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Abstract

DNA double-strand breaks (DSBs) are harmful lesions that arise mainly during replication. The choice of the sister chromatid
as the preferential repair template is critical for genome integrity, but the mechanisms that guarantee this choice are
unknown. Here we identify new genes with a specific role in assuring the sister chromatid as the preferred repair template.
Physical analyses of sister chromatid recombination (SCR) in 28 selected mutants that increase Rad52 foci and inter-
homolog recombination uncovered 8 new genes required for SCR. These include the SUMO/Ub-SUMO protease Wss1, the
stress-response proteins Bud27 and Pdr10, the ADA histone acetyl-transferase complex proteins Ahc1 and Ada2, as well as
the Hst3 and Hst4 histone deacetylase and the Rtt109 histone acetyl-transferase genes, whose target is histone H3 Lysine 56
(H3K56). Importantly, we use mutations in H3K56 residue to A, R, and Q to reveal that H3K56 acetylation/deacetylation is
critical to promote SCR as the major repair mechanism for replication-born DSBs. The same phenotype is observed for a
particular class of rad52 alleles, represented by rad52-C180A, with a DSB repair defect but a spontaneous hyper-
recombination phenotype. We propose that specific Rad52 residues, as well as the histone H3 acetylation/deacetylation
state of chromatin and other specific factors, play an important role in identifying the sister as the choice template for the
repair of replication-born DSBs. Our work demonstrates the existence of specific functions to guarantee SCR as the main
repair event for replication-born DSBs that can occur by two pathways, one Rad51-dependent and the other Pol32-
dependent. A dysfunction can lead to genome instability as manifested by high levels of homolog recombination and DSB
accumulation.
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Introduction

In eukaryotic cells, DSBs can be repaired either by homol-

ogous recombination (HR) or by non-homologous end joining

(NHEJ). From these, only HR with the sister chromatid ensures

maintenance of genome integrity, sister chromatid recombina-

tion (SCR) being the preferred mechanism of DSB repair in

mitotic cells [1–3]. As any other HR event, SCR requires the

action of DSB repair genes, many of them constituting the

RAD52 epistasis group [4]. Given the relevance of SCR in the

repair of replication-born DSBs as well as that the sisters are the

products of replication, it is expected that a number of specific

functions should contribute to SCR with little impact in the

repair of DSBs by HR with ectopic DNA sequences or

homologous chromosomes. Thus, in addition to DSB repair

genes, other functions contribute to hold the sister chromatids

together and to facilitate SCR versus HR with the homologous

chromosome, such as cohesins or the Smc5-Smc6 complex [3,4].

However, we still have very little knowledge of SCR specific

functions.

One key aspect of DNA replication is chromatin duplication,

which implies the assembly of nascent nucleosomes on the sister

chromatids as they are generated (reviewed in [5]). However,

packaging of DNA into chromatin may result in a barrier to all

DNA transactions. As a result, eukaryotic cells have specialized

machinery to modify the histones to facilitate DNA metabolic

functions. One such type of modification is acetylation of lysines,

which play different roles in transcription, DNA repair and

replication. An acetylatable residue particularly important in cell

cycle progression is Histone H3 Lysine 56 (H3K56). In budding

yeast, the transient acetylation of H3K56 (H3K56ac) occurs on

newly synthesized H3 molecules by Rtt109 acetyl-transferase,

and facilitates their deposition onto newly replicated DNA

during S phase. However, this acetylation disappears rapidly by

the action of sirtuins Hst3 and Hst4 when cells enter G2/M

[6,7].

Completion of H3K56ac-dependent chromatin reassembly is

likely required for resumption of cell proliferation after DNA

repair [8]. H3K56ac is conserved in human cells, where it also

appears to be regulated in a DNA damage-dependent manner

PLOS Genetics | www.plosgenetics.org 1 January 2013 | Volume 9 | Issue 1 | e1003237



[9–11]. Interestingly, yeast strains lacking an acetylatable lysine

56 show genetic instability and sensitivity to a subset of

genotoxic agents, such a camptothecin (CPT) [6,12], a

phenotype possibly due to a key role of this modification in

nucleosome assembly following DNA replication and DNA

repair [8].

Even though a large body of data shows that defective

replication underlies the high levels of DNA instability associated

with chromatin remodeling mutants, their pattern of genome

instability suggests that additional mechanisms yet unexplored

may play a role in this process. This view is more evident in light

of a genome-wide screen in S. cerevisiae for mutants exhibiting high

levels of Rad52 foci, a mark of DSB-repair centers. Such a screen

identified hst3D, which causes a DSB repair defect and increased

rates of HR between homologous chromosomes but normal levels

of direct-repeat recombination [13]. This phenotype may be due

to replication failures, but it is also compatible with a defect in

SCR. Interestingly, this screen also identified a number of

mutants with similar phenotypes that are potential candidates to

be impaired in SCR that have not been further analyzed.

Notably, the role of Rad52 in DSB repair and spontaneous HR

can also be separated, as shown by the old rad52-2 mutation [14]

or those grouped as the class C mutants of RAD52, which are

sensitive to c-radiation but maintain wild-type levels of mitotic

HR [15].

