density lipoproteins (HDL).
HDL particles are generally considered to be "good cho-
lesterol", while LDL is considered "bad cholesterol" [29].
Several genes encoding essential enzymes in the LDL syn-
thesis pathway are down regulated by these treatments.
Pathway analysis of microarray data using genes showing
statistically significant (p < 0.05) differential gene expres-
sion indicated that expression levels of 9 enzymes out of
the 15 in the cholesterol biosynthesis pathway are
decreased following TSA treatment. They include HMG
CoA reductase (Hmgcr), mevalonate kinase (Mvk), di-p-
mevalonate decarboxylase (Mvd), isopentenyl-PP isomer-
ase (Idi1), squalene synthatase (Fdft1), squalene epoxi-
dase (Sqle), lanosterol synthase (Lss) and lanosterol
oxidase (Sc4mol) and NAD(P)-dependent steroid dehy-
drogenase (Nsdhl) (Figure 2). Of these only 6 of these 9,
including Hmgcr, Mvd, Idi1, Sqle, Lss, Sc4mol and Nsdhl,
showed a greater than two fold differential expression on
TSA treatment. The z-score assigned to each category by
MAPPFinder reflects the degree to which the expression of
genes in that category was greater than that expected by
chance. A positive z-score indicates that a large number of
genes in that category are differentially expressed between
the compared conditions while a negative Z score indi-
cates that the there are fewer genes meeting the criterion
than would be expected by random chance. If the MAPP-
Finder data truly obeyed the assumptions of the hyperge-
ometric distribution, then a Z score or 1.96 or -1.96 would
correlate with a p value of 0.05. The z-score for this path-
way was highly significant with values of 4.85 associated
with TSA treatment. Real-time qPCR analyses verified
decreased expression of 3 of 5 genes (Hmgcr, Mvd, Lss) in
this pathway but the expression of neither Mvd nor Lss was
significantly down regulated by TSA. Decreasing high cho-
lesterol levels using TSA treatments may work well since

repression of few of the detected genes may be sufficient
to induce the response, i.e., a reduction in cholesterol
intermediates and synthesis.

Following the analysis of these pluripotent EC cells, we
decided to investigate these effects in the HepG2 cell line
which arose from a carcinoma of the human liver, the pri-
mary organ for cholesterol and fatty acid metabolic proc-
esses. While we realize that primary hepatocytes would be
a better model to evaluate this pathway, we choose the
HepG2 cell line as an means to evaluate this phenomenon
but allowing for use of the known anti-cancer effects of
TSA as a control. Expression data from HepG2 cells also
indicated that multiple enzymes in cholesterol biosynthe-
sis and fatty acid synthesis pathways were significantly
down regulated (Figure 3). The mRNA transcript levels
that were repressed at a greater than 2 fold level of signif-
icance included HMG CoA synthase (Hmgcs1), HMG CoA
reductase (Hmgcr), sterol receptor binding factor-2
(Srebf2) and lanosterol 14 α-demethylase (Cyp51a1)
(involved in cholesterol metabolism), and others includ-
ing fatty acid synthase (Fasn), fatty acid binding protein
(Fabp), farnesyl diphosphate synthase (Fdps), acetyl-coA
carboxylase (Acaca), acetyl-coA dehydrogenase (Acadm),
acetyl-coA acetyl transferase (Acat2), peroxisome prolifer-
ative activated receptor, gamma (Pparγ) and a variety of
apolipoproteins that are involved in fatty acid and triglyc-
eride metabolism. Quantitative PCR studies verified that
TSA treatment reduced expression of Hmgcr, Hmgcs1,
Srebf2, Fabp Fasn, Fdps, Acaca, Acadm, Acat2, ApoA5, C1, E
and L1 as well as Cyp27a1, Ldlr, Pparγ and Tyms (Figure 4).
The down regulation seems to be a complex phenomenon
involving genes that regulate these pathways at different
levels. Most evident is the down regulation of Srebf2
which in turn acts as a transcription factor regulating the
expression of enzymes like Hmgcr (the target for the statin
class of drugs) and Mvd. It is known that Srebf2 overex-
pression induces all 12 enzymes in the cholesterol biosyn-
thesis pathway and inhibition of Srebf2 by TSA might
inhibit the expression of these enzymes [30]. In fact, our
microarray data demonstrates that the levels of almost all
these enzymes are down (10 genes pass all cutoff filters)
following TSA treatment. The repression of Srebf2 occurs
at a early time point (around 3 hrs) and continually
repressed over 24 hrs (2.4 fold repression at 24 h). This
effect is probably responsible for the down regulation of
the cholesterol pathway since expression of Hmgcs
(repressed at 6 h), Hmgcr (repressed at 12 h) and Ldlr
(repressed at 24 h) are all known to be induced by Srebf2
[31]. Srebf-1a and -1c are more involved with regulation of
fatty acid synthesis and lipogenesis [30,32]. While we
were unable to detect the levels of Srebf1 expression in our
microarray experiments, TSA treatment modestly (1.3
fold) decreased expression levels of cytosolic NADP-
dependent isocitrate dehydrogenase1 (Idh1) which pro-
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vides the cytosolic NADPH required for proper function-
ing of both the cholesterol and fatty acid biosynthetic
pathways. The Idh1 promoter is activated by Srebf1a and
Srebf2 in human hepatoma cells [33]. Thus there appears
to be a concerted down regulation of both pathways
through a synergistic effect. Cyp51a1 (lanosterol 14α-
demethylase) is another important intermediate in cho-
lesterol metabolism and has in recent years gained impor-
tance as a target for the development of
hypocholesterolemic agents [34]. Our microarray data
showed that levels of Cyp51a1 were also down regulated
further adding support to the possible use of this HDACI
as a way to decrease plasma cholesterol levels.

