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Abstract

HDACs (histone deacetylases) are a group of enzymes that deacetylate histones as well as non-

histone proteins. They are known as modulators of gene transcription and are associated with 

proliferation and differentiation of a variety of cell types and the pathogenesis of some diseases. 

Recently, HDACs have come to be considered crucial targets in various diseases, including 

cancer, interstitial fibrosis, autoimmune and inflammatory diseases, and metabolic disorders. 

Pharmacological inhibitors of HDACs have been used or tested to treat those diseases. In the 

present review, we will examine the application of HDAC inhibitors in a variety of diseases with 

the focus on their effects of anti-cancer, fibrosis, anti-inflammatory, immunomodulatory activity 

and regulating metabolic disorders.
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INTRODUCTION

Epigenetics refers to the regulation of gene expression via posttranslational modification of 

protein complexes associated with DNA without alterations in the DNA sequence [1,2]. The 

fundamental structure of chromatin consists of the nucleosome, which is composed of 146 

bp of DNA surrounding an octamer of core histones (two H2A/H2B dimers and a H3/H4 

tetramer) [2]. Remodelling of chromatin between relatively ‘open’ and ‘closed’ forms has a 

key role in epigenetic regulation of gene expression [3]. Post-translational modifications of 

the N-terminal tails of histones are involved in this remodelling process, including 

acetylation, methylation, phosphorylation, ubiquitinylation, sumoylation, carbonylation and 

glycosylation [3,4].

Acetylation and deacetylation are regulated by two groups of enzymes: HATs (histone 

acetyltransferases) and HDACs (histone deacetylases). The reverse activities of HATs and 
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HDACs regulate gene expression through chromatin modification [5,6]. HDACs are a class 

of deacetylating enzymes that remove acetyl groups from ε-amino groups of lysine residues 

of histones, as well as non-histone proteins, causing the condensation of chromatin structure 

and thereby repressing gene expression [5,6]. On the basis of their homology with respective 

yeast orthologues, HDACs are classified into four groups: class I HDACs (HDAC1– 3 and 

8), which are related to yeast Rpd3 (reduced potassium dependency 3) [7]; class II HDACs, 

which are divided into two subclasses, class IIa (HDAC4, 5, 7, and 9) and class IIb (HDAC6 

and 10), both homologous with the yeast gene Hda1 (histone deacetylase 1) [8]; class III, 

which consist SIRT1–7, also known as sirtuins, are homologous with yeast Sir2 (silent 

information regulator 2) [9,10]; and class IV (HDAC11), which contains conserved residues 

in catalytic regions shared by both class I and II HDAC enzymes [11]. Class I and II are 

referred to as ‘classical’ HDACs.

It has been widely demonstrated that HDACs are promising targets for therapeutic 

interventions in cancer and other diseases. Classical HDACs are mainly involved in the 

development of cancer. Increased expression of class I HDACs (HDAC1–3) is associated 

with nodal spread and is an independent prognostic marker for gastric cancer [12]. High 

expression of some of the class II HDACs, such as HDAC6, is correlated with tumour 

invasion in breast cancer [13], and low expression of class II HDACs genes (HDAC5 and 

HDAC10) is associated with poor prognosis in lung cancer patients [14]. In addition to 

cancers, HDACs have been shown to be involved in other diseases, including tissue fibrosis, 

autoimmune and inflammatory diseases, and metabolic disorders. Since HDACs are 

considered as crucial targets of multiple diseases, HDACIs (HDAC inhibitors) have been 

evaluated in basic experiments and clinical trials. In the present review, we will evaluate the 

application of HDACIs in these diseases, with a focus on their effects on cancer, fibrosis, 

inflammation and immunomodulation and metabolic disorders (Table 1).

