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Summary The histone deacetylase inhibitors (HDACi)
have demonstrated anticancer efficacy across a range of
malignancies, most impressively in the hematological can-
cers. It is uncertain whether this clinical efficacy is
attributable predominantly to their ability to induce apoptosis
and differentiation in the cancer cell, or to their ability to
prime the cell to other pro-death stimuli such as those from
the immune system. HDACi-induced apoptosis occurs
through altered expression of genes encoding proteins in
both intrinsic and extrinsic apoptotic pathways; through
effects on the proteasome/aggresome systems; through the
production of reactive oxygen species, possibly by directly
inducing DNA damage; and through alterations in the tumor
microenvironment. In addition HDACi increase the immu-
nogenicity of tumor cells and modulate cytokine signaling
and potentially T-cell polarization in ways that may
contribute the anti-cancer effect in vivo. Here, we provide
an overview of current thinking on the mechanisms of HDACi
activity, with attention given to the hematological malignan-
cies as well as scientific observations arising from the clinical
trials. We also focus on the immune effects of these agents.
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Mechanism of action

Introduction

Histone deacetylase inhibitors (HDACi) induce a plethora
of molecular and extracellular effects that singly, or in
combination, result in potent anti-cancer activities. The
clinical development of HDACi has been rapid, but
fundamental questions about the mechanisms of anticancer
activity remain: which HDAC(s) must be targeted to
mediate the observed anticancer effects? Which molecular
processes (ie chromatin remodeling, regulation of transcrip-
tion factors, acetylation of non-histone targets) are critical?
Finally, is apoptosis, differentiation or another biological
effect responsible for the clinical responses we see? While
it is clear that HDACi induce apoptosis associated with
altered transcription of proteins involved in the intrinsic and
extrinsic pathways, other mechanisms are in play, such as
those relating to the aggresome/proteasome system.
Through hyperacetylation of histone and non-histone
targets, HDACi can induce quite diverse cellular effects.
These include: altering immune responses through effects
on the host and/or target cells; inducing permanent (i.e.
senescence) or temporary (quiescence) cell cycle arrest
usually at the G1/S transition; inhibiting angiogenesis;
inhibiting apoptosis; and autophagy [1–5]. HDACi not
only induce injury to the cell, they also modulate its ability
to respond to stressful stimuli. Moreover, the anti-tumor
effect is due to targeting not only the tumor cell itself, but
also the tumor microenvironment and the immune milieu.

Inhibition of histone deacetylases and classification
of the HDACi

HDACs are classified by their homology to yeast HDACs.
Eighteen are known, of which the 11 zinc-dependent
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enzymes belonging to class I, II, and IV constitute the focus
of research, and of this review. HDACs, usually in
conjunction with other corepressors, deacetylate lysine
moieties in amino-termini of histones [6]. The acetylation
status of the histone depends on the balance between
deacetylase activity and histone acetyl transferase (HAT)
activity. Deacetylation results in a relatively closed chro-
matin conformation that often leads to repressed transcrip-
tion [6]. Thus, HDAC inhibitors are generally considered to
be transcriptional activators [7]. However, gene expression
profiling shows that as many genes may be repressed as de-
repressed after exposure to an HDACi. This is likely to be a
consequence of the direct and indirect effects of these drugs
on other transcriptional regulators and cell signaling path-
ways and/or due to the dynamic and complex interrelations
between chromatin remodeling and regulated gene tran-
scription [8, 9].

HDACi are currently classified according to their
chemical structure, and each agent varies in its ability to
inhibit individual HDACs (Table 1). HDACi share a
common pharmacophore containing a cap, connecting unit,
linker and a zinc binding group that chelates the cation in
the catalytic domain of the target HDAC [10]. The pan-
deacetylase inhibitors include vorinostat (suberoylanlide
hydroxamic acid, SAHA), panobinostat (LBH589) and
trichostatin A which inhibit class I, II and IV HDACs,
while valproate, entinostat (MS-275) and romidepsin
(depsipeptide, FK228) are considered class-I—specific,
and tubacin, HDAC6-specific. (Table 1)

HDAC6 warrants special attention as a HDAC predom-
inantly, [11, 12] but not exclusively [9] localized to the
cytoplasm. HDAC6-specific effects, particularly those on
cell motility and the proteasome and aggresome pathways
(discussed below) are considered by some investigators to
be responsible for much of the cytotoxicity of the HDACi.
This is one example of how HDACi vary in their targets—
the pan-HDACi include HDAC6 amongst their targets,
while the class1-selective HDACi (such as romidepsin) do
not. Such differences provide the rationale for the develop-
ment of novel, highly HDAC-specific agents. For now, it is
easiest to group the HDACi in commercial development
into the pan-HDACi versus those that are class 1-specific,
and it is probably not unreasonable to make generalizations
about HDACi targets on that basis.