Finally, atherosclerosis is the underlying disorder associ-
ated with most cardiovascular disease [35]. This disorder
is characterized by deposits of fatty substances, choles-
terol, cellular waste products, calcium and other sub-
stances in the inner lining of an artery (collectively known
as plaques) [36]. Cholesterol has been implicated as the
major contributor to this condition as atherosclerosis is
strongly correlated with an increase in serum cholesterol
levels [37,38]. Generally, serum levels should be between
140 and 200 mg per deciliter (mg/dl) whereas high levels
surpassing 240 mg/dl indicate one is at high risk for cardi-
ovascular disease [39]. Thus, atherosclerosis is character-
ized by elevated levels of LDL [40]. The activity of the
hepatic LDL receptor (Ldlr) is the primary determinant of
plasma LDL cholesterol levels and Ldlr transcription is in
turn regulated by Srebf2. When the levels of hepatocellular
sterols drop, Srebf2 is activated and this process restores
the normal levels by concurrent activation of de novo cho-
lesterol synthesis and increased uptake of plasma choles-
terol through Ldlr. LDL receptor is also post
transcriptionally regulated by proprotein convertase sub-
tilisn/kexin type 9a (Pcsk9) in an inverse manner [41].
While our microarray and qPCR data shows decreased
Ldlr expression following TSA treatment, microarray gene
expression levels of Pcsk9 are also down regulated. This
suggests existence of a mechanism for potential compen-
satory increase in Ldlr levels or activity post-transcription-
ally. Our time course experiments did not show a
significant repression of Ldlr levels until 24 h further high-
lighting the complex nature of Srebf2 regulation.

Our data with TSA treatment also showed a decrease in
the levels of gene expression for a variety of apolipopro-
teins including apoA1, apoA5, apoB, apoC1, apoE, apoL1.
This observation highlights the complex relationship of
apolipoprotein levels and lipoprotein metabolism. While
elevated levels of apoB and reduced levels of apoA1 are
associated with increased cardiac disease, serum levels of
apoB100 associated VLDL are regulated in turn by Acat2
which stimulates cholesteryl ester secretion into apoB-
containing lipoproteins. Acat inhibitors are being devel-

oped as a therapeutic means to lower LDL cholesterol
without affecting cholesterol uptake [42,43]. Also apoE
deficient mice show high levels of cholesterol and develop
spontaneous atherosclerosis while mice with partial or
complete deficiency of high-mobility group A2 protein
(Hmga2) are able to resist diet-induced obesity [44]. Acat2
inhibition using antisense nucleotides was previously
shown to alleviate atherosclerosis in apoB-Ldlr -/- mice
[45]. This study also found Acat2 inhibition to be effective
in reducing plasma cholesterol, increasing plasma triglyc-
erides, and shifting LDL cholesteryl ester fatty acids to
become mainly polyunsaturated. In our study, TSA treat-
ment showed a modest decrease in apoB, apoE and apoA1
in addition to decreased levels of Acat2, Fasn and Hmga2.
This indicates that triglyceride metabolism is perturbed by
TSA and further studies may be necessary to evaluate the
possibility of using TSA and other HDACIs for modulat-
ing triglyceride metabolism. Cyp27 has been reported to
be regulated by the nuclear receptor subfamily of which
PPARγ is a member and levels of both these genes have
been found to be high in atherosclerotic lesions. Levels of
Cyp27a1 (maximal repression at 24 h) and Pparγ (maxi-
mal repression between 9–12 h) were found to be
repressed by TSA treatment in both the microarray and
qPCR data. This observation adds credence to the poten-
tial for development of TSA like HDACIs for atherosclero-
sis.