HDAC INHIBITORS

HDACIs are compounds that have the ability to prevent the deacetylation of lysine residues 

within the N-terminal tails of histone proteins. On the basis of their chemical structure, 

HDACIs are categorized into the six groups: (i) hydroxamates, such as TSA (trichostatin A) 

and SAHA (suberoylanilide hydroxamic acid); (ii) short-chain fatty acids, such as butyric 

acid and valproic acid; (iii) cyclic tetrapeptides, such as CHAP31 (cyclic hydroxamic-acid-

containing peptide 31) and romidepsin (FK- 228); (iv) benzamides, such as entinostat 

(MS-275), tacedinaline (CI-994) and chidamide (CS-055); (v) electrophilic ketones, such as 

trifluoromethylketone; and (vi) miscellaneous compounds, such as MGCD0103. They may 

also be classified according to their specificity for HDACs [1]. SAHA, TSA, panobinostat, 

belinostat and resminostat are pan-deacetylase inhibitors. Butyrate and valproate inhibit 

class I and IIa HDACs, whereas romidepsin, MS-275 and mocetinostat are considered to be 

class I-specific [1]. Tubacin is specific to inhibit HDAC6 [15]. The ‘classical’ HDACIs are 

specific to the Zn2+ -dependent class I and class II HDACs and act by binding to the Zn2+ -

containing catalytic domain of the HDACs.

The mechanism of action of HDACIs involves inhibiting the deacetylation of histones. 

Hyperacetylation results in an increase in the space between the nucleosome and the DNA 
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that is wrapped around it. The opening of chromatin structure subsequently provides the 

access for gene transcription. HDACIs target gene expression without changing DNA 

sequence. A study in colon carcinoma cells showed that 7% of genes were modulated by 

sodium butyrate treatment (256 genes elevated and 333 genes repressed of 8063 genes) [16]. 

Another study in bladder carcinoma and breast carcinoma cells demonstrated that 

approximately 8–10% of genes are regulated on the Affymetrix 6800 gene chips by various 

HDACIs [17]. Post-TSA treatment results in differential gene expression of various 

enzymes and transcription factors involved in apoptosis, cell-cycle regulation, extracellular 

matrix regulation, signal transduction, immune response and metabolism pathways [18].

Besides histones, HDACIs also have effects on non-histone proteins which include proteins 

involved in the regulation of gene expression, pathways of extrinsic and intrinsic apoptosis, 

cellcycle progression, redox pathways, mitotic division, DNA repair, cell migration and 

angiogenesis [19-26]. A large number of nonhistone transcription factors and transcriptional 

co-regulators are known to be modified by acetylation. HDACIs can alter the degree of 

acetylation of these molecules and, therefore, increase or repress their activity. For example, 

the inducible transcription factor NF-κB (nuclear factor κB) is deregulated in a large number 

of diseases, and application of HDACIs has been shown to repress NF-κB signalling and 

expression of several NF-κB target genes [27,28]. Therefore HDACIs might have an effect 

on immune responses, inflammation, cell survival, differentiation and proliferation. The 

tumour suppressor p53 is a key player in cellular signalling. HDACIs, including TSA, 

SAHA and MS- 275, dominantly up-regulate the gene expression of p53 [17,29], which may 

partly be responsible for the anti-cancer effect of HDACIs. STAT3 (signal transducer and 

activator of transcription 3) is a transcriptional factor required for the development and 

progression of tissue fibrosis in multiple organs, including kidney, skin and lung. The 

administration of TSA can suppress transcriptional activation of STAT3 [30], which might 

be one of the possible mechanisms of the anti-fibrotic effects of HDACIs.

Therefore HDACIs can induce acetylation of histone, as well as non-histone proteins, which 

affect a variety of physiological and pathological processes, controlling apoptosis/

autophagy, cell cycle, fibrogenesis, immune response, inflammation and metabolism 

through its downstream molecular targets (Figure 1).

HDACs AND CANCERS

Traditionally, cancer has been considered to originate from genetic alteration, such as gene 

mutations, deletions, rearrangements and chromosomal abnormalities, leading to aberrant 

expression of tumour suppressor genes and oncogenes [31,32]. However, growing evidence 

suggests that epigenetic modulation also plays a crucial role in the initiation and progression 

of cancers [33,34]. Different from genetic defects, epigenetic changes are reversible and 

therefore considered as a promising newmechanistic class of anti-cancer therapy. It has been 

shown that a global loss of monoacetylation of histone H4 is a common hallmark of human 

tumour cells [35]. Changes in histone H4 acetylation occur early during the tumorigenic 

process [35]. The aberrant recruitment of HDACs to promoters through their physical 

association with oncogenic DNA-binding fusion proteins results from chromosomal 

translocations or overexpression of repressive transcription factors that physically interact 