Apoptosis

HDACi can induce high rates of apoptosis at sub-micromolar
concentrations in many cell-line models of hematological
malignancy. Precisely which of the effects discussed below is
most important remains a matter of conjecture and may well
be cell-type and agent-specific. The two major apoptotic

pathways are the death receptor (direct) and mitochondrial
(indirect) pathways. HDACi have been shown to induce
apoptosis through effects on mediators within either pathway
or by inducing other signals within other cellular pathways
that activate apoptosis.

Death receptor pathway

The death receptor pathway is triggered by the ligation of
death receptors (Fas, TNF-R1, TRAIL) on the cell surface
by tumor necrosis factor (TNF)-super family receptor
ligands (Fas-L, TNFα, TRAIL, TR1a). In the case of
TRAIL-induced death though ligation DR4 /TRAIL-R1 or
DR5/TRAIL-R2, the adaptor molecule FADD is recruited,
leading to caspase 8 activation through formation of the
multi-protein death inducing signaling complex (DISC)
and activation of final common effector, caspase 3. C-
FLIP may inhibit or potentiate the binding of FADD and
caspase 8, but is generally seen as an inhibitor of
apoptosis [13, 14]. Tumor cells are more sensitive to
TRAIL-induced death than normal cells, [15] and HDACi
may further sensitize malignant cells to death-receptor-
mediated apoptosis.

HDACi can increase expression of death receptors DR5
expression can be induced by HDACi in a dose and time—
dependent manner in AML (HL-60), CML (K-562) [16]
and myeloma cell lines [17]. Similarly, in mouse models of
acute promyelocytic leukemia (APL) and AML-ETO
dependent leukemia, valproic acid increased expression of
death receptors and their ligands by the leukemic cells and
cell death was dependent on the death-receptor pathway.
These observations were confirmed in primary APL and
AML-ETO samples, and were not seen on CD34+ stem
cells from the same patients [18].

HDACi can induce apoptosis by directly stimulating the
death receptor pathway Increased susceptibility to TRAIL-
mediated death may occur without altered receptor expres-
sion. HDACi were able to re-sensitize Jurkat T-cell
leukemia cells with acquired resistance to TRAIL-
mediated death without changes in surface expression of
death receptors, suggesting that in these cells post-DISC
changes to the apoptotic cascade was important [19]. CLL
cells are typically resistant to TRAIL-mediated death, [20]
yet romidepsin and sodium valproate can sensitize CLL
cells to DR4-mediated death through increased recruitment
of FADD to the DISC [21–23].

TRAIL/Fas sensitization may also occur through down-
regulation of c-FLIP [24–29] or increased expression of
APAF1 [30]. These observations have been replicated in a
mouse model where vorinostat augmented the effects of a
murine DR5 agonist through down-regulation of c-FLIP
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and XIAP and without changes in the expression of the
receptor or of TRAIL [31].

Moreover, synergy of HDACi with death receptor
agonists, in vitro and in vivo, has been demonstrated with
different putative and possibly cell-line-dependent mecha-
nisms [15, 17, 24, 31].

Death receptor signaling may not be essential for HDACi
induced apoptosis Recent evidence shows that death
receptor signaling is not essential for HDACi-induced
apoptosis in various experimental model systems. Panobi-
nostat and the related pan-HDACi LAQ824 were able to
induce apoptosis and have a therapeutic effect in a
transgenic murine model of Burkitt lymphoma (Eμ-myc)
[32, 33]. This effect was preserved in an Eμ-myc/TRAIL-/-

murine model in which TRAIL was not expressed.

Intrinsic (mitochondrial, stress-activated) pathway

The intrinsic pathway is activated by cell stress stimuli,
such as free-radical generation, the generation of misfolded
proteins, chemotherapy, and radiation or DNA damage. The
increased mitochondrial permeability that ensues through
activation of Bax and Bak results in the release of pro-
apoptotic proteins, which in turn activate caspase 9 and
finally, the common effector caspase, caspase 3. This
pathway is partly controlled by the interplay between pro-
apoptotic multidomain BCL-2-family proteins which may
initiate mitochondrial membrane permeability (Bax and
Bak), the pro-apoptotic BH3-only proteins (Bad, Bik, Bid,

Bim, Bmf, Hrk, Puma, Noxa) that act as “sensors” of
cellular stress and activate the intrinsic apoptotic pathway
and pro-survival BCL-2-family proteins (BCL-2, BCL-XL,
BCL-W, MCL-1, A1) that serve to “protect” mitochondrial
integrity. There is interconnection between the extrinsic and
intrinsic pathways through activation of Bid following
cleavage by caspase-8 [34]. HDACi modify the cell’s
ability to respond to stressors, favoring apoptosis, and in
addition probably contribute directly to cellular stress.

Gene expression profile studies show that HDACi alter
the expression of members of the intrinsic apoptosis
cascade such that the overall profile is pro-apoptotic [15,
17, 35–40]. For example, BCL-XL and BCL2 are often
down regulated, and Bim, Bax and Bak are consistently up
regulated [35, 40–43].

