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Abstract. Histone lysine demethylation modification is a 
critical epigenetic modification. Lysine demethylase 2A 
(KDM2A), a Jumonji C domain‑containing demethylase, 
demethylates the dimethylated H3 lysine 36 (H3K36) residue 
and exerts little or no activity on monomethylated and trimeth‑
ylated H3K36 residues. KDM2A expression is regulated by 
several factors, such as microRNAs, and the phosphorylation 
of KDM2A also plays a vital role in its function. KDM2A 
mainly recognizes the unmethylated region of CpG islands 
and subsequently demethylates histone H3K36 residues. In 
addition, KDM2A recognizes and binds to phosphorylated 
proteins, and promotes their ubiquitination and degradation. 
KDM2A plays an important role in chromosome remodeling 
and gene transcription, and is involved in cell proliferation 
and differentiation, cell metabolism, heterochromosomal 
homeostasis and gene stability. Notably, KDM2A is crucial 
for tumorigenesis and progression. In the present review, the 
documented biological functions of KDM2A in physiological 
and pathological processes are comprehensively summarized.
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1. Introduction

Histone is an integral part of the nucleosome, the basic unit 
of chromatin (1). The nucleosome core particle consists of 
~147 bp of DNA wrapped around the histone octamer (H2A, 
H2B, H3 and H4) in two circles (2). The core particles of the 
nucleosome are connected to histone H1 via ~60 bp of connec‑
tive DNA. The N‑terminal ‘tail’ of the histones is an important 
target for several histone‑modifying enzymes (2).

Histone methylation and demethylation are an important 
pair	of	histone	epigenetic	modifications,	which	play	key	roles	
in gene transcription regulation. Methylation occurs on the 
lysine and arginine residues of histones, including K9, K27 
and K36 of histone H3, K20 of H4, R2, R17 of H3, and R3 
of H4 (3). The transcriptional regulation of histone lysine 
methylation is closely associated with lysine residue sites and 
methylation degree. The methylation of H3K4, H3K36 and 
H3K79 is often accompanied by the activation of gene tran‑
scription, while the methylation of H3K9, H3K27 and H4K20 
inhibits gene transcription (3,4).

Histone lysine demethylases are mainly composed 
of lysine specific demethylase (LSD) and Jumonji C 
(JmjC)‑domain‑containing demethylases (JMJD) family 
demethylases (5). The LSD family consists of two members, 
lysine demethylase 1A (KDM1A)/LSD1 and KDM1B/LSD2, 
which remove the monomethyl and dimethyl (me1/me2) of 
histone lysine residues via amine oxidation reaction. In 2004, 
researchers	at	Harvard	Medical	School	were	the	first	to	report	
that	LSD1	removes	dimethyl	and	monomethyl	modifications	
of histone H3K4 in vitro, in the presence of the co‑factor 
FAD and a proton nitrogen (6). In vivo, dimethylation and 
methylation of histone H3K9 can be removed to inhibit gene 
expression (6). LSD1 is a member of the monoamine oxidase 
family, and its action requires the participation of an extra 
proton on the ε‑N atom (7). Thus, its demethylation is limited 
by	the	substrate	and	cannot	be	modified	by	the	demethylation	
of trimethyllysine (7).

Histone demethylase KDM2A: Biological 
functions and clinical values (Review)

LISHENG LIU1,2,  JIANGNAN LIU3  and  QINGHAI LIN2

1Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Jinan, 
Shandong 250014; 2Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong 

First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China;  
3Department	of	Cell	and	Molecular	Biology,	Karolinska	Institutet,	Stockholm,	SE-171	77,	Sweden

Received November 12, 2020;  Accepted March 4, 2021

DOI: 10.3892/etm.2021.10155

Correspondence to: Dr Qinghai Lin, Department of Clinical 
Laboratory, Shandong Cancer Hospital and Institute, Shandong First 
Medical University and Shandong Academy of Medical Sciences, 
440 Ji Yan Road, Jinan, Shandong 250117, P.R. China
E‑mail: linqinghai1988@126.com

Key words: demethylation, epigenetic, tumorigenesis, cell 
differentiation



LIU et al:  LATEST RESEARCH PROGRESS OF HISTONE DEMETHYLASE KDM2A2

JMJD uses an oxygenase mechanism to remove mono‑
methyl, dimethyl and trimethyl (me1/me2/me3) lysine residues. 
In 2006, researchers from the University of North Carolina 
at Chapel Hill reported that JmjC domain histone demeth‑
ylase	1A	(JHDM1A),	also	known	as	KDM2A,	demethylated	
H3‑methyl‑K36 generating formaldehyde and succinate in the 
presence	of	Fe	(II)	and	alpha-ketoglutarate	(8,9).