TANG et al. Page 3

Clin Sci (Lond). Author manuscript; available in PMC 2015 September 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with HDACs [3]. For example, the oncogenic PML-RARα (promyelocytic leukaemia-

retinoic acid receptor α), PLZF-RARα (promyelocytic leukaemia zinc fingerretinoic acid 

receptor α) and AML-1 (acute myeloid leukaemia-1) transcription factors and the AML1-

ETO (eight-twenty-one) corepressor fusion proteins induce leukaemogenesis by recruiting 

HDAC-containing repressor complexes to constitutively repress expression of specific target 

genes [36,37]. Inhibition of HDAC activity increased the transcriptional activity of the 

oncogenic fusion protein and transcription factor EWS-FLI1 by increasing its DNA binding 

activity in Ewing sarcoma (EWS) [38]. Individual HDACs, including HDAC1, HDAC2, 

HDAC3 and HDAC6, are overexpressed in a number of tumours [39-42]. siRNA (small 

interfering RNA)-mediated knockdown of individual HDACs in certain tumour cell lines 

suppresses tumour cell growth and survival [42,43], indicating the critical role of HDACs in 

the development and progression of tumours and as anticancer therapeutic targets.

HDACIs inhibit the dynamic turnover of acetylation, resulting in hyperacetylation of target 

proteins [44]. This can affect a wide range of cellular functions, and promote cytostatic and 

cytotoxic effects in a wide range of tumour cell types, but has little effect on normal cells 

[44]. The molecular mechanisms underlying the anticancer effects of HDACIs remain to be 

fully elaborated. Genomic effects on gene transcription may be responsible for the 

anticancer effects of HDACIs. In several models of cancer, HDACIs, including TSA, SAHA 

and MS-275, up-regulate tumour suppressing genes {p53, p21, pRb (retinoblastoma protein), 

tob1, Hep 27, Cbp (C-terminal Src kinase-binding protein)/PAG1 (phosphoprotein 

associated with glycosphingolipid-enriched microdomains 1), IRF [IFN (interferon) 

regulatory factor]-8} and down-regulate oncogenes [Src, HIF1α (hypoxia-inducible factor 

1α) and HER2 (human epidermal growth factor receptor 2)] [17,45-48], therefore inhibiting 

the development and progression of tumours. HDACIs can cause cell-cycle arrest in a p53-

independent manner due to induction of p21 and/or tob1 byHDACIs through a direct effect 

on the Sp1 site in the p21 promoter [49,50]. Since most cancer cells have lost p53 or pRb or 

both, resulting in loss of the G1/S DNA damage checkpoint, the induction of p21, p27Kip1 

and/or tob1 by HDACIs produces an aberrant cell-cycle arrest (checkpoint), leading to 

apoptosis [17]. HDACIs can also increase the sensitivity of carcinoma cells to TRAIL [TNF 

(tumour necrosis factor)-related apoptosis-inducing ligand] and down-regulate c-FLIP 

[cellular Fas-associated death domainlike IL (interleukin)-1β-converting enzyme-inhibitory 

protein], resulting in activation of extrinsic apoptosis pathways and inducing apoptosis of 

tumour cells [51]. Besides apoptosis, HDACIs also induce caspase-independent autophagic 

cell death in tumour cells [52]. Furthermore, HDACIs have anti-angiogenic effects, 

associating with decreased expression of pro-angiogenic genes such as VEGF (vascular 

endothelial growth factor), bFGF (basic fibroblast growth factor), HIF1α, angiopoietin 2, 

TIE2 (tunica intima endothelial kinase 2), survivin and eNOS [endothelial NOS (nitric oxide 

synthase)] [53-57]. Inhibition of angiogenesis by HDACIs affects the nutrient supply to the 

primary tumour [3]. HDACIs are also reported to sensitize cancer cells to chemotherapies. 

TS (thymidylate synthase) is the target of the chemotherapeutic agent 5-FU (5-fluorouracil), 

which is associated with drug resistance. Initial gene expression studies with HDACIs 

recognized that TS was one of the HDACI gene targets [17]. HDACI treatment enhanced the 

sensitivity of cancer cells to 5-FU via down-regulation of TS expression [58,59]. In 
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summary, HDACI-regulated gene expression can contribute to cell-cycle arrest, apoptosis 

and angiogenesis inhibition.