Over expression of BCL-2 or BCL-XL appears to be an
important mechanism of resistance to HDACi, which can
be overcome with small molecule inhibitors of BCL-2 such
as ABT-737 [27, 30, 32, 33, 44–49]. Exploratory gene
expression profile studies on clinical samples from patients
with cutaneous T cell lymphoma (CTCL) treated with the
HDACi panobinostat showed altered expression of Bcl2
family genes [50]. However, whether these are direct effects
of the altered histone structure or associated with alterations
in other mediators of transcription remains unclear.

The absence of a functional apoptosome does not
preclude a efficacy from the HDACi. In an Eμ-myc mouse
model in which either apaf-1 or caspase 9 were deleted,
apoptosis was reduced, however HDACi were still able to
kill the tumour cells and doubled the survival of the mice
affected by this aggressive model of lymphoma [33].

Table 1 Classes of DAC inhibitors, their HDAC targets and HDAC cellular distribution

a HDACs 6 & 10 are typically found in the cytoplasm [12] however both have also been found in the nucleus and are likely to affect transcription [9, 220].
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Accumulation of reactive oxygen species (ROS) occurs
after exposure to HDACi, and may trigger apoptosis
selectively in cancer cells [51–56]. Normal cells appear to
be spared of this effect, possibly through up regulation of
the Trx-binding protein -2, which protects cells from the
effects of ROS in normal but not tumor cells [51, 57]. The
relative importance of ROS to HDACi induced apoptosis is
suggested by the ability of the PEITC (a glutathione
depleting compound) to enhance the cytotoxicity of
vorinostat in leukemia cell lines and primary samples [56].

The ubiquitin/proteasome system and the misfolded
protein response

Another potential trigger of HDACi-induced cell death
arises through the potential effect of these agents on the
misfolded protein response (MPR). The MPR is comprised
of a number of cellular processes which protect the cell
from toxicity arising from the accumulation of misfolded
proteins. Misfolded proteins may arise as a consequence of
defective protein synthesis, or due to other cellular
derangements that result in a change in conformation of
pre-formed protein [58]. Folding of proteins occurs in the
endoplasmic reticulum (ER) and is reliant on the chaperone
function of HSP90 [59, 60]. In this way, HSP90 prevents
degradation of client proteins.

The ER responds to increased transcriptional activity in
the cell by activation of the ER stress response. Through
signaling from the ER three responses to increased ER
stress can be initiated: 1. Decreased protein transcription, 2.
Increased transcription of genes of the ER to increased long
term processing capacity, or 3. apoptosis [60]. Apoptosis
may be initiated by a number of trans-membrane receptors
in the ER that then activate the intrinsic apoptotic pathway
via c-Jun terminal kinase (JNK) [61]. Misfolded proteins
may also be targeted for destruction through the protea-
some. Targeting to the proteasome occurs through a number
of protein modifications most importantly, ubiquitinylation.

Aggregates of misfolded protein are relatively resistant
to destruction by the proteasome, and form in the context of
proteasome inhibition, insufficiency or dysfunction [62].
Misfolded proteins accumulate focally in into an aggresome
via a microtubule—an HDAC-6-dependent mechanism.
The aggresome is then targeted for destruction by the
autophagosome [12, 62–64]. Overall, the aggresome path-
way is a homeostatic and cytoprotective mechanism which
may rescue the cell in the context of proteosomal overload,
inhibition or dysfunction. The ubiquitin-proteasome-
aggresome pathways are thought to be particularly relevant
targets for anti-cancer therapy of myeloma, where produc-
tion of immunoglobulin requires a properly functioning
endoplasmic reticulum and proteasome.

HDAC inhibitors affect functioning of the proteasome /
aggresome pathways in three key ways (which make their
combination with proteasome inhibitors particularly appeal-
ing) [65]. Firstly, inhibition HDAC6 results in hyper-
acetylation of HSP90 and HSP70 [66] which subsequently
promotes misfolding and depletion of client proteins,
including c-RAF, AKT and CDK4 and induces ER stress
[67–70]. Recent evidence suggests that in a model of
mantle cell lymphoma, induction of the ER stress-response
gene CHOP is critical to panobinostat-induced cytotoxcity
[68]. Secondly, HDAC hyperacetylation of tubulin leads to
defective function of the dynein motor complex required
for aggresome formation [7, 62, 63, 65, 68]. Inability to
compensate for additional ER stress through a functioning
aggresome pathway primes the cell for, and potentially
initiates, apoptosis. Finally, a loss of function screen,
discovered that proteasome deregulation through a pathway
involving HR23B (RAD23B) was in part responsible for
HDACi-induced apoptosis [72]. HR23B possesses
ubiquitin-like domains and shuttles proteins to the protea-
some. It also has a role in nucleotide excision repair, which
was not shown to be critical in the effects of the HDACi. In
this study, CTCL cells possessing higher levels of HR23B
were more sensitive to HDACi induced death, and HDACi
were shown to decrease proteasome function in treated cells
in an indirect manner. Experimental depletion of the
HR23B restored proteasomal function and reduced HDACi
sensitivity. These observations were expanded in a subse-
quent study [73] in which an association between reduced
HR23B expression in CTCL tissue biopsies and clinical
response was observed. The authors concluded that HR23B
expression may prove to be a useful biomarker to predict
responsiveness to HDACi.