According to sequence homology and structural similarity, 
JmjC domain demethylases are divided into seven subfamilies 
with different functions (KDM2‑8) (9,10). As an important 
epigenetic	modification,	histone	lysine	demethylation	regu‑
lates important physiological and pathological processes, such 
as tissue development and tumorigenesis (11). Notably, each 
subfamily	of	JMJD	demethylase	inhibits	specific	substrates	of	
different histone lysine residues (Table I) (11).

2. Structure and biological function of KDM2A

KDM2A	belongs	 to	 the	KDM2	 family.	Tsukada	et al (8) 
discovered	the	first	histone	demethylase	containing	the	JmjC	
domain using biological and chemical methods. The KDM2 
family in the human genome includes two genes, KDM2A 
and	KDM2B.	The	KDM2A	gene	is	in	11q13.2,	also	known	
as FBXL11/JHDM1A/FBL7/CXXC8/FBL11/LILINA. 
The encoded protein belongs to the F‑box protein family, 
which is characterized by the F‑box containing 40 amino 
acid sequences, constituting one of the four subunits of the 
ubiquitin‑protein ligase complex (12).

The KDM2A transcripts annotated on the NCBI website 
mainly have two types, and the longer isoform encoding protein 
consists	of	a	JmjC	domain,	a	CXXC-zinc	finger	(ZF-CXXC)	
domain, a plant homologous zinc finger (PHD) domain, 
an	F-box-like	domain	and	mitogenic	exit	network	protein	1	
(AMN1) (13). Conversely, the short‑form KDM2A has no JmjC 
region, which is the catalytic core of demethylation (8). The 
ZF-CXXC	domain	specifically	recognizes	unmethylated	CpG	
islands (14), and the recognition requires the participation of 
linker	DNA.	KDM2A	binds	to	CpG	islands	and	demethylates	
the	dimethylated	H3K36	residue,	and	exerts	weak	activity	for	
monomethylated H3K36 residue (15,16). In addition to the two 
standard transcripts annotated on the NCBI websites, several 
KDM2A transcripts have been predicted and reported, such 
as the isoforms missing the N‑terminal JmjC domain or the 
AMN1	domain.	In	addition,	there	are	also	significant	func‑
tional differences between the subtypes (17). For example, 
the	alternative	isoform	of	KDM2A	lacking	the	N-terminal	
demethylase domain can negatively regulate canonical Wnt 
signaling (12,17‑20).

3. KDM2A expression and regulation

KDM2A is located in the nucleus and binds to unmethyl‑
ated	CpG	DNA	through	the	ZF-CxxC	domain	(14),	which	is	
essential for maintaining heterochromosomal homeostasis (21). 
KDM2A is extensively expressed in different tissues, with high 
expression levels in the brain, testis, ovaries and lungs (22). In 
addition, KDM2A is highly expressed in most tumors except 
prostate cancer (21,23‑25). As an epigenetic regulator, the 
expression and biological function of KDM2A are affected by 
multiple external factors (26,27). In pathological processes, such 

as gastric cancer and glioblastoma, LINC00460, microRNA 
(miRNA/miR)‑29b, miR‑134‑5p and miR‑3666 directly 
bind to the KDM2A promoters to regulate KDM2A expres‑
sion (24,28‑31). Inflammation, hypoxia or reactive oxygen 
species production promote KDM2A expression (26,32), 
and upregulation of KDM2A induced by human papilloma 
virus (HPV)16E7 promotes tumorigenesis and progression of 
cervical cancer (33). Metformin activates the AMPK signaling 
pathway and decreases intracellular succinic acid levels, while 
activation of KDM2A decreases ribosomal RNA (rRNA) tran‑
scription (27). p300 can directly acetylate KDM2A at position 
K409, which in turn decreases demethylation of H3K36me2 
and enhances the transcription of p21 and PUMA, thereby 
inhibiting the growth and metastasis of osteosarcoma (34). Mild 
glucose starvation induces KDM2A‑mediated demethylation of 
H3K36me2 via the AMPK signaling pathway to decrease rRNA 
transcription and the proliferation of breast cancer cells (35). 
In non‑small cell lung cancer, the carcinogen TPA activates 
cyclooxygenase‑2 (COX‑2) expression via KDM2A‑mediated 
H3K36 dimethylation near the COX‑2 promoter (36).