Currently, HDACIs have been successfully used as therapies for the treatment of 

haematological malignancies. In particular, SAHA and romidepsin (FK-228) have been 

approved by the United States FDA (Food and Drug Administration) for the treatment of 

CTCL (cutaneous T-cell lymphoma). A single dose of HDACIs demonstrated limited 

clinical benefit against solid tumours. However, HDACIs in combination with other 

anticancer agents have shown a synergistic effect. For example, SAHA enhanced sensitivity 

of non-small-cell lung cancer cells to 5- FU/S-1 [58]. VPA (valproic acid) can augment the 

antitumour effects of 5-FU in a human pancreas cancer cell line and a cholangiocarcinoma 

cell line [60]. HDACIs are also used as radiosensitizers in the treatment of solid tumours. 

The combination of an HDACI, H6CAHA, with γ-radiation completely blocked the growth 

of human prostate cancer tumour xenografts over 60 days [61]. Moreover, adding SAHA to 

capecitabine-based chemoradiotherapy enhanced the radiosensitivity of xenografts in terms 

of inhibiting colorectal carcinoma growth [62]. VPN was shown to augment radiation-

induced cytotoxicity in human oesophageal squamous cell carcinoma by chromatin 

decondensation with histone hyperacetylation and down-regulation of Rad51 [63]. Therefore 

HDACIs can serve as a promising therapy for cancers.

HDACs AND INTERSTITIAL FIBROSIS

Recent studies have shown that the HDACs play an important role in the development of 

multiple tissue fibrosis, including skin, kidney, liver, heart and lung. Activation of 

fibroblasts is critically involved in the development of interstitial fibrosis of a variety of 

organs. The activated fibroblast, termed a myofibroblast, demonstrates specific phenotypic 

changes, including the expression of α-SMA (α-smooth muscle actin) and increased 

production of ECM (extracellular matrix) components, including collagen and fibronectin 

[30]. Glenisson et al. [64] examined the role of HDACs in TGF-β1 (transforming growth 

factor β1)-induced myofibroblastic differentiation, a process involved in tissue fibrosis. 

They found that among the eight HDACs (HDAC1–HDAC8) tested, silencing of HDAC4, 

HDAC6 and HDAC8 expression impaired TGF-β1-induced α-SMA expression. HDAC4 

silencing efficiently abrogated α-SMA expression and prevented TGF-β1-mediated 

morphological changes. Intervention by TSA prevented α-SMA transcript and protein 

expression and morphological changes mediated by TGF-β1 in cultured human skin 

fibroblasts [64]. These findings suggest that HDACs are involved in the process of skin 

fibrosis and that HDAC4 is an essential epigenetic regulator of myofibroblastic 

differentiation.

An increase in the expression of HDAC1 and HDAC2 and a decrease in histone acetylation 

were observed in tubulointerstitial injury induced by UUO (unilateral ureteral obstruction) 

[65]. Treatment with TSA attenuatedmacrophage infiltration and fibrotic changes in this 

model. The induction of CSF-1 (colonystimulating factor-1), a chemokine known to be 

involved in macrophage infiltration in tubulointerstitial injury, was reduced in the injured 

kidney of mice treated with TSA. TSA, valproate and the knockdown of either HDAC1 or 

HDAC2 also significantly reduced CSF-1 expression induced by TNF-α in renal tubular 
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cells. These results suggest that tubular HDAC1 and HDAC2 may contribute to the 

production of CSF-1, macrophage infiltration and profibrotic responses in response to injury 

and implicates a potential use of HDAC inhibition in reducing inflammation and fibrosis in 

tubulointerstitial injury. Our studies have also shown that HDAC1 and HDAC2 are involved 

in regulating proliferation of renal interstitial fibroblasts [66]. Silencing either HDAC1 or 

HDAC2 with siRNA significantly inhibited cell proliferation, decreased the expression of 

cyclin D1 and increased the expression of p57, a negative cell-cycle regulator [66]. 

