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ABSTRACT 

Histone lysine methyltransferases (KMT) and demethylases (KDM) underpin gene-

regulation. Here we demonstrate that variants causing haploinsufficiency of KMTs and 

KDMs are frequently encountered in individuals with developmental disorders. Using a 

combination of human variation databases and existing animal models we determine 22 

KMTs and KDMs as additional candidates for dominantly inherited developmental disorders. 

We show that KMTs and KDMs that are associated with, or are candidates for, dominant 

developmental disorders tend to have higher level of transcription, longer canonical 

transcripts, more interactors and a higher number and types of post-translational 

modifications than other KMT/KDMs. We provide evidence to firmly associate KMT2C, 

ASH1L and KMT5B haploinsufficiency with dominant developmental disorders. While 

KMT2C or ASH1L haploinsufficiency results in predominantly neurodevelopmental 

phenotype with occasional physical anomalies, KMT5B mutations cause an overgrowth 

syndrome with intellectual disability. We further expand the phenotypic spectrum of KMT2B 

related disorders and show that some individuals may have severe developmental delay 

without dystonia at least till mid-childhood. Additionally, we describe a recessive histone 

lysine methylation defect caused by homozygous or compound heterozygous KDM5B 

variants resulting in a recognizable syndrome with developmental delay, facial dysmorphism 

and camptodactyly. Collectively, these results emphasize the significance of histone lysine 

methylation in normal human development and the importance of this process in human 

developmental disorders. Our results demonstrate that systematic clinically-oriented 

pathway-based analysis of genomic data can accelerate the discovery of rare genetic 

disorders.  
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MAIN TEXT 

Post-translational methylation and demethylation of lysine residues on histone tails is a key 

dynamic chromatin modification that is mediated by specific methyltransferases (KMTs) and 

demethylases (KDMs) and underpins gene regulation and several cellular processes1; 2. 

Twenty-seven KMT and 24 KDM encoding genes, classified into eight groups each, are 

known (Table S1) 3. Of these, heterozygous variants in seven KMT and four KDM genes are 

associated with autosomal and X-linked dominant inherited human developmental disorders 

(DDs) in the Online Mendelian Inheritance in Man database (OMIM) (Table S1)4-18. 

 

We reviewed published disease-causing variants in KMTs and KDMs in the Human Gene 

Mutation Database19 and deduced that ~75% of these were predicted to be heterozygous 

protein truncating variants (PTVs), suggesting that haploinsufficiency is the predominant 

mechanism for the associated diseases (Figure 1A) (Table S2). This is consistent with 

previous studies that have shown a high prevalence of de novo (DN) PTVs in dominant 

DDs20-22. We reviewed phenotypes of the available mouse models for KMT and KDM 

orthologs (Table S1)23 and found that heterozygous mouse models for six of the 11 known 

dominant DD-associated KMTs/KDMs and 12 of the 40 of remaining KMTs/KDMs 

demonstrate anomalies. We reviewed phenotypes of the available zebrafish knockdown (KD) 

models for KMT and KDM orthologs (Table S1)24. Anomalies were observed in KD of seven 

of the 11 known dominant DD-associated KMTs/KDMs and 18 of the 40 of remaining 

KMTs/KDMs. The human mutational landscape of KMTs/KDMs and the information from 

animal models led us to hypothesize that germline heterozygous PTVs in additional 

KMTs/KDMs may underlie as yet unknown DDs.  
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For each of the 51 KMTs/KDMs, we compiled selected indices of predicted intolerance to 

loss of function (LoF) pathogenic variants (Table S1). The pLI (probability of being LoF 

Intolerant) scores obtained from ExAC Browser25 were found to be within a narrow range of 

0.99-1.0 for KMTs and KDMs already linked with dominant human DDs suggesting a high 

reliability. The ranges of Residual Variation Intolerance score (0.06-51.92) and 

Haploinsufficiency Index (3.06-62.96) scores for these genes were broad26; 27. We used a pLI 

score25 cut-off of >0.9 to determine additional 11 KMTs and 11 KDMs as candidates for as 

yet unknown dominant human DDs (Figure 1B).  

 

We examined the data from 4,293 trios who underwent exome sequencing as part of the 

Deciphering Developmental Disorders (DDD) study22. All these procedures were in 

accordance with the ethical standards (Multi-Centre Research Ethics Committee approval 

10/H0305/83 and GEN/284/12) and informed consent was obtained from all the participants. 