JmjC domain‑containing histone lysine demethylases 
(KDM2‑7) are important epigenetic regulators and potential 
targets for cancer (11). Thus, there is great interest to investigate 
and identify selective and therapeutic KDMs inhibitors (37). 
Understanding the structure of lysine demethylases and their 
modular synthetic approach has helped design and develop a 
series of highly selective KDM2/7 inhibitors (38,39). Some 
inhibitors exhibit antiproliferative activity, and so may be used 
as candidates for anticancer agents (38). Human immunode‑
ficiency	virus	and	HPV	induce	epigenetic	alterations	in	host	
cells by altering the levels of H3K36 methylation within the 
promoter region of CTLA‑4 and FOXP3, resulting in several 
diseases and different types of cancer (40,41). Histone demeth‑
ylase	 inhibitors	 combined	with	 checkpoint	 blockade	may	
be used as a novel cancer treatment strategy (41‑43). As an 
inhibitor of KDM2A, plant growth regulator Daminozide has 
been	reported	to	significantly	abrogate	the	effect	of	KDM2A	
on histone demethylation, and exhibits promising results as an 
anticancer therapeutic strategy (44,45).

4. Clinical significance of KDM2A in human cancers

KDM2A is abnormally expressed in different tumors, and 
it plays a vital role in tumorigenesis and progression (12). 
Wagner et al (46) demonstrated that KDM2A binds to the 
dual‑specificity phosphatase 3 (DUSP3) gene promoter 
region and inhibits its expression, which in turn increases 
phosphorylation of ERK1/2 and promotes the occurrence 
and metastasis of non‑small cell lung cancer. Another study 
reported	similar	findings	for	KDM2A	in	non-small	cell	lung	
cancer, with HDAC3 as the target gene (25). In addition, it 
has been reported that c‑Fos recruits KDM2A to the COX‑2 
promoter region to promote the transcription of COX‑2, and 
treatment with the carcinogen TPA promotes the recruitment 
process (36). Huang et al (47) demonstrated that KDM2A is 
highly expressed in gastric cancer tissues, which promotes 
the proliferation and metastasis of tumor cells by inhibiting 
programmed cell death protein 4 expression. Furthermore, 
KDM2A reverses epithelial‑to‑mesenchymal transition by 
regulating the PI3K signaling pathway, which promotes the 
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progression of ovarian cancer (48). In colon cancer, LINC01278 
upregulates KDM2A expression to promote cancer progres‑
sion (49), and KDM2A expression is associated with cyclin D1 
expression and cell proliferation (50). In breast cancer, studies 
have reported that KDM2A binds to the promoter region of 
genes, such as E2F1, which inhibits its transcriptional regu‑
lation and results in the invasion and metastasis of breast 
cancer cells (23,51). Conversely, another study has revealed 
a completely different transcriptional regulation mechanism 
in breast cancer. The results of this study demonstrated that 
KDM2A directly upregulates JAG1 expression, which affects 
breast cancer stem cell‑related characteristics and angiogen‑
esis (45). Subsequently, it has been reported that the short 
isoform of KDM2A (without the JmjC region) is crucial for 
promoting the tumorigenesis and progression of breast cancer, 
while	the	role	of	the	long	isoform	remains	unknown	(17).	High	
expression	levels	of	KDM2A	enhance	cancer-associated	fibro‑
blasts (52), and combined expression of KDM2A and KDM2B 
may be associated with clinical prognosis in patients with 
breast cancer (53). Researchers at Harvard Medical School 
cloned four cDNA subtypes of KDM2A and demonstrated 
that only the KDM2A‑N782 isoform (the longer isoform 
N‑terminal 782 amino acids, including JmjC, CXXC and Ring 
domains,	but	not	F-box	and	AMN1	domains)	has	a	significant	
effect on promoting cell proliferation (19). Our previous study 
reported	that	KDM2A	expression	is	significantly	upregulated	
in hepatocellular carcinoma (HCC) tissues compared with 
adjacent normal tissues. In addition, high KDM2A expres‑
sion is associated with poor prognosis and overall survival 
in	patients	with	HCC	(54).	KDM2A	augments	stem	cell-like	
characteristics via demethylation of histone H3K36 at 
promoters of stemness‑associated transcription factors, such 
as OCT4, NANOG and SOX2 (54).