The evidence pointing to aggresome and proteasome
dysfunction after HDACi therapy and the importance of
HDAC6 in the maintenance of ubiquitin-proteasome-
aggresome function [74] has been the basis for combina-
tions of HDACi with proteasome inhibitors [71, 75].
However HDAC6 inhibition and tubulin acetylation may
not be required, either for HDACi efficacy as a mono
therapy or for synergy from the combination of HDACi
with the proteasome inhibitors [76]. Buglio et al, hypoth-
esized that the HDAC-selective mocetinostat (which has no
effect on HDAC6) would make a more attractive agent for
combination with bortezomib due to a perceived lower risk
of thrombocytopenia compared to the pan-HDACi. Their
preclinical experiments showed that the combination of
mocetinostat and bortezomib was synergistic in Hodgkin
lymphoma cell lines through reduction of the NfKb levels
typically associated with HDAC inhibition. This synergy
was HDAC6-independent, and brings into question the
necessity for HDAC6 inhibition for combination therapies
with the proteasome inhibitors. In a recent clinical study,
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the combination of bortezomib with the HDAC 1 and 2-
specific romidepsin was able to rescue patients with
bortezomib-refractory myeloma, adding weight to the
concept that inhibition of HDAC6 is not required for this
type of drug combination to be of benefit to patients [77].
Indeed, although not compared directly in a trial, romidep-
sin appears to be at least as effective as the pan-HDACi,
vorinostat for cutaneous T-cell lymphoma, the only indica-
tion for which HDACi have earned FDA approval [78].

Changes to p53 and the cell cycle

p53 is one of the most commonly altered transcription
factors in cancer, and is found to be inactivated or mutated
in various acute leukemias, CLL, myeloma and lymphoma.
It is a promiscuous transcription factor with interactions
with many key cellular pathways, including, but not limited
to, those of Rb-E2F, MAP-kinase, IGF-1/AKT, Wnt-beta-
catenin and cyclin-CDK via p21 [79]. Wild-type p53 is
activated and accumulates in the nucleus in response to
stress signals such as DNA damage, hypoxia, spindle
damage and heat shock, amongst others. This response is
modified by kinases (ATM, AT, CHK2, CHK1), acetyl-
transferases (CBP/ p300, pCAF, TRAF), PML, SUMO-1
and HMG1 and also deacetylases including the HDAC1/
mSin3 complex [79–85]. Ubiquitin-mediated proteasomal
degradation contributes to the control of p53 levels. The
overall effect of p53 activation is cell cycle arrest
(predominantly by activation of p21Waf1/Cip1) and apoptosis
(through increased expression of pro-apoptotic genes of the
intrinsic pathway).

Many of the pathways discussed in this review influence
p53, and thus the HDACi have several means of modulat-
ing p53. The importance of the acetylation status of p53
(and thus the role of direct HDAC-p53 interactions) is
controversial [86], however there is evidence that acetyla-
tion of p53 is enhanced in the setting of cellular stress [81],
is required to interrupt Mdm-2 mediated repression of p53,
[84, 87] increases the affinity of p53 for DNA [88], reduces
ubiquitin-mediated degradation of the transcription factor
[89], and can enhance expression of p21Waf1/Cip1 [89]. A
number of studies demonstrate activation of p53 after
HDAC inhibition [89, 90]. However in most reports the
apoptosis and p21 induction following HDAC inhibition
can be induced in a p53 independent manner—an observa-
tion that may be clinically relevant for the treatment of
tumors harboring mutated p53 [32, 48, 91–93].

It is postulated that the HDACi-mediated effects on the
cell cycle may be a key reason for the differential toxicity
and responses between normal and transformed cells. Cell
cycle arrest at G1 associated with induction of CDKN1A/
p21WAF1/CIP1 is a key response to almost all of the currently

available HDACi [1, 7, 94, 95]. Down-regulation of
CCND1/cyclin D may also contribute [96, 97]. However,
induction of cell cycle arrest may protect cells against
cytotoxic agents that require cell cycling for efficacy. Cell
cycle arrest may also partly explain the tumor selectivity of
HDACi [98, 99]. HDACi can also induce cell cycle arrest at
G2/M. Tumor cells lacking a functional G2 checkpoint and
that proceed into mitosis after HDACi therapy, undergo
apoptosis. By contrast, normal cells (with an intact G2
checkpoint) are able to maintain arrest G2/M following
withdrawal of HDACi treatment [98, 99]. This difference
may go some way towards explaining the tumor selectivity
of the HDACi.