Furthermore, inhibition of HDAC activity with TSA blocked the proliferation and activation 

of renal interstitial fibroblasts in a rat model of UUO and in a rat renal interstitial fibroblast 

line (NRK-49F) in vitro [30]. In in vitro studies employing cultured NRK-49F cells, TSA 

treatment inhibited fibroblast proliferation as indicated by decreasing cell numbers and 

suppressing cyclin D1 expression. TSA also blocked fibroblast activation as shown by 

diminishing expression of α-SMA and fibronectin. These suggest that pharmacological 

HDAC inhibition may exert antifibrotic activity by inactivation of renal interstitial 

fibroblasts.

HSCs (hepatic stellate cells) are the major cellular sources of ECMin chronic liver diseases 

leading to fibrosis. In a humanHSC line, sodium valproate, a class I HDACI, exerts 

antifibrogenic activity by blocking the TGF-β1 autocrine loop and inhibiting TGF-β1-

induced collagen type 1 α1 expression [67]. Another HDACI, TSA, affects the development 

of the actin cytoskeleton and inhibits collagen types I and III and α-SMA in HSCs, thereby 

abrogating the process ofHSC transdifferentiation [68,69]. These findings indicate that the 

antifibrogenic effect of HDACIs in the liver results from inhibiting transdifferentiation of 

stellate cells into myofibroblasts and the subsequent production of ECM.

In human fibroblasts from patients with idiopathic pulmonary fibrosis, Spiruchostatin A, a 

class I HDACI, inhibits TGF-β1-induced expression of α-SMA, collagen I and collagen III, 

and soluble collagen release [70]. In addition, HDAC inhibition prevents cardiac 

hypertrophy induced by AngII (angiotensin II) infusion and aortic banding and reverses 

atrial arrhythmia inducibility and fibrosis in cardiac hypertrophy independent of AngII 

[71,72]. HDACIs inhibit α-SMA expression and collagen synthesis and diminish DNA 

binding of AP-1 (activating protein-1), a key transcription factor in profibrogenic signalling 

in pancreatic stellate cells [73]. Collectively, these studies suggest a potential antifibrotic 

effect of HDACIs in a variety of organs.

There are several possible mechanisms accounting for antifibrotic effects of HDACIs. In a 

number of tissues, activation of STAT3 increases expression of multiple profibrotic genes 

and is required for activation of renal interstitial fibroblasts and the progression of renal 

fibrosis [74]. Administration of TSA could suppress transcriptional activation of STAT3, 

leading to inactivation of renal fibroblasts [30]. In addition, TSA treatment inhibits the 

activity of STAT- dependent signal transduction pathways in NIH 3T3 cells and sarcoma 

cells [75,76]. Lee et al. [77] have shown that HDACI-induced hyperacetylation of histones 

H3 and H4 was associated with the down-regulation of fibronectin transcription. Yoshikawa 

et al. [78] examined the effect of TSA on the EMT (epithelial-to-mesenchymal transition) in 

cultured tubular epithelial cells and found that TSA can prevent TGF-β1-induced EMT. 

Mechanistic studies revealed that TSA induced the expression of two inhibitory factors of 
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TGF-β1 signals: Id2 (inhibitors of DNA binding/differentiation 2) and BMP-7 (bone 

morphogenetic protein-7). A ChIP (chromatin immunoprecipitation) assay confirmed that 

histone acetylation was involved in the downregulation of E-cadherin and the up-regulation 

of Id2 and BMP-7 [78]. Overall, although the mechanisms of HDACI-exerted antifibrotic 

effects remain incompletely understood, transcriptional activation of repressors and 

acetylation of non-histone proteins may, in part, explain their antifibrotic effects [77].

HDACs AND IMMUNOMODULATION

Increasing evidence has implicated protein acetylation in innate and adaptive immune 

pathways [79]. Classical HDACs have been identified to play a key role in regulating TLR 

(Toll-like receptor) and IFN signalling pathways in innate immunity, as well as antigen 

presentation, helper T-cell polarization, lymphocyte development and function [79]. It has 

been demonstrated that HDACIs down-regulate the expression of numerous host defence 

genes, including pattern recognition receptors, kinases, transcription regulators, cytokines, 

chemokines, growth factors and co-stimulatory molecules, as assessed by genome-wide 

microarray analyses [80]. HDACIs have also been shown to induce the expression of Mi-2β 

and enhance the DNA-binding activity of the Mi-2/NuRD (nucleosome remodelling 

deacetylase) complex that acts as a transcriptional repressor of macrophage cytokine 

production. Furthermore, HDACIs can increase the susceptibility to bacterial and fungal 

infections, but confer protection against toxic and septic shock [80]. Recent studies have 

also shown that a tubastatin A analogue, a selective HDAC6 inhibitor, augments the 

immunosuppressive effect of Foxp3+ (forkhead box P3+) Treg-cells (regulatory T-cells) and 

inhibits the mitotic division of effector T-cells [23]. Therefore these findings suggest that 