The previously described pipeline was used to identify rare high-quality and possibly 

deleterious variants in our list of 51 KMTs/KDMs. Rare variants were defined as those with 

minor allele frequencies of <0.001 (for de novo, X-linked and dominant heterozygous 

inheritances) or <0.01 (for compound heterozygous, recessive homozygous) in the Exome 

Aggregation Consortium 25 (ExAC, Version 0.3.1), the 1000 Genomes Project (1K-G) 28, 

Ensembl version 80-GRCh37, NHLBI-GO Exome Sequencing Project (ESP) 29, and UK10K 

30. High quality variants were defined with read depth of >20 and a genotype quality score of 

>20. Truncating or missense variants in canonical transcripts were defined to be possibly 

deleterious. In total, we identified 218 probands with high-quality rare variants in the 51 

KMTs/KDMs (Figure S1) (Tables S3, S4 and S5). Of these, 65 (~1.5% of all the probands) 

affected individuals had likely causal monoallelic LoF variants (Figure 1C) (Table S3) in the 

11 KMTs/KDMs already associated with dominant DDs. Of note, the combined coding size 
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of the canonical transcripts of these 11 genes is ~0.3% out of the total human exome size 

(0.092/30 Mb)31(Figure 1C). Hence, this is an important group of genes in rare undiagnosed 

developmental disorders. Fifty-two out of these 218 affected individuals had likely benign 

variants or variants of uncertain significance in these 11 KMTs/KDMs (Figure 1C) (Table 

S4). 22; 31-33  

 

One hundred and two of 218 probands had 120 rare high-quality call genetic variants in 

KMTs/KDMs not yet firmly associated with DDs (Table S5). Of these, 83 variants were in 

our 22 candidates for dominant DDs, including 9 PTVs and 16 DN protein-altering variants 

(PAV) (Table S5). Chi-square test revealed a 1.87-fold enrichment (95% Confidence Interval 

[CI]=0.93-3.76; p=0.072) in the frequency of PTVs in these 22 genes in our cohort against 

the data from ExAC25 (Table S6). Similarly, a 4.85-fold enrichment of DN PAVs 

(95%CI=1.78-13.26; p =0.00065) was observed in these 22 genes in our cohort against the 

entries marked as ‘controls’ in “denovo-db”34 (Table S6).This observation supported our 

hypothesis that germline heterozygous PTVs in additional KMTs/KDMs may underlie as yet 

unknown dominant DDs.  

 

We then focused on DN PTVs in our curated list of candidates KMT for dominant DD 

because these variants are highly likely to be causal (equivalent to category 1 in the American 

College of Medical Genetics and Genomics guidelines35). We interrogated the vcf files of 

each trio through VarSeq® version 1.3.4 (Golden Helix, Inc., Bozeman, MT) to ensure that 

the probands did not carry additional causal pathogenic variants in other genes. Collectively, 

we identified seven variants that fulfilled these criteria. (Table 1) (Table S5). Specifically, 

these included two DN PTVs each in ASH1L (OMIM #607999), KMT2C (OMIM # 606833), 

KMT5B (formerly known as SUV420H1) (OMIM # 610881) and one in KMT2B (OMIM # 
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606834) (Figure 2). Chi-square test revealed a 5.51-fold enrichment (95% Confidence 

Interval [CI]=2.3-13.2; p=0.0000165) in the frequency of PTVs in these four genes in our 

cohort against the data from ExAC25. Fisher’s exact test revealed a 34.87-fold enrichment of 

DN PAVs (95%CI=2.0545 to 591.9943; p=0.000039) in these four genes in our cohort 

against the entries marked as ‘controls’ in “denovo-db”34, further supporting a high likelihood 

of causality. Where possible, variants were confirmed by Sanger sequencing (Table S8) 

(Figure S2). Importantly, rare variants in these genes have been previously reported in several 

cases-controls cohorts of individuals with autism, ID, bipolar disorder and congenital heart 

anomalies but their causality has not been confirmed and the associated phenotypes have not 

been fully described20; 36-43. Detailed phenotype information of the affected individuals was, 

therefore, collected (Table 1) (Figure 3) (Supplemental Note: case reports).  