Cytokine signaling

Hematological malignancies are frequently associated with
altered cytokine dependency, with perturbation of cytokine
expression, receptor abnormalities, or with dysfunction of
the post-receptor signaling cascades. Generally, binding of
a cytokine to its receptor results in receptor dimerization.
The cytoplasmic domains of cytokine receptors bind JAKs
(Janus kinases) which phosphorylate the receptor and
activate each other. In turn, the signal transducer and
activators of transcription (STATs) are activated, also by
phosphorylation, and STAT dimers enter the nucleus to
initiate transcription at specific promoter regions. Chroma-
tin remodeling is required for maximal transcriptional
effect, and this is achieved through recruitment of HATs,
[100, 101] as well as HDACs [102–105].

Activation of the STAT3 signaling pathway is associated
with multiple cellular effects including increased prolifer-
ation and cell survival (through induction of pro-survival
Bcl-2 family members), induction of angiogenesis, inhibi-
tion of p53, and with activation of Rel/NFκβ [106]. STAT3
hyper activation is described in multiple myeloma (where
IL-6 dependence is of particular significance), [107–109]
Hodgkin lymphoma, [110–114] c-myc dependent lympho-
ma, [115] diffuse large B cell lymphoma, [116] and the T-
cell lymphomas [42, 106]. Mycosis fungoides and Sézary
syndrome are associated with constitutive activation of
STAT3 and probably induced over activity of STAT5 [100,
117, 118]. STAT5 hyper activation is also described in
Hodgkin lymphoma, [119, 120] as is IL-4/STAT6 activation
(with production of the cytokine thymus and activation-
regulated chemokine- TARC) [121–124]. For a review of
the role STATs in cancer, the reader is referred to a review
by Yu and Jove [125]. The aberrancy of STAT activation in
many hematological malignancies makes the STATs a
rational target for anticancer agents.

The STATs are among the non-histone proteins hyper
acetylated in response to HDACi. In addition to phosphor-
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ylation, STAT1 activity is partially regulated by CBP-
induced acetylation or HDAC1-influenced deacetylation
[101, 105, 126]. Acetylated STAT1 binds to the RelA
subunit of NFκβ and prevents its nuclear translocation and
anti-apoptotic effects [127]. Furthermore, STAT1- and
STAT2 - mediated transcription of genes is reduced after
HDAC inhibition [86, 102, 103, 128, 129]. HDAC
inhibition prevents the transcription of the targets of
STAT5, by preventing the recruitment of SMRT, rather
than by alterations of histone acetylation [104].

In a murine xenograft model of CTCL, panobinostat
reduced levels of (activated) pSTAT3 and pSTAT5 in
biopsies, but not the overall quantity of either STAT protein
[49]. An early study suggested that STAT6 expression was
reduced after treatment with vorinostat in skin lymphoma
biopsies without changes to expression to STAT3 [130].
Subsequently, an important study by Fantin and colleagues
demonstrated that clinical response to vorinostat was
associated with a change in localization of pSTAT3 from
predominantly nuclear to predominantly cytoplasmic, presum-
ably reflecting functional inactivation of pSTAT3 by vorinostat
in these responding patients. A lack of in vitro and clinical
response of CTCL to vorinostat appears to be associated with
persistent accumulation of nuclear pSTAT3 [42, 118].

In Hodgkin lymphoma, mocetinostat downregulates the
expression of STAT6 and its target cytokines TARC and IL-
5, with paradoxical increases in IL-13 [121]. It is postulated
that altered cytokine profile results in a shift to a TH1-type
cellular response to the Reed-Sternberg cell.

Together, these observations suggest that effects on the
JAK/STAT pathways and altered cytokine signaling are
putatively important therapeutic targets of the HDAC
inhibitors that warrant further clarification. Indeed, STAT-
dependency may explain why it is the hematological
malignancies that show the most promising responses to
these agents.

Impact on the NFkB system NFκβ is a key transcription
factor, sometimes termed the “master regulator”, with anti-
apoptotic effects and control over a number of inflamma-
tory cytokines. When activated, it increases transcription of
a number of pro-survival genes in the indirect apoptosis
pathway. Constitutive activation of the NFκβ pathway is a
feature of CTCL and myeloma, ALL, NHL (particularly
activated B cell subtype of diffuse large cell lymphoma and
mantle cell lymphoma) and CLL [131]. The inhibitory
protein IκB prevents transcription of NfKb target genes by
preventing entry of NFkB into the nucleus of the cell [132].
During inflammation there is phosphorylation and ubquiti-
nylation of IκB, which targets IκB for destruction by the
proteasome. This results in increased translocation of NfKb
to the nucleus with increased gene transcription. Although
recently brought into question, [133, 134] one important

effect of the proteasome inhibitor bortezomib in myeloma is
to reduce NfKb translocation to the nucleus by reducing
proteasomal degradation of IkB.

NfKb is acetylated by p300/CBP, the biological effect of
which varies according to the acetylation site. HDACi
block HDAC3-mediated deacetylation of the p65/RelA
NfKb subunit, leading to impairment of the IkB/cNfKb
binding, increased NfKB nuclear translocation and in-
creased DNA gene transcription [135]. Histone deacetylase
inhibitors also activate NFkB via induction of reactive
oxygen species (ROS) and the ATM/ NEMO/ SUMOyla-
tion pathway as well as the DNA damage response [54].
Activation of NfKB following HDAC inhibition may well
be cytoprotective (pro-survival) and an important mediator
of HDACi-resistance. As already discussed, this activation
of NfKb may be meaningfully addressed by combining
HDACi with proteasome inhibitors [77].