In most cases, KDM2A promotes the progression of tumors. 
However,	KDM2A	knockdown	in	zebrafish	has	been	reported	

to disrupt the transcriptome and result in high frequencies of 
spontaneous melanoma (55). In addition, interference with 
KDM2A expression in HT29 cells increases colony forma‑
tion in soft agar (18). KDM2A affects the NF‑κB pathway by 
demethylating the K218/K221 site of p65 in HT29 cells (56,57). 
In different types of tumors, KDM2A has different pro‑onco‑
genic or anti‑oncogenic effects, which may be associated with 
intertumor heterogeneity or the extensiveness of KDM2A 
downstream target genes and demethylation sites. In addition, 
multiple splicing forms of KDM2A play different roles in 
tumorigenesis and progression of different types of cancer (12).

5. Role of KDM2A in cell differentiation and development

KDM2A has been reported to play a vital role in the differ‑
entiation of stem cells and the development of embryos (19). 
Several studies have investigated the role of KDM2A in the 
proliferation and differentiation of stem cells from the apical 
papilla (SCAPs) (58,59). The transcription factor, BCOR, 
interacts with KDM2A to affect the expression of stem‑related 
genes, such as SOX2 (59). In addition, KDM2A abrogates the 
inhibition of p15INK4B and p27kip1, and demethylation of SFRP2 
to regulate the differentiation and proliferation of SCAPs 
into adipocytes and chondrocytes (58‑60). KDM2A exhibits 
synergistic effects with BCL6, inhibits cell proliferation and 
regulates osteogenic differentiation of mesenchymal stem 
cells via the epidermal growth factor epiregulin, EREG (61). 
Researchers cloned four cDNA isoforms of KDM2A and 
demonstrated that transfection with the transcript variant of 
KDM2A‑N782 containing N‑terminal 782AA can signifi‑
cantly	 promote	 keratinocytes	 proliferation	 (19).	 Notably,	
KDM2A promotes the vitamin C‑dependent reprogramming 
process of adult cells, accelerates the cell cycle and inhibits 
resting senescence, and plays an important role in the process 
of induced pluripotent stem cells (62).

Table I. Main members of the JMJD family (11).

JMJD	family	 Also	known	as	 Gene	localization		 Substrate

JHDM1A FBXL11/KDM2A 11q31.1 H3K36me2/1
JHDM1B FBXL10/KDM2B 12q24.31 H3K36
JMJD1A JHDM2A 2p11.2 H3K9me2
JMJD2A KDM4A 1p34.1 H3K9me3/2, H3K36me3/2
JMJD2B KIAA0876 19p13.3 H3K9me3/2
JMJD2C GASC1 9p24.1  H3K9me3/2
JMJD2D KDM4D 11q21 H3K9me3/2/1
JMJD3 KIAA0346 17p13.1 H3K27me3/2
JMJD6 PSR 17p25 H3R2, H4R3
JARID1A RBP2 12p11 H3K4me3/2
JARID1B PLU‑1 1q32 H3K4me3/2/1
JARID1C SMCX Xp11.22‑p11.21 H3K4me3/2
JARID1D SMCY Yq H3K4me3/2
UTX KDM6A Xp11.2 H3K27me3/2
UTY UTY1 Yq11 H3K27

JMJD, Jumonji C (JmjC)‑domain‑containing demethylases. 
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Researchers analyzed KDM2A expression in the teeth 
of mice during embryonic and postnatal stages via reverse 
transcription‑quantitative PCR and immunohistochemistry 
analyses. The results demonstrated that KDM2A may play essen‑
tial roles in cell proliferation and tooth differentiation of mice 
(63).	In	addition,	KDM2A	knockdown	exhibited	severe	embry‑
onic lethality, accompanied by severe growth defects and weight 
loss	(64).	KDM2A	knockdown	affects	the	expression	of	cell	
cycle regulatory factors, such as p21Cip1, which in turn decreases 
cell proliferation and increases apoptosis (64). KDM2A plays a 
vital role in maintaining embryonic stem cells by affecting the 
methylation levels of H3K36me2 and H3K4me3, and regulating 
the expression of germ cell‑related genes (65). In the xenopus 
model, the stability of nuclear β‑catenin depends on its meth‑
ylation/demethylation, and the lysine demethylase Kdm2a/b 
specifically demethylates and degrades non‑phosphorylated 
β‑catenin in the nucleus to regulate the canonical Wnt signaling 
pathway, which plays a decisive role in the formation of the 
anterior‑posterior body axis in xenopus embryos (66).