 

Of note, we also detected (a) non-truncating DN PAVs in other candidate KMTs and KDMs 

for dominant DDs (DOT1L, KDM3A, PRDM2, SETDB1). There is insufficient evidence for 

causality of PAVs in these genes at present; (b) DN PTVs in non-candidate KMTs and 

KDMs for dominant DDs (KDM5B and SETD1B). PTVs in these genes could be coincidental 

or they could be phenotype modifiers in some affected individuals or they could be non-

penetrant in some unaffected individuals in the general population; and (c) PTVs in other 

candidate KMTs and KDMs for dominant DDs (KDM3A and PRDM2) inherited from a 

parent who did not share the proband’s phenotype. This observation suggests that these PTVs 

may have incomplete penetrance or that these genes are not haploinsufficiency intolerant, 

unlike as predicted by their pLI scores (Figure 2). Overall, further studies are needed to 

determine the pathogenicity of heterozygous PAVs and PTVs in DOT1L, KDM3A, KDM5B, 

PRDM2, SETDB1 and SETD1B. 
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Next, we interrogated the data from >200 individuals from the CAUSES study of children 

with developmental disorders44 for potentially pathogenic variants in KMT2B, KMT2C and 

KMT5B, and identified one additional individual with a DN PTV in KMT2C (Table 1; Figure 

2).  

 

Copy number variants (CNVs) can be informative in dissecting the molecular basis of genetic 

disorders45-47. We, therefore, examined the DECIPHER database48 with >41,800 individuals 

with CNVs, and identified 71 deletions encompassing one of the four genes - ASH1L, 

KMT2B, KMT2C or KMT5B (Table S7). Where possible, additional detailed phenotype 

information of the affected individuals was collected (Table 1) (Figure 3) (Supplemental 

Note: case reports). Of note, only individuals whose deletions did not include other possibly 

causal DD-related gene(s) were considered for further analysis.  

 

Collectively, we identified three individuals with DN KMT2C PTV and 41 deletions 

encompassing this gene (Tables 1, S5 and S7) (Figure 2 and 3). All affected individuals, for 

whom detailed clinical information was available, had severe developmental delay and ID 

(Table 1). KMT2C is a H3K4 methyltransferase49 that is highly expressed in the developing 

and adult human brain, specially in the cerebellum50; 51. It is interesting to note that individual 

3 has hypoplasia of the cerebellar vermis. In mice, a homozygous Kmt2c inframe deletion of 

exons 25 and 26 has been shown to result in partial embryonic lethality and prenatal and 

postnatal growth retardation52.  

 

 We identified two individuals with ASH1L PTVs and five deletions encompassing this gene 

(Table 1, S5 and S7) (Figure 2). All affected individuals, for whom detailed clinical 

information was available, displayed variable degrees of global developmental delay or ID, 
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seizures, hypotonia and aberrant behaviour (Table 1). ASH1L is a methyltransferase that 

catalyzes mono and di-methylation of H3K3653. ASH1L is highly expressed in both 

embryonic and adult human brains50; 51. Injection of ash1a morpholinos in zebrafish led to a 

reduction in the number of neurons produced in the epiphysis54. Heterozygous and 

homozygous knock-in mice expressing mutant Ash1l containing a short in-frame deletion 

within the catalytic SET domain display a range of skeletal anomalies55. Hypomorphic mice, 

with an exon 1 Ash1l gene trap outside the catalytic SET domain, have reduced levels of 

normal protein and display impaired fertility56. The heterozygous mice for a reporter-tagged 

deletion allele show impaired pupillary reflex and abnormal coat appearance23. 

 

 We identified two individuals with DN KMT5B PTVs and seven deletions encompassing this 

gene (Tables 1, S5 and S7) (Figure 2 and 3). All affected individuals, for whom detailed 

clinical information was available, had mild to moderate global developmental delay and ID, 

macrocephaly, tall stature and similar facial dysmorphism (Table 1). KMT5B is a H4K20 di- 

and tri- methyltransferase that promotes transcriptional repression57. KMT5B is highly 

expressed in both embryonic and adult human brains50; 51.  The Kmt5b-null mice die at 

embryonic stages, have decreased body length and weight58, whereas the heterozygous mice 

have decreased body weight and fat, and vertebral anomalies23. 