Using a physical assay for the kinetic analysis of the repair of

replication-born DSBs generated at a 24-bp mini-HO site [3] we

have identified new factors that promote SCR among 27 mutants

previously identified as inter-homolog hyper-recombinant and

accumulating Rad52 foci [13], including Wss1, a SUMO or Ub-

SUMO protease [16], and several proteins involved in chromatin

remodeling, such as Ahc1 (structural subunit of ADA histone

acetyltransferase complex) [17] and Hst3 or Rtt109, involved in

acetylation/deacetylation of H3K56. In addition we show that the

class C mutant rad52-C180A is also impaired in SCR. Taken

together, our results suggest that a broad range of factors regulate

the choice of the sister chromatid as the template for the repair of

replication-born DSBs at an early step of the HR reaction,

guaranteeing genome integrity.

Results

New functions specifically required for the choice of SCR
as the repair mechanism for replication-born DSBs
A physical assay to monitor the repair by SCR of a single DSB

generated during replication [3,4] has been used to determine the

efficiency of SCR in 27 mutants previously identified by their high

levels of Rad52 foci increase and inter-homolog recombination.

These mutants define genes affected in diverse cellular mecha-

nisms, such as replication, DNA repair, DNA damage response,

chromatin remodeling and genes with unknown functions termed

IRC (increased recombination centers) [13], Figure 1). In addition,

we included the rad52-C180A mutant sharing the phenotype of

increased levels of inter-homolog recombination and DSB repair

defect [15]. The SCR assay is based on a circular minichromo-

some, pRS316-TINV, harboring an internal mini-HO site, which

is cleaved mainly in one strand producing 10% DSBs during

replication. Upon HO induction, a DSB occurs mainly in only one

chromatid, the other remaining intact and available for repair (see

Figure 1A). Although this assay has been used mostly to monitor

unequal SCR events, it has been demonstrated that it is an

accurate indicator of the proficiency in total SCR [3,4,18]

DSB and SCR intermediates were assayed in isogenic W303

strains carrying an endogenous LEU2 sequence (leu2-3,112 allele)

and expressing the HO endonuclease from a plasmid. Kinetics

analyses during 9 h after induction of HO revealed that 14

mutants were impaired in SCR (Figure 1C, Figures S1 and S3),

including the previously reported DSB repair mutant rad59 [18].

The rate of DSB accumulation was differentially affected, showing

an increased accumulation in dak2, ddr2, irc7, irc9, irc19, pdr10 and

wss1, consistent with a severe defect in SCR repair in five of them

(irc7, irc9, irc19, pdr10 and wss1), while in dak2 and ddr2 repair was

proficient (Figure 1B and Figure S2).

As endogenous LEU2 sequences could interfere with the SCR

events, physical analysis of the newly identified mutants were

performed in W303 isogenic background expressing HO from a

chromosome and lacking endogenous LEU2 sequences (WS

strains). This analysis revealed that 12 mutants (ahc1, bud27, hst3,

irc4, irc7, irc9, irc14, irc19, lrs4, pdr10, rtt109 and wss1) were

consistently impaired in SCR (Figure 2, lower panel). Notably, the

rad52-C180A mutant was also defective in SCR (Figure 2).

We next used a genetic analysis to compare the ability of each

mutant to repair the same HO-induced replication-born DSB with

either the sister or with a homologous sequence on chromosome

III. As seen in Figure 3A, intrachromosomal recombination in the

TINV system, which measures repair of the HO-induced

replication-born DSB by several mechanisms (equal and unequal

SCR and a weak contribution of intrachromatid recombination;

see [3,4]), was clearly diminished in 11 mutants (ahc1, bud27, hst3,

irc4, irc9, irc14, irc19, pdr10, rtt109, wss1 and rad52-C180A),

consistent with the physical analysis. In these mutants, repair of

the HO-induced replication-born DSB by plasmid chromosome

recombination was also diminished, albeit to a lesser extent. We

cannot discard that the topological constraints of recombination

events might be different when using plasmid versus chromosome

heteroalleles as template; however, so far there is no experimental

evidence for such a difference. The most dramatic differences

between the two systems were found in the ahc1, irc19 and wss1

mutants, which show a 95–153-fold decrease of intrachromosomal

recombination but only a 0.5–3-fold decrease in plasmid-

chromosome recombination (Figure 3A). The rad52-C180A

mutant also shows a difference between both systems but less

marked, with a 17-fold decrease of intrachromosomal recombi-

nation versus only a 9.5-fold decrease in plasmid-chromosome

Author Summary

Double-strand breaks (DSBs) are among the most danger-
ous DNA lesions and can lead to genomic instability, a
process associated with cancer and hereditary diseases. An
important source of DSBs is replication, Sister Chromatid
Recombination (SCR) being the main mechanism for DSB
repair in dividing eukaryotic cells. SCR repair is error-free
and uses the sister chromatid as template, generating an
identical DNA sequence and therefore preventing genomic
instability. In this work, we use an inverted-repeat assay
with which we can physically detect SCR intermediates
generated by the repair of a replication-born DSB. We
hypothesized that SCR defects can result in an increase of
recombination with the homologous chromosome, so we
assayed SCR in 28 mutants previously described to
increase homolog recombination. Our results describe 8
new genes involved in SCR, including functions such as
histone acetylation/deacetylation, SUMO-Ubiquitin metab-
olism, and stress response, as well as an allele of RAD52.
This demonstrates the importance of the choice of the
sister chromatid as template for DSB repair and provides a
broad vision of SCR as a tightly regulated process essential
for genome integrity.