6. Biological functions of KDM2A in other physiological 
and pathological processes

In addition to its involvement in embryonic development and 
stem cell differentiation, KDM2A is also associated with 
tumorigenesis and progression. KDM2A regulates several 

physiological and pathological processes (Fig. 1) (12). 
Age-associated	DNA	methylation	changes	in	blood	leukocytes	
during	early	childhood	may	reflect	epigenetic	maturation,	since	
histone	modifiers	and	chromatin	remodeling	factors,	such	as	
KDM2A,	are	locus	susceptible	and	play	key	roles	in	leukocyte	
biology (67). JmjC domain‑containing histone lysine demeth‑
ylases	(KDM2-7)	are	known	to	be	altered	with	aging,	which	
could be associated with the regulation of the aging process 
and age‑related diseases (68). Pan et al (69) demonstrated that 
KDM2A negatively regulates gluconeogenesis‑related genes 
in vivo, which silences KDM2A expression and accelerates 
the synthesis of liver glycogen. Overexpression of KDM2A 
decreases blood sugar levels and this regulatory effect is 
achieved by the demethylation of H3K36 in the C/EBPa 
promoter region by KDM2A (69). Frescas et al (21) reported 
that KDM2A is involved in regulating the expression of small 
non‑coding RNAs that are encoded by the clusters of satellite 
repeats at the centromere and are essential for maintaining 
heterochromatin homeostasis. The transcription of rRNA 
genes is a rate‑limiting step in ribosomal synthesis, which 
changes in response to environmental stimuli (26,27,70). It has 
been demonstrated that the demethylase KDM2A containing 
the	JmjC	domain	remarkably	decreases	rDNA	transcription	in	
response to starvation, which is accompanied by the demeth‑
ylation of H3K36me2 in the rDNA promoter (71). In addition, 
KDM2A binds to the unmethylated CpG sequence of rDNA 

Figure 1. Biological function of lysine demethylase 2A in pathological and physiological processes. MSC, mesenchymal stem cell; rRNA, ribosomal RNA.

Figure	2.	Structure	of	lysine	demethylase	2A.	JmjC,	Jumonji	C;	PHD,	plant	homologous	zinc	finger.	
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promoter	under	starvation	stress	via	the	CXXC-ZF	domain,	and	
demethylates H3K36me2 in the rDNA promoter to decrease 
the transcription of rDNA (70‑72). Reischl and Kramer (73) 
demonstrated	that	KDM2A	is	an	important	circadian	clock	
regulator. KDM2A directly binds to the promoter regions of 
CLOCK/BMAL1-regulated	genes	via	a	CXXC-ZF	motif	and	
regulates	the	expression	of	clock	genes,	such	as	Nr1d1,	which	
plays	a	key	 role	 in	maintaining	 the	mammalian	circadian	
rhythms (73). ATM protein (ataxia‑telangiectasia mutated) is 
an important signal molecule in DNA repair (74); however, 
its specific molecular mechanism remains unclear. It has 
been	reported	that	following	DNA	damage,	ATM	specifically	
phosphorylates the KDM2A serine 632 site, which decreases 
the chromosome binding capacity of KDM2A and increases 
the degree of dimethylation of H3K36 at the DNA damage 
site (75). This in turn recruits the MRE11 complex to the injury 
site, which interacts with BRCT2 to induce repair and cell 
survival (75). KDM2A is also recruited to DNA double‑strand 
breaks	and	interacts	with	53BP1	to	ensure	the	stability	of	the	
genome (76). Downregulated KDM2A expression increases 
H3K36me2 at DNA damage sites to inhibit transcription and 
promote repair (77).

7. Conclusions

KDM2A belongs to the JMJD family, which consists of a 
JmjC domain, a PHD zinc finger structure, LRR‑AMN1 
and F‑box, CXXC‑zinc finger structure domain and other 
components (Fig. 2) (8). As a histone demethylase, KDM2A 
specifically	demethylates	both	monomethylated	and	dimethyl‑
ated lysine‑36 of histone H3, and is an important epigenetic 
modification	(13).	KDM2A	also	contains	SKP1-cullin-F-box,	
a subunit of the ubiquitin protein ligase complex, which recog‑
nizes and binds to some phosphorylated proteins and promotes 
their ubiquitination and degradation (76).

The methylation and demethylation of histones has always 
been relatively balanced, affecting gene regulation and several 
biological functions. In addition to affecting chromosome struc‑
ture, the level of histone methylation also acts as a scaffolding 
molecule to recognize and bind certain transcription factors 
and affect transcription regulation (3). Abnormal KDM2A 
expression and an imbalance of target gene methylation result 
in tumorigenesis and the progression of different types of 
cancer (12).

In conclusion, KDM2A is closely associated with physio‑
logical processes, such as stem cell differentiation, cell rhythm 
and metabolism, as well as heterosomal stability and DNA 
damage repair.
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