 

We identified one DN heterozygous frameshift and three missense KMT2B variants and 18 

deletions encompassing this gene (Tables 1, S5 and S7) (Figure 2). All but one of these 

individuals were recently reported in a study demonstrating PTVs and deletions in this gene 

associated with childhood-onset dystonia 28 (OMIM # 617284)59; 60. The only previously 

unpublished individual in this cohort is a girl (Table 1) with a de novo p.Leu604Profs*72 

frameshift variant and severe global developmental delay and additional features (Figure 3). 
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Importantly, in contrast with the previously described individuals, this girl did not show any 

evidence of dystonia by the age of 11 years, even with careful reverse phenotyping61. 

Interestingly, some of the previously reported individuals had normal development59; 60. Our 

findings broaden the phenotype of KMT2B variants and show that any combination of 

developmental delay and dystonia can result from heterozygous PTVs in this gene. KMT2B is 

highly expressed in both embryonic and adult human brains 50; 51. In adults, it is specifically 

high-expressed in pituitary, cerebellum and bladder50. Of note, the affected individual that we 

describe has growth hormone deficiency, abnormal gait, nystagmus and urinary incontinence. 

The Kmt2b KO mice die before stage E11.5 and display growth retardation, neural tube 

defects, pericardial effusion, abnormal heart looping, and head abnormalities, whereas the 

heterozygous mice exhibit fasting hyperinsulinemia, glucose intolerance and fatty liver 

disease62; 63.  

 

Next, we systematically explored the differences between the gene/protein-attributes and 

expression patterns between 33 KMTs/KDMs that are known/candidates for dominant DD 

and the other 18 KMTs/KDMs using the UniProtKB, GTEx and BrainSpan databases50; 51; 64. 

Mann-Whitney tests were performed with an exact p-value <0.05 considered as significant. 

Candidate/known dominant DD KMTs/KDMs had longer canonical transcripts, greater 

number of interactors and a significantly higher number and types of post-translational 

modifications (adjusted for protein length) (Figure 4) (Tables S9 and S10)64. These 

distinctions are maintained independently for both KMTs and KDMs. This observation is 

consistent with general properties of genes that are considered to be haploinsufficient (HI)27 

and suggests that candidate/known dominant DD KMTs/KDMs are likely to be key players 

performing multiple roles in embryogenesis. Similarly, the expression of candidate/known 

dominant DD KDMs was found to be significantly higher in almost all fetal brain structures 



 11 

and adult human tissues when compared to other KDMs (Tables S12 and S14) (Figure 

4F)50which agrees with previous observations regarding HI genes27. However, surprisingly 

we did not find a significant difference between the expression of the candidate/known 

dominant DD KMTs versus other KMTs in most human tissues. Exceptions were certain 

brain-areas where the candidate/known dominant DD KMTs are significantly highly 

expressed before the 10th post-conceptional week (Tables S11 and S13) (Figure 4F)51. Further 

studies will be needed to confirm these unexpected findings. One possibility is that the KMTs 

that were classified in this study as not being candidates for dominant DDs may be candidates 

for adult-onset phenotypes. Alternatively, these results may reflect technical limitations of 

large-scale gene expression experiments such as lack of cell-type level resolution.   

 

Lastly, we turned our focus to test the hypothesis that recessive disorders associated with 

biallelic variants in some KMTs/KDMs may exist. This hypothesis was based on our 

observation that five KMT and two KDM homozygous knockout mice are viable, but show 

multiple anomalies (Table S1). In the cohort of 4,293 subjects from the DDD study, we 

identified 27/102 probands with bi-allelic variants in KMTs/KDMs. On subsequent analyses, 

most of these were considered likely non-deleterious. However, one individual had bi-allelic 

homozygous KDM5B (OMIM #605393) PTVs (Table S5) (Figures 2 and 3) and severe global 

developmental delay (Table 1, Supplemental Note: case reports). Fisher’s exact test revealed 

a 96.89-fold enrichment of homozygous PTVs (95%CI= 3.95 to 2378.87; p=0.03) in KDM5B 

in our cohort against the data from gnomAD25. Additionally, no homozygous KDM5B 

knockout genotype was seen in 3,222 adults with high parental relatedness,65 and the 

knockout Kdm5b mice die prematurely due to respiratory failure, and display disorganized 

cranial nerves, defects in eye development, increased incidences of exencephaly, and skeletal 

anomalies 66. Next, we examined exome data from 5,332 additional individuals from the 
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DDD study and identified two further individuals with bi-allelic KDM5B PTVs and striking 

overlapping phenotype of severe global developmental delay, camptodactyly and overlapping 

facial dysmorphism (Table 1, Figures 2 and 3). Hence, bi-allelic KDM5B LoF variants cause 

a recessive DD. KDM5B is a H3K4 demethylase, which modulates RNA polymerase II 

initiation and elongation rates, and alternative splicing in embryonic stem cells67.  