HDACIs are able to regulate the expression of innate immune genes and host defences 

against microbial pathogens, and that HDACIs are mostly immunosuppressive. The 

immunosuppressive properties of HDACIs are associated with skewed dendritic cell 

differentiation and impaired cytokine secretion by dendritic cells [81-83]. The observed 

defects in dendritic cell function on exposure to HDACIs seem to reflect the obstruction of 

signalling through NF-κB, IRF-3 and IRF-8 [81].

On the basis of the immunosuppressive effects, HDACIs may be potent agents for 

decreasing autoimmunity and transplant rejection. Edens et al. [84] have shown that 

treatment with TSA induces antigen-specific energy in both cloned and naïve CD4+ T-cells, 

suggesting their potential to induce immune tolerance in organ transplantation. Tao and 

Hancock [85] have reported that HDAC inhibition promoted the generation of Treg-cells and 

enhanced their functions. In addition, administration of FR276457, a hydroxamic derivative, 

can inhibit T-cell proliferation and prolong allograft survival, thereby exhibiting marked 

immunosuppressive effects in a rat heterotopic cardiac transplant model [86] and in a canine 

renal transplant model [87].

Foxp3+ Treg-cells play a key part in limiting autoimmunity and maintaining peripheral 

tolerance, and mutations of Foxp3 lead to lethal autoimmunity in humans and mice [88-92]. 

Therapeutic manipulation of Foxp3 acetylation using HDACIs can promote the development 

and suppressive functions of Foxp3+ Treg-cells, with beneficial consequences in models of 

transplant rejection, colitis and arthritis [93-97]. In murine models of T-celldependent 
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disease, treatment with TSA or SAHA decreased the severity of TH2 (T-helper 2)-associated 

lung airway hypersensitivity responses [98], renal disease in MRL/lpr mice [99], colitis 

[100], RA (rheumatoid arthritis) [101,102], graft-versus-host disease post-bone marrow 

transplantation [103] and the ‘cytokine storm’ induced by the CD3 monoclonal antibody 

therapy used in a bone-marrow-transplant-conditioning regimen [104].

HDACs AND INFLAMMATION

Alterations in the balance of histone acetylation and deacetylation could affect many aspects 

of cellular function, including cell growth, differentiation, cell death, cell–cell and cell–

matrix interactions, and the inflammatory response [105]. The inflammatory response is 

triggered by some stimulus-regulated transcription factors and involves a large number of 

differential expression genes [106,107]. Recent studies have demonstrated that HDAC3 is 

required for the expression of numerous inflammatory genes, including IFN-β-dependent 

genes [e.g. Nos2 and Ptgs2 (prostaglandin-endoperoxide synthase 2)] and IFN-β- 

independent genes, such as IL (interleukin)-6, in macrophages in response to LPS 

(lipopolysaccharide) [108]. HDAC4 has also been shown to regulate vascular inflammatory 

responses and promote hypertension. Inhibition of HDAC4 by siRNA blocked TNF-induced 

monocyte adhesion, VCAM-1 (vascular cell adhesion molecule-1) expression and 

transcriptional activity of NF-κB in cultured rat mesenteric arterial smooth muscle cells 

[109]. Therefore inhibition of HDAC activity might exert antiinflammatory effects.

In addition, HDACIs appear to be potent anti-inflammatory agents. TSA suppresses IL-6 

production by accelerating IL-6 mRNA decay in RA fibroblast-like synoviocyte and 

macrophages [110]. Sodium valproate represses IL-12 and TNF-α production, and promotes 

IL-10 expression in macrophages exposed to LPS [111]. In an endotoxaemia model, SAHA 

exhibits dosedependent inhibition of the circulating level of pro-inflammatory cytokines 

TNF-α, IL-1β, IL-6 and IFN-γ induced by LPS [112]. In the collagen-induced arthritis 

mouse model, MS-275 has been shown to decrease serum IL-6 and IL-1β levels [102]. 