H3K56 Acetylation and Double-Strand Break Repair
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recombination. The finding that specific residues of Rad52 cause

a DSB repair defect without decreasing spontaneous HR (C180

mutated to A) [15] suggests that class C mutants of Rad52

preferentially affect SCE (Figure 1, Figure 2, Figure 3, and Figure

S4). Importantly our study also describes a number of new genes

with specific roles in SCR, which include factors of unknown

function such as Irc4, Irc9 and Irc19, the SUMO/Ub-SUMO

protease Wss1 [16], the Bud27 and Pdr10 proteins involved in

stress response [19,20], as well as proteins involved in chromatin

remodeling, such as Ahc1 (structural subunit of the ADA histone

acetyltransferase complex), Ada2 (Transcription coactivator,

component of ADA and SAGA complexes [17,21] and Rtt109

and Hst3, involved respectively in acetylation and deacetylation

of histone H3 lysine 56 (H3K56), a core domain residue that

localizes at both the entry and exit points of a nucleosome

[6,12,22]

Figure 1. Molecular analysis of SCR in 27 hyper-recombination mutants. (A) Scheme of plasmid pRS316TINV used for the physical
monitoring of SCR of a replication-born DSB. Fragments generated after XhoI-SpeI digestion, detected with a LEU2 probe (line with asterisks) are
indicated with their corresponding sizes. SCR is monitored by appearance of the 4.7-kb fragment, the only one unequivocally occurring via SCR. (B)
Quantification of DSB 2.4- and 1.4-kb fragments after 6 hours of HO activation in galactose. (C) Quantification of the SCR 4.7-kb fragment after
6 hours of HO activation in galactose. All strains, isogenic to W303, were transformed with pRS413GALHO harboring the HO endonuclease gene
under the control of the GAL10 promoter, and pRS316TINV. Average and standard deviations of three samples from each genotype are plotted.
Additional results are shown in Figures S1, S2, S3.
doi:10.1371/journal.pgen.1003237.g001
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The hst3D mutation is strongly affected in intrachromosomal

SCR repeat recombination (50-fold decrease) and weakly in

plasmid-chromosome recombination (11-fold decrease) while the

rtt109D effect is not as pronounced in both systems. On the other

hand, wss1D shows a strong and specific defect in SCR (146-fold

decrease) that contrasts with an enhancement of recombination in

the plasmid-chromosome system (2-fold). Further confirmation of

this specific SCR defect was obtained with the previously reported

his3D59-his3D39 chromosomal repeat system for the genetic

analysis of unequal SCR [23] in which spontaneous SCR was

Figure 2. Molecular analysis of SCR in 13 SCR–defective mutants. Kinetic analysis of SCR in 14 mutants (WS strains isogenic to W303) pre-
selected as SCR-defective candidates. Representative genomic blots and quantification of HO-induced DSBs (upper panel) and SCE recombination
(lower panel) are shown. Average and standard deviations of three samples from each genotype are plotted.
doi:10.1371/journal.pgen.1003237.g002

H3K56 Acetylation and Double-Strand Break Repair
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Figure 3. Genetic analysis of recombination in the 13 SCR–defective mutants. (A) Analysis of Leu+ intrachromosomal recombination, as an
indirect measure of unequal SCR, and plasmid-chromosome recombination events after 5 hr of HO activation in 2% galactose. Values plotted for each
genotype are the average and standard deviations of the median of three independent fluctuation tests (each based on 6 samples) performed with
three different transformants. (B) Analysis of spontaneous SCR in the chromosomal direct-repeat system his3-D59::his3-D39 in WT, hst3D, ahc1D,
rtt109D, wss1D and rad52-C180A strains. A picture of the system and the expected His3+ recombination products are shown.
doi:10.1371/journal.pgen.1003237.g003

H3K56 Acetylation and Double-Strand Break Repair
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strongly reduced (15–39 fold) with respect to wild type in hst3D

and rtt109D mutants (Figure 3B). The ahc1D mutation, affected in

acetylation of different residues in transcription, has a diminished

effect (14-fold), as it is also the case of wss1D (19-fold). The

observation that these two mutants show a less severe phenotype in

this system compared to the TINV system could be explained by

the lower frequency of spontaneous events versus HO-induced

ones, by the possibility that a fraction of spontaneous SCR events

might not be initiated by DSBs but by ssDNA gaps or by the fact

that genetically detected recombinants can also result from non-

SCR events in the plasmid system. Interestingly, and consistent

with a specific role in SCR observed at the physical level (Figure 2),

the rad52-C180A mutant showed a strong decrease in spontaneous

unequal SCR in the his3D59-his3D39 chromosomal repeat system

(26-fold), while it is proficient in spontaneous recombination

between homologs [15].

Histone H3K56 acetylation controls the choice of DSB
repair template
Having identified several genes affecting chromatin remodeling,

and in particular histone H3 acetylation, as important in SCR we

decided to further explore the role of Histone H3 acetylation in

SCR. As Hst3 is redundant with Hst4, we asked whether hst4D by

itself and in combination with hst3D had a similar effect in SCR.

Genetic analysis revealed that whereas hst4D decreased SCR

intrachromosomal recombination 9-fold and the double hst3D

hst4D 70-fold (Figure 4), plasmid-chromosome recombination was

less affected by both mutations and to similar levels in single and

double mutant combinations (8–13 fold). Physical analyses

revealed that both hst3D and hst4D decreased SCR, confirming

that both Hst3 and Hst4 are required for SCR, their function

being redundant as deduced from the higher SCR defect of the

double hst3D hst4D mutants (Figure 5A).