Immuno-modulatory effects of HDACi

Cellular immunogenicity

In addition to altering cellular responses to cytokine
receptor activation through the pathways discussed above,
HDACi appear to modulate multiple arms of the immune
system, and are able to also act in a pro- or anti-
inflammatory manner. Presently it is uncertain if the net
effect potentially improves or hinders anti-cancer immune
surveillance.

Up regulation of surface molecules Romidepsin, trichosta-
tin A and sodium butyrate were able to up regulate co-
stimulatory (CD80, CD86) and adhesion (ICAM-1) mole-
cules as well as HLA-DR on HL-60 (promyelocytic
leukemia) cells, which was associated with an increased
mixed leukocyte response when compared to untreated
cells [136]. This up regulation, also observed in solid
tumors models, [137–140] may reduce the ability of a
tumor to escape immune surveillance [141, 142]. Tumor
immunogenicity may also be increased through increased
expression of tumor-associated antigens. The carcinoma/
testis antigens (CTA) are an attractive target for immuno-
therapy because they are sparingly expressed in normal,
non-testicular tissue [143, 144]. CTA-specific cytotoxic T-
lymphocytes (CTL) are detectable in patients with CTA-
expressing tumors, and CTA have become a attractive
target for adoptive cellular immunotherapeutic strategies.
Previous studies show that expression the MAGE proteins
is under epigenetic control and may be altered by the
HDACi [145] and DNA demethylating agents [146].
Conceivably, CTA-specific CTL-response can therefore be
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promoted through the use of epigenetic modifiers, which
may act to up-regulate the target antigen [147, 148]. CTA
are expressed on the Reed-Sternberg cell in approximately a
third of untreated cases of Hodgkin Lymphoma [143]. The
class-1 isoform-selective HDACi entinostat increased the
expression of testicular associated-associated antigens
SSX2 and MAGE-A on Hodgkin lymphoma cell lines
[149]. Similar observations have been made in myeloma
[148, 150] and AML [151]. There is now rationale to assess
whether the epigenetic modifiers can be used to modulate
graft-versus-host/graft-versus-tumor effects [151] or im-
prove adoptive cellular immunotherapeutic strategies.

Effect on NK cells The cytotoxic activity of NK cells is
influenced by their engagement with stimulatory or inhib-
itory signals provided by the tumor target cells. NKG2D is
an activating receptor expressed on NK cells, which also
has co-stimulatory functions on CD4+ and CD8+T cells
and macrophages. MICA, MICB and ULBP are among the
stimulatory ligands for this receptor, which promote NK-
cell mediated killing of tumor cells [152]. These ligands are
expressed in response to cellular stress [153] Up regulation
of NGK2D ligands solid tumor and AML cells with
increased NK-mediated cell killing has been demonstrated
after treatment by HDAC inhibitors [154–157]. In a CML-
cell line, this affect was accentuated by treatment with
hydroxyurea, presumably by accentuation of the DNA
damage response [152, 158, 159]. These observations are
tantalizing given the role of other NK-stimulatory agents in
the management of hematological malignancies such as
myeloma and MDS, and the potential for combination
strategies [160, 161].

Effect on antigen-presenting cells HDACi appear to reduce
differentiation and maturation of monocyte-derived human
dendritic cells (DC), as well as reduce antigen uptake and
antigen-specific immune responses after stimulation with
Toll-like receptor (TLR) ligands [162, 163]. This effect was
also seen in DCs in a murine model of graft versus host
disease (GVHD), and in both contexts the effects were
associated with reduced DC production of IL-12, IL-6 and
TNF-a, and a reduced mixed leukocyte response (MLR)
[164]. The mixed leukocyte response (MLR) to human and
mouse-derived DCs treated with HDACi was consistently
reduced, and in mice treated with HDACi, GVHD was
ameliorated. These observations suggest a role for HDACi
as anti-inflammatory agents, but also suggest that they may
interfere with vaccine-based anti-cancer interventions (in-
cluding dendritic cell vaccine therapy).

HDACi affect T cell polarization The changes to STAT
signaling and cytokines described above and which are
strikingly demonstrated in the setting of Hodgkin lympho-

ma, would be expected to shift the cellular immune
response from a TH-2 (IL-5/ IL-4 / IL-13 driven) to a TH1
response [123]. Given the significant contribution of
deranged cytokine signaling in HL, [165] and of the non-
malignant cellular milieu responsible for much of the bulk
of Hodgkin Lymphoma tumors, there is a real possibility
that this hypothesized shift in T-cell polarization contributes
to the observed clinical response [166].