SAHA and TSA also inhibit the production of the inflammatory cytokines IL-12, IFN-γ, IL- 

6 and IL-10 in isolated splenocytes of MRL-lpr/lpr mice, a murine model of SLE (systemic 

lupus erythematosus) [99]. Moreover, HDACIs can ameliorate inflammatory bowel 

diseases. For example, butyrate can effectively treat Crohn’s disease [113] and ulcerative 

colitis [114]. It has been reported that colitis was associated with increased local expression 

of HDAC9. Inhibition of HDAC9 prevented colitis and reduced established colitis in mice 

[95]. Recent findings in humans [115] have also indicated that a novel HDAC inhibitor, 

ITF2357, exerts its anti-inflammatory capacity. Therefore HDACIs may be a new and 

promising drug class for the treatment of inflammatory diseases such as SLE, arthritis, 

endotoxaemia and inflammatory bowel disease.

HDACs AND METABOLIC DISORDERS

The aetiology of diabetes is complex and multifactorial with contributions from many genes 

and unknown environmental factors. There is evidence showing a genetic association 

between diabetes and HDACs. GWAS (genome-wide association studies) have found a 

significant linkage between the chromosomal region 6q21, where HDAC2 is located, and 
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both Type 1 diabetes mellitus and Type 2 diabetes mellitus [116-118]. Another locus 

identified in GWAS of Type 2 diabetes mellitus lies on chromosome 19q13; the HDAC 

Sirt2 maps to this region [116,117].

In patient with diabetes, β-cell dysfunction is associated with a variable degree of insulin 

resistance [119]. Studies have demonstrated that regulation of the expression of insulin from 

β-cells is under the control of acetylation [116,119,120]. At high glucose levels, Pdx1 

(pancreatic and duodenal homeobox factor 1), which is involved in glucose-stimulated 

insulin gene expression, interacts with the HAT p300, leading to increased acetylation of 

histone H4 in the insulin promoter. These events appear to be necessary for preproinsulin 

transcription induced by glucose [119,121-125]. Conversely, at low glucose levels, where 

insulin production is shut off, the acetylation of histone H4 at the insulin promoter is 

abolished, correlatingwith the recruitment ofHDAC1 andHDAC2 to the insulin promoter by 

Pdx1 [119,121,126]. Mosley and Ozcan [119] have reported that exposure of mouse 

insulinoma 6 cells to high concentrations of glucose results in the hyperacetylation of 

histone H4 at the insulin gene promoter, which correlateswith the increased level of insulin 

gene transcription. In addition, hyperacetylation of histone H4 in response to high 

concentrations of glucose also occurs at the GLUT (glucose transporter)-2 gene promoter. 

Recent studies demonstrated that class IIa HDAC4, HDAC5 and HDAC9 regulated the 

production of insulin in β-cells and somatostatin in δ-cells [127]. Treatment with MC1568, a 

selective class IIa HDACI, promoted the expression of Pax4, a crucial factor required for 

proper β- and δ-cell differentiation, and amplifies endocrine β- and δ-cells in pancreatic 

explants [127]. Inhibition of HDACs has also been shown to have important functions in 

preventing β-cell inflammatory damage, improving insulin resistance, promoting β-cell 

development, proliferation, differentiation and function, and positively having an impact on 

late diabetic microvascular complications [121]. Both pharmacological and genetic 

inhibition of HDAC3 has been shown to protect β-cells against cytokine-induced apoptosis 

and restores glucose-stimulated insulin secretion [128]. In addition, oral administration of 

ITF2357, a class I and II HDACI, improved islet function, reduced iNOS (inducible NOS) 

levels and apoptosis [129]. IL-1β is a key mediator of insulin resistance and β-cell failure 

mediated effects on isolated β-cells [130]. A novel HDACI, THS-78-5, has been shown to 

protect against the IL-1β-mediated loss in β-cell viability and to attenuate IL- 1β-induced 

iNOS expression and subsequent NO release [130], partly by inhibition of IL-1β-induced 

transactivation of NF-κB. HDACIs also hold promise as possible treatments for late diabetic 

complications, such as diabetic nephropathy [77,131] and retinal ischaemia [132]. 