Next we asked whether the H3K56 acetylation state of

chromatin plays a key role in SCR. Physical analysis of mutants

H3K56A, H3K56R and H3K56Q, in which Lys56 was mutated to

Ala and Asp, which mimic non-acetylated histone, and to Gln,

which mimics hyper-acetylated histone [6], respectively, revealed

that the three mutations impair SCR, the impact of H3K56Q being

the weakest (Figure 5B). These results demonstrate that the

acetylation state of H3K56 controls DSB repair by SCR, in

agreement with the phenotypes of rtt109D, hst3D and hst4Dmutants

(Figure 3, Figure 4, Figure 5). Consistently, these mutants, and in

particular H3K56R, are sensitive to replicative stress and DNA

breakage inducing agents such as HU, MMS (Figure S5; [24] or

camptothecin [6].

Alternative Rad51 and Pol32-dependent SCR
mechanisms in the absence of H3K56 deacetylation
Spontaneous Rad52 foci accumulation and recombination were

enhanced in hst3D, hst4D and synergistically in hst3D hst4Dmutants

as well as H3K56A, H3K56Q and H3K56Rmutants confirming that

all mutations cause genome instability (Figure 6). The weaker

effect in hst3D and hst4D single mutants corroborates a redundant

role of these two sirtuins. Spontaneous recombination was also

increased in hst3D cells and not in hst4D (Figure 7), implying some

functional differences between the two sirtuins consistent with

other reported phenotypes [7]. Genome instability phenotypes are

possibly due to the role of H3K56 modification in nucleosome

assembly following DNA replication and DNA repair. Similarly,

the rad52-C180A mutant shows no effect or a slight spontaneous

hyperrecombination phenotype, consistent with previously pub-

lished data for spontaneous recombination between homologs

[15].

Interestingly, hst3D hst4D double mutants are synthetic lethal

with rad52D but not with other DSB repair mutations such as

rad51D [24]. Hyper-recombinant rad3-102 cells, in which replica-

tion-born DSBs have been shown to accumulate, share a similar

pattern of synthetic lethality with rad52D and MRX deletion but

not with rad51D [25]. It is possible that this similarity is due to the

formation of replication-born DSBs, which are repaired by

Rad52/MRX-dependent HR that can be completed by two

different pathways, one dependent on Rad51, the other on the

Pol32 subunit of the replicative Polh [25], which suggests a BIR-

type of DSB repair [26]. Here we show that indeed hst3D hst4D

double mutants are inviable or very sick in the absence of Rad51 if

Pol32 is ablated (Figure 8). Therefore, H3K56 acetylation/

deacetylation dynamics is critical to channel repair of replica-

tion-born DSBs into SCR as well as to prevent replication fork

breakage that would make HR essential to reconstitute the fork by

Figure 4. Effect of H3K56 acetylation/deacetylation on genetic SCR. Genetic analysis of unequal SCR and plasmid-chromosome Leu+
recombination events after 5 hr of HO activation in isogenic wild-type (WS), hst3D, hst4D and hst3D hst4D strains.
doi:10.1371/journal.pgen.1003237.g004
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two alternative Rad52- and MRX-dependent pathways of repair

with a differential dependency on Rad51 or Pol32.

Discussion

We identified a number of proteins with a specific role in SCR

that include Wss1, a SUMO or Ub-SUMO protease, and several

proteins involved in chromatin remodeling, as Ahc1 (structural

subunit of ADA histone acetyltransferase complex) and Hst3 or

Rtt109, involved in acetylation/deacetylation of histone H3 lysine

K56 (H3K56). These functions are necessary for the repair of

replication-born DSBs by SCR. Mutations in the histone H3K56

residue to A, R and Q reveal that H3K56 acetylation/

deacetylation is critical to promote SCR. This is the first evidence

that chromatin marks can be used for the choice of repair template

as a mechanism to warrant genome integrity, uncovering new

functions for chromatin remodeling in genome dynamics. In

addition, our study shows that Rad52 has specific residues with a

key role in SCR but little or no impact on DSB repair via HR

between homolog chromosomes, as deduced from the analysis of

the rad52-C180A mutant.

The role for the SUMO or Ub-SUMO protease Wss1 in SCR

[16] is particularly intriguing, given the known relevance of

SUMOylation in different DSB repair pathways in yeast and

mammals [27]; reviewed in [28–30], suggesting that SUMOyla-

tion may act at various steps and via different protein targets.

Interestingly, a role for the Smc5-Smc6 complex containinig the

Mms21/Nse2 SUMO ligase activity has been reported in SCR,

even though the role of SUMOylation in this particular case has

not been defined [31,32]. It is also worth noting that Rad52 is

indeed a target of SUMOylation that affects its DNA repair ability

[33,34].

Irc4, Irc9 and Irc19 are new proteins involved in SCR, as well

as Bud27 and Pdr10, two proteins involved in stress response. The

biochemical function of these proteins is yet unknown and further

investigation of them is required to define their role in SCR. Our

study also revealed that proteins involved in chromatin remodel-

ing, such as the Ahc1 and Ada2 subunits of the ADA histone

acetyl-transferase of the SAGA complex is important for SCR

[17]. One of the functions of SAGA is transcriptional, in particular

in transcription of RNA polII genes [35]. Perhaps these results

imply a possible interconnection between transcription and DNA

metabolism via a transcription-dependent chromatin remodeling,

which is an interesting possibility.