Conclusion
Our results show that cholesterol metabolism is signifi-
cantly down regulated by TSA both directly and indirectly
and thus HDACI therapy may be a relatively novel tool to
develop for use in controlling cholesterol levels. This
study only addresses the effect of TSA treatment on tran-
script levels of the rate limiting enzymes and transcription
factors and further studies evaluating protein expression
levels are necessary to derive firm conclusions on regula-
tion of this pathway. Additional studies exploring the dif-
ferent classes of HDACIs with respect to their effects on
regulation of the genes in the cholesterol pathway would
also help dissect the details of this innovative application
for these drugs.

Methods
Cell Culture for Microarray and Quantitative PCR Analysis

F9 mouse embryonal carcinoma cells were cultured as
published previously [18] Stock solutions of TSA (3 mM)
(Sigma-Aldrich) were freshly prepared in absolute ethanol
for each experiment and were diluted in DMEM to a final
concentration of 70 nM. Cells were seeded at 2.5 × 106

cells/75 cm2 gelatinized flask and treated with ethanol or
TSA for 24 h. All experiments were performed in triplicate
using a different preparation of F9 cells for each experi-
ment.
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Similarly, HepG2 human hepatoma cells were cultured
using DMEM containing 10% FBS and treated with TSA
(0.35 μM) or an ethanol control (final concentration
0.2%) for 24 hours before being harvested for RNA isola-
tion. For time course experiments, total RNA was isolated
from HepG2 cells treated with an ethanol control or 0.35
μM TSA for 3, 6, 9, 12, 24 or 48 h.

RNA extraction and purification

Both F9 and HepG2 cells were harvested with 4 mL of Tri-
reagent (Molecular Research Center, Inc) and RNA isola-
tion was carried out according to the manufacturer's pro-
tocol. Total RNA was purified using the RNeasy cleanup
kit and protocol (Qiagen), quantified and then analyzed
for degradation on a BioAnalyzer (Agilent).

Hybridization of sample to GeneChip Microarrays

RNA was converted to biotinylated cRNA (complimentary
RNA) from oligo-dT-primed cDNA using standard
Affymetrix protocols. Biotinylated cRNA was used to
probe the MU74Av2 (F9 samples) or HU133 Plus 2.0
(HepG2 samples) Affymetrix GeneChip microarrays. A

total of six samples (three controls and three TSA treated)
for each cell line were analyzed.

Statistical Analysis

The raw data (CEL files) were imported into GeneSpring
software (v7.2) for further analysis. A two-step normaliza-
tion algorithm was implemented to select differential
gene expression in response to TSA samples (ethanol
treated samples as baseline). In the first normalization
step, a global scaling per chip method was used in which
the signal of each gene was divided by the mean intensity
(50th percentile) of the chip. This normalization step was
followed by a per gene normalization which divides each
gene by the average intensity of that gene in several con-
trol samples. Hierarchical clustering was used to organize
the data in discrete expression profiles. Selection of statis-
tically significant genes from each expression profile was
done using a p-value cut off of ≤ 0.05 with the cross gene
error model (CGEM) combined with Welch t-test. The
multiple testing correction (Benjamini and Hochberg
false discovery rate) was integrated within each test. Addi-
tionally we also analyzed the HepG2 data using both

Table 5: Primers used for Sybr green qPCR

F9 cells

Gene Forward Reverse

GAPDH 5'-GCCAAGAGGGTCATCATCTCC-3' 5'-TTGGTTCACACCCATCACAAA-3'

MVD 5'-AGCATCGCCCGGCAG-3' 5'-TGGCCCCTGTAATTTCCCA-3'

LSS 5'-GCGGCTGTGCGATGCT-3' 5'-AGGTAGCGAACCCGCCA-3'

TGFB1 5'-TGGAAAGGGCCCAGCAC-3' 5'-GCAATAGTTGGTATCCAGGGCT-3'

IGFII 5'-AAGAGTTCAGAGAGGCCAAACG-3' 5'-ATCTCCGAAGAGGCTCCCC-3'

MT1 5'-TGCTCCACCGGCGG-3' 5'-TTTGCAGACACAGCCCTGG-3'