T regulatory cells Generally, an increase in the number of
Tregs is considered to be immune-suppressive and to impair
anti-cancer immune surveillance [167–171]. The signifi-
cance of increased Treg numbers in the marrow of patients
with marrow involvement is unknown, but in solid tumors
Treg assist in tumor immune-escape [172]. Treg numbers are
high in lymph nodes containing follicular lymphoma, but
surprisingly portend an improved prognosis and chemo-
therapy sensitivity. By contrast elevated Tregs confer a
poorer prognosis in AML. Reduced Treg numbers are
associated with clinical responses to the immune-
modifying agents thalidomide and lenalidomide in myelo-
ma and CLL. Notably, the transcription factor Foxp3
(which is uniformly expressed in Treg) is under epigenetic
control, [173] is stabilized by acetylation and is up-
regulated after HDACi therapy [174]. While HDACi appear
to increase Treg numbers and function in mice, [167, 174]
whether that occurs in humans in the setting of cancer is
unknown.

Manipulation of this immune response provides some
rationale for the use of HDACi to establish immune
tolerance in GVHD but conversely provide a reason for
caution for the use of these agents to augment anti-cancer
immune responses [167]. These observations are curious
given the FoxP3+/Treg phenotype of the HDACi-responsive
CTCL, and warrant further exploration in this disease
[175].

When considered together, it is clear that there is
sufficient evidence to consider HDACi immune modulating
agents. Whether the overall effect is important for the anti-
cancer effect, or limited to particular tumor types, remains
to be seen.

Tumor microenvironment

Levels of pro-angiogenic factors such as vascular endothe-
lial growth factor (VEGF), basic fibroblast growth factor
(bFGF) and hypoxia-induced factor 1-α (HIF1α) are
increased in the in a number of hematological malignancies,
especially in the bone marrow microenvironment [176].
Targeting tumor angiogenesis has proven to be a valuable
strategy in the therapy of solid tumors using VEGF/EGFR
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inhibitors, as well as myeloma and myelodysplasia through
the use of immunomodulatory agents (lenalidomide and
thalidomide) and for the former, the proteasome inhibitors
[176] Hypoxia-inducible factor 1-α (HIF1α) is considered
a master regulator of the cell’s response to normoxic and
hypoxic conditions. Levels of HIF1α are modulated
through ubiquitination and proteasomal degradation, with
complex interactions between p300/CBP, pVHL and
HDACs 1,3, 4, 6, and 7 influencing this process (see
review by Ellis et al.) [177]. Increased levels of these
HDACs appear promote angiogenesis, conversely HDAC5
appears to be an inhibitor of angiogenesis [178].

HDACi have been shown to suppress angiogenesis in a
number of cell types across a range of experimental conditions
[177, 179–186]. Down regulation of genes associated with
angiogenesis (GUCY1A3, ANGPT1, COUP-TFII) has been
documented in clinical CTCL samples after treatment with
panobinostat [50] and TSP1 after treatment with vorinostat
[118]. Similarly, reduction in VEGF, sVEGFR1, and bFGF
were seen in samples from patients with myeloma who had
been treated with panobinostat [187] and skin biopsies of
cutaneous lymphoma from patients treated with vorinostat
show reduced microvessel density [118].

Combination strategies with specific small-molecules
inhibitors of angiogenesis are being explored in the solid
tumor setting, and should be considered for haematalogical
malignancies thought to depend on angiogenesis [181, 182,
188].

Histone deacetylase inhibitors and drug-resistant
clones—targeting the cancer stem cell

Given that tumor-regrowth occurs after clinical remission
implies the presence of subpopulation of cancer cells that
are relatively resistant to primary treatment [189]. Such
resistance may be present in a subset of cells prior to
treatment or may develop as a consequence of exposure to
drugs, through a process of natural selection. The cancer
stem cell hypothesis somewhat controversially proposes
that within a cancer there is a phenotypically distinct
subpopulation of cells responsible for the clonogenic
potential of the tumor [190–195]. The putative cancer stem
cells are said to form the minority of overall cancer cell
population, have the capacity for self-renewal, and impor-
tantly are potentially more resistant to anti-cancer agents. A
host of mechanisms of resistance to a variety of anti-cancer
treatments have been demonstrated in various putative
cancer stem cell models, including hedgehog signaling in
multiple myeloma [191, 194, 196], increased drug efflux,
and changes in Notch and Wnt signaling in AML, CML
and T-ALL. (See reviews by Lin et al. and references
therein) [190, 193].