A major focus of this work has been on the role of histone

H3K56 acetylation/deacetylation in SCR. In S. cerevisiae acetyla-

tion of H3K56 (H3K56ac) occurs on newly synthesized histone H3

molecules by Rtt109 acetyl-transferase, facilitating their deposition

onto newly replicated DNA during S phase, but disappears rapidly

by the action of sirtuins Hst3 and Hst4 when cells enter G2/M

[6,7,36]. Their deposition also increases in response to DNA

damage in S phase [9,11]. Strains lacking an acetylatable histone

H3K56 show genetic instability and sensitivity to a subset of

genotoxic agents including camptothecin (CPT) [6,12]. This

phenotype is possibly due to a key role of this modification in

nucleosome assembly following DNA replication and DNA repair

[8,37]. Indeed, in agreement with our results implying a function

in SCR, it has been recently suggested that H3K56 acetylation in

nascent chromatin is important to complete the repair of DNA

lesions and/or DNA replication [38]. As with other mutations

affecting chromatin assembly, hyper-recombination can be

explained by defective replication fork progression that would

lead to DNA breaks (see [39]).

We show that hst3 and hst4 mutations specifically impair SCR.

Given the redundancy of the two deacetylases, the synergistic

effect of the mutations in the accumulation of Rad52 foci and the

defect in SCR demonstrates that histone H3 deacetylation is

Figure 5. Effect of H3K56 acetylation/deacetylation on molecular SCR. (A) Physical analysis of SCR in isogenic wild-type (WS), hst3D, hst4D
and hst3D hst4D strains after different times of HO induction (B) Physical analysis of SCR in isogenic wild-type, H3K56R and H3K56Q strains. Other
details as in Figure 1.
doi:10.1371/journal.pgen.1003237.g005

Figure 6. H3K56 acetylation increases DNA damage. Rad52 foci in different mutants affected in the histone H3K56 acetylation/deacetylation
pattern. Average and standard deviation of two independent experiments are shown.
doi:10.1371/journal.pgen.1003237.g006

H3K56 Acetylation and Double-Strand Break Repair
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critical in SCR and genome stability. Furthermore, the analysis of

specific A, R and Q mutations of H3K56 that mimic either hyper-

acetylation or deacetylation strengthens the notion that this mark

is important for efficient SCR and for preventing genome

instability. The relevance of histone H3K56 acetylation/deacety-

lation dynamics in genome instability has also been reported in

mammalian cells for p300/CBP H3K56 acetyl-transferase and

SIRT1 deacetylase [9,11]. We propose that the histone H3K56

acetylation/deacetylation profile serves as a cell marker to favor

SCR versus other mechanisms of repair of replication-born DSBs.

It is worth noting that the effect of asf1D, which also impairs

H3K56 acetylation [36], may be different as asf1D mutants are

weakly affected in SCR at the early time points of the reaction

[40], likely due to its function in other processes such as the DNA

damage checkpoint [41].

One of the known functions of histone H3K56 acetylation/

deacetylation in chromatin dynamics during replication [6,8,24] is

that acetylated histone H3 is incorporated into newly synthesized

chromatin behind the replication fork, whereas deacetylated ‘‘old’’

histones are ahead of the fork. Here, we propose a model, depicted

in Figure 9, to explain its role in favoring the choice for the sister as

the preferential repair template for replication-generated DSBs.

The preference for the sister for DSB repair is lost if H3K56 is

deacetylated on both sides of the fork or hyper-acetylated.

Deacetylated chromatin is involved in silencing and chromatin

condensation [6,42,43], which may also explain the decreased

efficiency of repair observed here due to limited accessibility of

DNA repair proteins. It could also be that absence of H3K56

acetylation causes a defect in nucleosome assembly responsible for

an impairment of SCR or negatively affects loading of cohesins,

which has been shown to be required for SCR [4]. Nevertheless,

the fact that H3K56 acetylation causes similar effects on SCR than

H3K56 deacetylation or the rad52-C180A mutation (see below)

makes rather unlikely that cohesin loading is the major cause of

the SCR impairment. Therefore, the asymmetry of the acetylation

state around the fork may facilitate the repair of a broken

chromatid with its sister.

The intimate link of repair with chromatin modifications

suggests that particular recombination proteins may have a

differential capacity to interact with differently modified histones.

In this sense, the existence of specific rad52 alleles, known as class

C mutants, which are defective in the repair of DSBs but proficient

in spontaneous recombination (Figure 7) [15,44], is particularly

intriguing. In this work we demonstrate, using the rad52-C180A

allele, that this phenotype is explained by a defect in SCR (Figure 2

and Figure 3). It would be interesting to see whether specific

mutations in the early acting HR protein Rad52 might impair its

ability to recognize different states of acetylated/deacetylated

Figure 7. Effect of changes in the state of H3K56 acetylation on spontaneous recombination. Analysis of spontaneous intrachromosomal
and plasmid-chromosome recombination in isogenic wild-type (WS), hst3D, hst4D, hst4D hst3D and rad52-C180A strains.
doi:10.1371/journal.pgen.1003237.g007

Figure 8. Inviability/synthetic growth defect of histone H3K56 deacetylation mutants in the absence of Rad51 and Pol32. Tetrad
analysis of a rad51D hst4D hst3D x pol32D cross. Squares indicate quadruple mutants, which fail to grow.
doi:10.1371/journal.pgen.1003237.g008
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histone H3, therefore randomizing the template choice. Never-

theless, this is just one possibility as it is also plausible that a

number of Rad52 residues, likely those identified in the class C

alleles, play a role in favoring the sister as the main repair template

choice by either facilitating interaction with some components of

the sister such as particular histone residues, cohesins, etc. which

would be worth investigating in the future.