 

Overall our results demonstrate the importance of defects in histone lysine methylation in 

human DDs. In particular, variants in six of eight KMT2 methyltransferases can now be 

considered to result in dominant DDs 5; 8; 14; 36; 43; 59; 60; 68-71. KMT2 genes encode enzymes that 

mono-, di- and/or trimethylate the H3K41; 72, and mark active promoters and enhancers73. Our 

observation emphasizes the significance of the correct dosage of KMT2 genes in normal 

development, despite their apparently redundant enzymatic function. Distinct phenotypes 

associated with variants in each of the KMT2 genes support their unique biological roles. 

Furthermore, the possibility of treating some of these conditions makes them highly relevant 

for future research74-77. Our findings enable the grouping of phenotypes based on broad 

transcriptional consequences of defects in histone lysine methylation. For example, variants 

in genes promoting transcriptional activity (e.g. H3K4 methyltransferases) appear to cause 

growth retardation, whereas variants in transcriptional suppressors predominantly result in 

overgrowth (e.g. NSD1 [OMIM #606681], EZH2 [OMIM #601573] and now KMT5B). 

Finally, these results demonstrate a systematic clinically oriented pathway-based approach 

(e.g. histone lysine methylation in this study) for analysis of large-scale exome or genome 

sequencing studies can help to reduce the statistical noise and further accelerate the discovery 

of rare genetic disorders.  

SUPPLEMENTAL DATA 
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Supplemental data include a supplemental note, 2 figures and 14 tables and can be found 

online with this article. 
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FIGURE LEGENDS 

Figure 1 

Variants in histone lysine methyltransferases and demethylases are frequent in 

developmental disorders and haploinsufficiency is their predominant mechanism 

A) The bar graph shows the proportions of postulated disease causing published heterozygous 

protein-truncating variants (PTV) (in red) and protein altering variants (PAV) (in blue) in 

known dominant developmental disorders (DD)-associated KMTs and KDMs.  

B) A plot of probability of being LoF Intolerant (pLI) scores for all KMTs and KDMs. Red 

dots represent the pLI scores for known dominant DD-associated KMTs and KDMs, orange 

dots depict these scores from candidate for dominant DD KMTs/KDMs, and green dots 

display the pLI scores for non-candidate KMT/KDM genes. The dotted line depicts the cut-

off for defining the candidate genes (pLI>0.9) 

C) Proportion of canonical transcripts of known DD KMTs and KDMs from the total human 

exome (left donut graph), proportion of individuals with pathogenic variants in known 

KMT/KDM genes from the Deciphering Developmental Disorders (DDD) study cohort 

(central donut graph), and proportion of pathogenic, benign or variants of uncertain 

significance (VUS) in known KMT/KDM genes, and the percentage of variants in other 

KMTs/KDMs from the total number of KMT/KDM variants seen in the DDD cohort (right 

donut graph). The Venn diagram shows the distribution of rare high quality 120 variants, 

detected in the DDD cohort, in KMTs/KDMs not yet firmly associated with DDs.  
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The green circle and the ellipse represent the number of variants according to their 

inheritance, the blue circle and the ellipse represent the number of variants according to their 

predicted protein effect, and the red circle and the ellipse represent the number of variants 

detected in candidates for dominant DDs and the other genes. 

Figure 2 

Variants of interest identified in this study. 

Locations of selected plausible candidate variants identified in this study are shown. 

Candidates genes for dominant DDs with DN PTVs are indicated in red font and the other 

genes are in black font. The de novo (DN) protein-truncating (PTV) in candidate KMTs and 

KDMs for dominant DD genes (KMT2B, KMT2C, ASH1L and KMT5B) (n=8) are highly 

likely to be causal. We have also shown DN protein-altering variants (PAV) in candidate 

KMTs and KDMs for dominant DD genes (KMT2B, KMT2C, DOT1L, KDM3A, PRDM2, 

SETDB1) (n=9) with limited evidence for causality at present (apart from those in KMT2B 

which have been shown to cause early onset dystonia). Inherited PTVs in candidate KMTs 

and KDMs (KDM3A and PRDM2) (n=2) are shown. PTVs in these genes may cause non-

penetrant phenotypes or this may indicate that these genes tolerate haploinsufficiency unlike 

as suggested by their pLI scores. DN PTVs in non-candidate KMTs and KDMs for dominant 

DDs (KDM5B and SETD1B) (n=4) are also shown. These PTVs could be coincidental or may 

be acting as phenotype modifiers or could be non-penetrant in some individuals in the general 

population. Homozygous and compound heterozygous PTVs in KDM5B (n=5) show that 

recessive histone tail lysine methylation disorders also exist. 