Sharma et al. recently demonstrated the ability to detect
a subpopulation of PC9 lung cancer cells that were resistant
to erlotonib, termed “drug-tolerant persisters” (DTPs)
[197]. These DTPs all possessed the putative cancer stem
cell marker CD133 that was present on only 2% of the
original, untreated PC9 population. When grown in drug-
free media, the cells re-acquired a drug-sensitive pheno-
type, this ‘elasticity’ implying an epigenetic mechanism of
drug resistance. Supporting this was data from gene
expression profiling of the two cell lines (drug-sensitive
and drug-resistant) which was consistent with a global
epigenetic modification. The authors identified that the
retinoblastoma protein and HDAC-demethylating protein
KDM5A was unregulated in the DTPs and found that
histone H3 was consistently hypoacetylated in the DTPs.
Trichostatin Awas lethal to DTPs but not to the drug-sensitive
cells, supporting the theory that the drug-resistance state was
dependent on global chromatin changes and HDAC-
dependence. Application of four different HDAC inhibitors
to PC9 cells prior to exposure to erlotonib and a number of
other anti-cancer drugs including cisplatin, prevented the
development or expansion of DTPs without effect on the
proliferation or survival of the PC9 cells. These observations
offer the tantalizing possibility that HDACi can target the
putative cancer stem cell or circumvent acquired drug
resistance, and clearly offer a direction for further research.

Potential effect on leukemias with recurrent
cytogenetic abnormalities

Fusion proteins associated with the acute leukemias interact
with HDACs and offer appealing targets for the HDAC
inhibitors. Fusion of the retinoic acid receptor-α (RARA)
with PML or the PLZF loci results in acute promyelocytic
leukaemia. The retinoic acid receptors (RAR) repress
transcription through recruitment of corepressors that in
turn recruit HDAC1 [198]. Ligation of RAR leads to
dissociation of the HDACs and recruitment of HATs, and
transcriptional activation [198]. Both fusion proteins re-
quire higher concentrations of retinoic acid to achieve the
same level of HDAC dissociation. The result, phenotypi-
cally, is maturation arrest and proliferation at the promye-
locyte stage [198–200]. This effect can be overcome by
high concentrations of trichostatin A [199] an observation
reciprocated in a mouse model, [201] as well as in patients
with all-trans-retinoic-acid resistance [198, 202, 203].

An analogous situation arises with AML1/ETO, the
commonest recurrent fusion protein in AML. AML1 is a
transcriptional activator and achieves this effect through the
recruitment of HATs [198, 204, 205]. The ETO portion of the
AML1/ETO fusion instead appears to recruit a corepressor
complex containing HDAC1, histone methyltransferase, DNA
methyltransferase as well as meythl-CPG binding properties.
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Transcription is repressed through dysfunction of RARA
[206]. HDACi induce apoptosis in AML1/ETO-bearing cells
[207, 208] and romidepsin has antileukemic activity (albeit
limited) in patients with AML/ETO leukaemia [209].

The MLL locus on chromosome 11 is a subject to
frequent translocation and participation in fusion proteins
associated with myeloid or lymphoid leukaemia. The most
common fusion partners in AML (of at least 54) are AF4
and AF9. MLL encodes a transcriptional regulator with two
subunits: one is a transcriptional activator with histone
methyltransferase activity, and an ability to recruit HATs,
while the other has DNA methyltransferase homology,
interacts with HDACs and is transcriptionally repressive
[210–213]. The fusion proteins exert their proleukaemic
effect through a gain of function effect on the MLL
component of the fusion protein, and up regulation of
Hox genes otherwise repressed by a normally functioning
MLL complex [212–214]. The effect of HDACi in this

context is unpredictable given the multiple potential
epigenetic effects of the MLL complex [215]. P21-
dependent cell cycle arrest and apoptosis has been observed
in MLL/AF9 AML cells after treatment with valproate,
[216] and we have observed a complete cytogenetic
response to panobinostat in a patient with a MLL/CBP
fusion protein-associated AML [217]. Further studies using
in-vivo models are needed.

Conclusion

The last decade of the research into HDACi has been one
where dogma around their effects and targets are continually
being challenged and refined. No longer can the HDACi be
regarded as simple activators of transcription, or agents that
achieve their activity predominantly through direct effects on
the pathways of apoptosis. Apart from induction of cell death,

Fig. 1 Simplified schema of a selection of HDACi targets and downstream effects
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these agents have complex effects on p53 and on cytokine
signaling pathways, and must now be considered immune-
modifiers as well as anti-angiogenic agents. Alteration of
transcription is only one mechanism but non-histone targets
are clearly critically important and we need more information
on the effects on the host environment (Fig. 1).

One example of the challenges we face in developing
these compounds is the developing story of HDAC6;
tantalizing evidence that specific HDACs (such as HDAC6)
make rational targets for drug development must be
tempered by evidence that the targets of HDAC6 may not
actually be necessary for clinical synergy with the drugs
such as the proteasome inhibitors. Another challenge is to
determine if HDACi can contribute to the therapy of AML
with recurrent cytogenetic abnormalities.

The work now is to better dissect which on-target effects
are most critical for HDACi efficacy, in which specific
clinical situations, and how we may overcome the relatively
modest single agent response rates using rational combina-
tion therapies [218, 219].

In vitro models do not replicate the tumor microenvi-
ronment or the immune milieu and therefore probably do
not, alone, provide sufficient basis for clinical studies. A
greater emphasis on immune-competent in vivo models and
biomarker studies are essential to establish which targets
are critical in patients, and which combinations will be the
most promising.
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