Finally, our work provides genetic evidence for two HR

pathways to reconstitute replication forks via SCR. We find that

hst3D hst4D mutants are lethal with rad52D but not with rad51D

unless the Pol32 subunit of Polh is ablated ([24]; Figure 8). The

same is observed in rad3-102 mutants that accumulate single-

strand DNA nicks that precede DSBs occurring by replication fork

breakage [25]. These observations support a model of two mitotic

Rad52/MRX-dependent mechanisms of SCR for the repair of

replication-born DSBs, one being Rad51-dependent and the other

Pol32-dependent [45], even though a synergistic effect caused by a

masked role of Po32 in replication cannot be discarded.

In summary, our work provides new insights into SCR as a

major mechanism of repair of replication-born DNA breaks. It

shows the existence of factors and specific protein residues that

play a role in the choice of the sister chromatid as the DNA repair

template. These functions include the state of histone H3 K56

acetylation/deacetylation or specific DSB repair proteins acting at

the early steps of homologous recombination such as Rad52.

Importantly, our study demonstrates that failure to repair a

replication-born DSB with the sister can lead to genome

instability, raising new questions about the mechanisms by which

DSB repair proteins and chromatin interact to favor one DSB

repair pathway versus another.

Materials and Methods

Strains and plasmids
Yeast strains used in this work are listed in Table S1. All strains

are in the W303 (WS strains) background with the only exception

Figure 9. Model to explain how the state of acetylation/deacetylation of H3K56 influences SCR. Newly incorporated Histone H3 in the
newly born sister-chromatids are acetylated, whereas the unreplicated DNA contains deacetylated histone H3. In the absence of K56 acetylation or
when all histones H3 are acetylated, the recombination apparatus does not efficiently recognize the sister and the SCR preference is lost.
doi:10.1371/journal.pgen.1003237.g009
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of ada2D (BY4741 background). Plasmids pRS316TINV and

pCM189-L2HOr containing a 24-bp mini-HO site at the EcoRI

internal site of LEU2 were described previously [46]. Plasmid

pWJ1344 was used for analysis of Rad52-GFP foci as described

[47].

Physical analysis of sister chromatid recombination
Sister chromatid recombination assays were carried out

essentially as described [3]. Briefly, cells carrying pRS316-TINV

were grown to mid-log phase in SC-Ura 3% glycerol 2% lactate;

then, galactose (2%) was added to induce HO expression. Samples

were collected at different time points and DNA was purified,

digested with SpeI-XhoI, and analyzed by Southern using Hybond

N+ (GE Healthcare) membranes. A 32P-labeled 0.22-kb LEU2

probe was obtained by PCR using the primers 59-GTTCC-

ACTTCCAGATGAGGC-39 and 59-TTAGCAAATTGTGGC-

TTGA-39. Quantification of DSBs (1.4-kb plus 2.4-kb bands) and

SCR (4.7-kb band) relative to the total DNA was calculated with a

Fuji FLA-5100. Each experiment was done in triplicate, but one

representative is shown.

Genetic and molecular analysis of recombination
The analysis of HO-mediated DSB recombination both with

TINV and plasmid-chromosome system leu2HOr/leu2-k was

performed as described previously [46,48]. Briefly, mid-log phase

yeast cells carrying the HO gene under the control of GAL1 were

obtained from SC-3% glycerol-2% lactate liquid cultures and split

into two halves. One-half was maintained in liquid SC-3%

glycerol/2% lactate + dox (no HO expression) and the other was

cultured in SC-2% galactose + dox for 5 hr (HO expression).

Recombinants were selected on SC-leu-ura containing 2%

glucose. The chromosomal direct-repeat system his3-D59::his3-
D39 [23] was used to analyze unequal sister chromatid recombi-

nation. In this system, recombinants were selected on SC-His

containing 2% glucose. In all cases, recombination frequencies are

the median values of fluctuation tests performed with six

independent yeast colonies each, as previously described [46].

For every genotype, fluctuation tests were repeated three times

with three different yeast transformants. The final frequency

shown for each genotype corresponds to the mean value of the

three median frequencies obtained from the tests.

Miscellanea
For the analysis of HU and MMS sensitivity, cells were grown to

mid-logarithmic phase in YPD to a final concentration of 0.56107

cells/ml and 10-fold serial dilutions were spotted onto YPD plates

containing different concentrations of MMS or HU at 30uC.

Rad52 foci were determined in S/G2 cells as described [49].

Supporting Information

Figure S1 Representative Southerns of different kinetic exper-

iments of DSB repair via SCR in isogenic wild-type (W303) and

hiperecombinogenic mutants at 0 h, 3 h, 6 h and 9 h after HO

induction. Asterisks mark bands corresponding to endogenous

LEU2 gene.

(TIF)

Figure S2 Quantification of the percentage of DSBs generated

in pRS316-TINV at different times after HO induction in 2%

galactose from the experiments of Figure S1.

(TIF)

Figure S3 Quantification of the percentage of SCR intermedi-

ates generated in pRS316-TINV at different times after HO

induction in 2% galactose from the experiments of Figure S1.

(TIF)

Figure S4 Physical analysis of SCR in isogenic wild-type and

ada2D strains. Others details as in Figure 1 and Figure 3.

(TIF)

Figure S5 Effect of the changes in the state of H3K56

acetylation in resistence to genotoxic agents. Effect of H3K56

acetylation/deacetylation mutants in the sensitivity to HU and

MMS of isogenic wild-type (WS), hst3D, hst4D, hst3D hst4D and

H3K56R, H3K56A, H3K56Q strains. Growth of 10-fold serial

dilutions of mid-log phase cultures of the WT and isogenic mutant

strains (WS) and a rad52D control is shown on YPD plates

containing HU or MMS is shown.

(TIF)

Table S1 Strains used in this study.