ThereforeHDACIs may prove to be novel agents for the treatment of diabetes mellitus.

In addition to the regulation of glucose, HDACs are also involved in the regulation of lipid 

metabolism. It has been reported that HDAC3 suppresses cytosolic PEPCK 

(phosphoenolpyruvate carboxykinase) transcription by inhibiting the transcriptional 

activators PPAR (peroxisome-proliferator-activated receptor)-γ and CREB (cAMP-

response-element-binding protein) [133]. This mechanism is responsible for inhibition of 

glyceroneogenesis in adipocytes, which contributes to lipodystrophy in aP2-p65 transgenic 

mice [133]. Recent findings have also indicated that HDACIs are involved in certain crucial 

metabolic pathways. TSA treatment results in a clear repression of genes involved in the 
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cholesterol biosynthetic pathway, thus downregulating cholesterol biosynthesis, which is 

associated with the down-regulation of SREBP-2 (sterol-regulatory-element-binding 

protein-2) [18]. TSA also repress the expression of genes involved in other associated 

metabolic pathways, including fatty acid biosynthesis and glycolysis [18]. HDACIs may be 

useful as potential therapeutic entities for the control of cholesterol levels in humans.

CONCLUSIONS

Current studies have shown that HDACs are critical enzymes involved not only in the 

development of cancer, but also other diseases such as interstitial fibrosis, autoimmune, 

inflammatory diseases, and metabolic disorders. HDACIs have been tested for their 

therapeutic effects in treating these diseases in clinical trials and/or animal models. 

However, the underlying mechanism(s) by which HDACIs play a role in inhibiting cancer 

and other disease initiation and progression remains incompletely understood. A better 

understanding of the role of HDACs in these diseases will lead to the development of new 

drugs and specific treatment strategies. The use of HDACIs as novel therapeutic agents has 

shown great promise for these compounds as effective therapies in a variety of diseases, 

suggesting the need for further research to develop therapeutic agents for clinical trials.
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BMP-7 bone morphogenetic protein-7

Cbp C-terminal Src kinase-binding protein

CSF-1 colony-stimulating factor-1

ECM extracellular matrix

EMT epithelial-to-mesenchymal transition

Foxp3 forkhead box P3

5-FU 5-fluorouracil

GWAS genome-wide association studies

HAT histone acetyltransferase

HDAC histone deacetylase

HDACI HDAC inhibitor

HER2 human epidermal growth factor receptor 2

HIF1α hypoxia-inducible factor-1α

HSC hepatic stellate cell

Id2 inhibitors of DNA binding/differentiation 2

IFN interferon

IL interleukin

c-FLIP cellular Fas-associated death domain-like IL-1β-converting enzyme-inhibitory 

protein

IRF interferon regulatory factor

LPS lipopolysaccharide

NF-κB nuclear factor κB

NOS nitric oxide synthase

iNOS inducible NOS

NuRD nucleosome remodelling deacetylase
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PAG1 phosphoprotein associated with glycosphingolipid-enriched microdomains 1

Pdx1 pancreatic and duodenal homeobox factor 1

PEPCK phosphoenolpyruvate carboxykinase

pRb retinoblastoma protein

RA rheumatoid arthritis

SAHA suberoylanilide hydroxamic acid

siRNA small interfering RNA

SLE systemic lupus erythematosus

SREBP-2 sterol-regulatory-element-binding protein-2

STAT3 signal transducer and activator of transcription 3

TGF-β1 transforming growth factor β1

TNF tumour necrosis factor

TRAIL TNF-related apoptosis-inducing ligand

Treg-cell regulatory T-cell

TS thymidylate synthase

TSA trichostatin A

UUO unilateral ureteral obstruction

α-SMA α-smooth muscle actin

VPA valproic acid
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Figure 1. HDACI targets and downstream effects
Inhibition of HDACs by HDACIs induces acetylation of histone proteins, as well as non-

histone proteins, which leads to the alteration in various physiological and pathological 

processes, including apoptosis/autophagy, cell cycle, fibrogenesis, immune response, 

inflammation and metabolism. Therefore HDACIs may be potent therapeutic agents for 

anticancer, antifibrosis, anti-inflammatory and immunomodulation, and regulating metabolic 

disorders.
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