WNT6 5'-GGGCGCTGTCTGAGTCCA-3' 5'-TGGCCCCTGTAATTTCCCA-3'

tPA 5'-GGCCTGGCACGACACAAT-3' 5'-CATCACATGGCACCAAGGTC-3'

VEGFC 5'-CAGCTGCGGAAAGGCG-3' 5'-TTTACACTGTCCCCTGTCCTGG-3'

DHODH 5'-AACACAGGCTACGGGCCAG-3' 5'-TCCCAGAGGCAGGCCCAT-3'

HepG2 cells

Gene Forward Reverse

ACADM 5'-AGCTACCAAGTATGCCCTGGAA-3' 5'-TAAATGATATTGCTTGGTGCTCTACA-3'

ACAT2 5'-TGGGCCACCCTCTTGGA-3' 5'-CCAGTGTGTGTAACAGGGTCACA-3'

ACACA 5'-GCTCCTTGTCACCTGCTTCTG-3' 5'-TGTAGGCTAGAGATCCCCAAATCA-3'

APOA5 5'-AGGTGCGCCAGCGACTT-3' 5'-GCGAGTGAAGGCAGCTATCTG-3'

APOC1 5'-CAAGGCTCGGGAACTCATCA-3' 5'-CCCGCATCTTGGCAGAAA-3'

APOE 5'-CGCTGGGTGCAGACACTGT-3' 5'-AGGCCTTCAACTCCTTCATGGT-3'

APOL1 5'-TCAGCTGAAAGCGGTGAACA-3' 5'-CTCTGCTCATTTCCAGGATGCT-3'

CYP27A1 5'-CCCTGTGGTCCCCACAAA-3' 5'-GGAAGCCATCAACTTCAATTTCC-3'

HMGCR 5'-CCTGTAACTCAGAGGGTCAAGATGAT-3' 5'-CCAGCGACTGTGAGCATGAA-3'

HMGCS 5'-TCTTAAATCAAGGCTTGATTCAAGAA-3' 5'-TGTCCTCTCTGAGCTTCATGTTTT-3'

SREBF2 5'-CGAATTGAAAGACCTGGTCATG-3' 5'-TCCTCAGAACGCCAGACTTGT-3'

FABP 5'-CCGCTGGGTCCAAAGTGAT-3' 5'-CATTGTCTCCAGCTCACATTCC-3'

FASN 5'-GCAAATTCGACCTTTCTCAGAAC-3' 5'-GGACCCCGTGGAATGTCA-3'

LDLR 5'-AGATAGTGACAATGTCTCACCAAGCT-3' 5'-CTCACGCTACTGGGCTTCTTCT-3'

PPARG 5'-GCGAAAGCCTTTTGGTGACT-3' 5'-CAGTGCATTGAACTTCACAGCAA-3'

TYMS 5'-AATCACATCGAGCCACTGAAAA-3' 5'-AATCCTGAGCTTTGGGAAAGGGT-3'
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MAS5 (Microarray Suite) as well as RMA (Robust Microar-
ray Analysis) algorithms and genes that passed all criteria
from both sets of analyses were used for follow up studies.

Pathway and Functional Cluster Analysis

The differentially expressed genes selected as described
above were subjected to functional cluster analysis using
MAPPFinder in conjunction with GenMAPP (Gene Micro-
array Pathway Profiler) 2.0 [19,20]

Quantitative Real-Time PCR

To verify the data obtained from microarrays, 5 μg of total

RNA was taken from the same pool of RNA as used for the

microarray experiments. The RNA was DNase treated

(Ambion) and reverse transcribed to cDNA which served

as the template for quantitative PCR (qPCR). Real-time

relative qPCR (SYBR Green; Applied Biosystems) was per-

formed in triplicate using a GeneAmp 5700 (F9 samples)

or a HT7900 sequence detection system (HepG2 samples)

according to the manufacturer's instructions. Primers

were specifically designed using Primer express software

(Applied Biosystems). 1 μg of cDNA was amplified in 1×

SYBR green buffer. PCR conditions were: 10 min at 95°C

for AmpliTaq Gold DNA polymerase activation, 45 ther-

mal cycles of 15 sec at 95°C to denature and 1 min at

60°C to anneal and extend. Relative expression levels

were analyzed using the  method using the

GAPDH expression level as a control. Samples treated

with TSA were compared to the baseline expression value

determined from ethanol treated samples at the respective

time points and the fold change is shown. (For primer

sequences see Table 5).

For quantitative analysis of the data, CT (threshold-cycle
number) values were normalized to those of GAPDH,
with use of the ΔΔCT method.
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