(DOC)

Acknowledgments

We would like to thank A. Verreault, Ulf Mortensen, and M. Fasullo for

reagents and F. Cortés-Ledesma for critical reading of the manuscript.

Author Contributions

Conceived and designed the experiments: SM-G SJ RR AA. Performed the

experiments: SM-G SJ. Analyzed the data: SM-G SJ RR AA. Wrote the

paper: SM-G AA.

References

1. Kadyk LC, Hartwell LH (1992) Sister chromatids are preferred over homologs

as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 132:

387–402.

2. Johnson RD, Jasin M (2000) Sister chromatid gene conversion is a prominent

double-strand break repair pathway in mammalian cells. EMBO J 19: 3398–3407.

3. Gonzalez-Barrera S, Cortes-Ledesma F, Wellinger RE, Aguilera A (2003) Equal

sister chromatid exchange is a major mechanism of double-strand break repair

in yeast. Mol Cell 11: 1661–1671.

4. Cortes-Ledesma F, Aguilera A (2006) Double-strand breaks arising by

replication through a nick are repaired by cohesin-dependent sister-chromatid

exchange. EMBO Rep 7: 919–926.

5. Gunjan A, Paik J, Verreault A (2005) Regulation of histone synthesis and

nucleosome assembly. Biochimie 87: 625–635.

6. Masumoto H, Hawke D, Kobayashi R, Verreault A (2005) A role for cell-cycle-

regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature

436: 294–298.

7. Maas NL, Miller KM, DeFazio LG, Toczyski DP (2006) Cell cycle and

checkpoint regulation of histone H3 K56 acetylation by Hst3 and Hst4. Mol Cell

23: 109–119.

8. Chen CC, Carson JJ, Feser J, Tamburini B, Zabaronick S, et al. (2008)

Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and

signals for the completion of repair. Cell 134: 231–243.

9. Das C, Lucia MS, Hansen KC, Tyler JK (2009) CBP/p300-mediated

acetylation of histone H3 on lysine 56. Nature 459: 113–117.

10. Tjeertes JV, Miller KM, Jackson SP (2009) Screen for DNA-damage-responsive

histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO J

28: 1878–1889.

11. Yuan J, Pu M, Zhang Z, Lou Z (2009) Histone H3-K56 acetylation is important

for genomic stability in mammals. Cell Cycle 8: 1747–1753.

12. Ozdemir A, Spicuglia S, Lasonder E, Vermeulen M, Campsteijn C, et al. (2005)

Characterization of lysine 56 of histone H3 as an acetylation site in

Saccharomyces cerevisiae. J Biol Chem 280: 25949–25952.

13. Alvaro D, Lisby M, Rothstein R (2007) Genome-wide analysis of Rad52 foci

reveals diverse mechanisms impacting recombination. PLoS Genet 3: e228.

doi:10.1371/journal.pgen.0030228

14. Malone RE, Montelone BA, Edwards C, Carney K, Hoekstra MF (1988) A

reexamination of the role of the RAD52 gene in spontaneous mitotic

recombination. Curr Genet 14: 211–223.

H3K56 Acetylation and Double-Strand Break Repair

PLOS Genetics | www.plosgenetics.org 11 January 2013 | Volume 9 | Issue 1 | e1003237



15. Lettier G, Feng Q, de Mayolo AA, Erdeniz N, Reid RJ, et al. (2006) The role of

DNA double-strand breaks in spontaneous homologous recombination in S.
cerevisiae. PLoS Genet 2: e194. doi:10.1371/journal.pgen.0030194

16. Mullen JR, Chen CF, Brill SJ (2010) Wss1 is a SUMO-dependent isopeptidase
that interacts genetically with the Slx5-Slx8 SUMO-targeted ubiquitin ligase.

Mol Cell Biol 30: 3737–3748.

17. Eberharter A, Sterner DE, Schieltz D, Hassan A, Yates JR, 3rd, et al. (1999) The

ADA complex is a distinct histone acetyltransferase complex in Saccharomyces
cerevisiae. Mol Cell Biol 19: 6621–6631.

18. Cortes-Ledesma F, Tous C, Aguilera A (2007) Different genetic requirements for
repair of replication-born double-strand breaks by sister-chromatid recombina-

tion and break-induced replication. Nucleic Acids Res 35: 6560–6570.

19. Deplazes A, Mockli N, Luke B, Auerbach D, Peter M (2009) Yeast Uri1p

promotes translation initiation and may provide a link to cotranslational quality
control. EMBO J 28: 1429–1441.

20. Rockwell NC, Wolfger H, Kuchler K, Thorner J (2009) ABC transporter Pdr10
regulates the membrane microenvironment of Pdr12 in Saccharomyces

cerevisiae. J Membr Biol 229: 27–52.

21. Horiuchi J, Silverman N, Marcus GA, Guarente L (1995) ADA3, a putative

transcriptional adaptor, consists of two separable domains and interacts with
ADA2 and GCN5 in a trimeric complex. Mol Cell Biol 15: 1203–1209.

22. Xu F, Zhang K, Grunstein M (2005) Acetylation in histone H3 globular domain
regulates gene expression in yeast. Cell 121: 375–385.

23. Fasullo MT, Davis RW (1987) Recombinational substrates designed to study

recombination between unique and repetitive sequences in vivo. Proc Natl Acad
Sci U S A 84: 6215–6219.

24. Celic I, Verreault A, Boeke JD (2008) Histone H3 K56 hyperacetylation
perturbs replisomes and causes DNA damage. Genetics 179: 1769–1784.

25. Moriel-Carretero M, Aguilera A (2010a) A postincision-deficient TFIIH causes
replication fork breakage and uncovers alternative Rad51- or Pol32-mediated

restart mechanisms. Mol Cell 37: 690–701.

26. Lydeard JR, Jain S, Yamaguchi M, Haber JE (2007) Break-induced replication

and telomerase-independent telomere maintenance require Pol32. Nature 448:
820–823.

27. Torres-Rosell J, Sunjevaric I, De Piccoli G, Sacher M, Eckert-Boulet N, et al.
(2007) The Smc5-Smc6 complex and SUMO modification of Rad52 regulates

recombinational repair at the ribosomal gene locus. Nat Cell Biol 9: 923–931.

28. Palancade B, Doye V (2008) Sumoylating and desumoylating enzymes at

nuclear pores: underpinning their unexpected duties? Trends Cell Biol 18: 174–
183.

29. Galanty Y, Belotserkovskaya R, Coates J, Polo S, Miller KM, et al. (2009)
Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA

double-strand breaks. Nature 462: 935–939.

30. Kalocsay M, Hiller NJ, Jentsch S (2009) Chromosome-wide Rad51 spreading

and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent
DNA double-strand break. Mol Cell 33: 335–343.

31. De Piccoli G, Cortes-Ledesma F, Ira G, Torres-Rosell J, Uhle S, et al. (2006)
Smc5-Smc6 mediate DNA double-strand-break repair by promoting sister-

chromatid recombination. Nat Cell Biol 8: 1032–1034.

32. Potts PR, Porteus MH, Yu H (2006) Human SMC5/6 complex promotes sister
chromatid homologous recombination by recruiting the SMC1/3 cohesin
complex to double-strand breaks. EMBO J 25: 3377–3388.

33. Sacher M, Pfander B, Hoege C, Jentsch S (2006) Control of Rad52
recombination activity by double-strand break-induced SUMO modification.
Nat Cell Biol 8: 1284–1290.

34. Altmannova V, Eckert-Boulet N, Arneric M, Kolesar P, Chaloupkova R, et al.
Rad52 SUMOylation affects the efficiency of the DNA repair. Nucleic Acids Res
38: 4708–4721.

35. Suganuma T, Workman JL Signals and combinatorial functions of histone
modifications. Annu Rev Biochem 80: 473–499.

36. Recht J, Tsubota T, Tanny JC, Diaz RL, Berger JM, et al. (2006) Histone
chaperone Asf1 is required for histone H3 lysine 56 acetylation, a modification
associated with S phase in mitosis and meiosis. Proc Natl Acad Sci U S A 103:
6988–6993.

37. Garcia BA, Hake SB, Diaz RL, Kauer M, Morris SA, et al. (2007) Organismal
differences in post-translational modifications in histones H3 and H4. J Biol
Chem 282: 7641–7655.

38. Wurtele H, Kaiser GS, Bacal J, St-Hilaire E, Lee EH, et al. (2012) Histone H3
lysine 56 acetylation and the response to DNA replication fork damage. Mol Cell
Biol 32:154–72.

39. Aguilera A, Gomez-Gonzalez B (2008) Genome instability: a mechanistic view of
its causes and consequences. Nat Rev Genet 9: 204–217.

40. Prado F, Cortes-Ledesma F, Aguilera A (2004) The absence of the yeast
chromatin assembly factor Asf1 increases genomic instability and sister
chromatid exchange. EMBO Rep 5: 497–502.

41. Emili A, Schieltz DM, Yates JR, 3rd, Hartwell LH (2001) Dynamic interaction
of DNA damage checkpoint protein Rad53 with chromatin assembly factor
Asf1. Mol Cell 7: 13–20.

42. Driscoll R, Hudson A, Jackson SP (2007) Yeast Rtt109 promotes genome
stability by acetylating histone H3 on lysine 56. Science 315: 649–652.

43. Yang B, Miller A, Kirchmaier AL (2008) HST3/HST4-dependent deacetylation
of lysine 56 of histone H3 in silent chromatin. Mol Biol Cell 19: 4993–5005.

44. de Mayolo AA, Sunjevaric I, Reid R, Mortensen UH, Rothstein R, et al. The
rad52-Y66A allele alters the choice of donor template during spontaneous
chromosomal recombination. DNA Repair (Amst) 9: 23–32.

45. Moriel-Carretero M, Aguilera A (2010b) Replication fork breakage and re-start:
New insights into Rad3/XPD-associated deficiencies. Cell Cycle 9: 2958–2962.

46. Gonzalez-Barrera S, Garcia-Rubio M, Aguilera A (2002) Transcription and
double-strand breaks induce similar mitotic recombination events in Saccharo-
myces cerevisiae. Genetics 162: 603–614.

47. Lisby M, Rothstein R, Mortensen UH (2001) Rad52 forms DNA repair and
recombination centers during S phase. Proc Natl Acad Sci U S A 98: 8276–
8282.

48. Garcia-Rubio M, Huertas P, Gonzalez-Barrera S, Aguilera A (2003)
Recombinogenic effects of DNA-damaging agents are synergistically increased
by transcription in Saccharomyces cerevisiae. New insights into transcription-
associated recombination. Genetics 165: 457–466.

49. Lisby M, Mortensen UH, Rothstein R (2003) Colocalization of multiple DNA
double-strand breaks at a single Rad52 repair centre. Nat Cell Biol 5: 572–577.

H3K56 Acetylation and Double-Strand Break Repair

PLOS Genetics | www.plosgenetics.org 12 January 2013 | Volume 9 | Issue 1 | e1003237