Figure 3  

Photographs from individuals with truncating variants or deletions of KMT2B, KMT2C, 

KMT5B and KDM5B.  
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The numbers on each picture denote the corresponding individual in Table 1. Individual 1 

with KMT2B DN PTV has spare scalp hair, large mouth and absent ear lobes; individual 2 

with KMT2C DN PTV has marked infra-orbital creases, down-slanting palpebral fissures, and 

a duplicated right thumb. Individual 3 with KMT2C DN PTV has marked plagiocephaly and 

bilateral marked bulging just below the temporal region. Individual 8 with KMT5B DN PTV 

has a broad and large forehead that has persisted in time. Individual 9 with KMT5B DN PTV 

has a prominent forehead, thick ear lobes, broad philtrum, an open mouth appearance and 

synophrys which is more noticeable in the more recent photograph. Individual 11 with DN 

KMT5B deletion has a long and oval face, ptosis, prominent eyes, protruded ears, open 

mouth, thick lips and overlapping of 3rd to 2nd toes. Individual 12 with homozygous KDM5B 

PTV has down-slanting palpebral fissures, slightly bulbous nasal tip, low-hanging columella, 

smooth philtrum and thin upper and lower lips. He has bilateral camptodactyly of 4th and 5th 

fingers. Individual 14 with compound heterozygous homozygous KDM5B PTV has a 

prominent metopic region, a high nasal bridge, bulbous nasal tip, smooth philtrum, thin lips 

and a triangular ear with an absent superior crux of helix. He has also mild camptodactyly of 

the 4th and 5th fingers. 

Figure 4 

Comparison of gene and protein properties, between known/candidate dominant for DD 

and other KMTs and KDMs. 

The comparisons were made using the data from UniProtKB and Mann-Whitney test was 

performed with an exact p-value <0.05 considered as significant. The results are represented 

in dot plots (A) number of post-translational modifications (PTM); (B) number of types of 

PTM; (C) number of interactors; (D) length of canonical transcripts; (E) number of PTM per 

100 amino acids of canonical transcripts in KMT/KDMs; and (F) The median Reads per 

Kilobase per Million (RPKM) for candidate and non-candidate KMT/KDMs in brain 
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structures with significant differences across several stages. Black/coloured dots denote 

known/candidate for dominant DD KMT/KDM genes, white dots/coloured triangles show the 

non-candidate for dominant KMT/KDM genes, and coloured boxes depict the brain 

structures. The longer horizontal lines in all the graphs represent the respective medians, the 

shorter horizontal lines indicate the inter-quartile range and the p values are given at the top 

of each graph, where relevant. 
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Table 1. Clinical and genetic characteristics from affected individuals with candidate variants in lysine methyltransferases (KMT) and demethylases 

(KDM). 

Gene Sex 

(age at 

study) 

Individu

al 

number 

Genomic 

position 

(hg19) 

cDNAa (protein 

consequence)/ 

Deletion size  

Inh/ zyg Perinatal history DD/ ID Neuropsychiatric 

disorders/ CNS 

anomalies 

Malformations and 

anomalies 

Height (SD)/ 

weight (SD)/ 

OFC (SD) 

CD Other medical issues 

KMT2B F (11y) 1 19:36212057 c.1808dupC 
p.(Leu604Profs*72) 

DN Het IUGR and feeding 
difficulties 

Severe Abnormal gait and 
behavioural problems.  

PDA, long & narrow 
hands, broad 

halluces 

SS (-2.7) 
LW (-2.9) 

Mi (-3.34) 

Yes Nystagmus, gastrostomy, 
urinary incontinence, 

constipation and growth 

hormone deficiency 

KMT2C F (17y) 2 7:151884849 c.4744G>T 

p.(Gly1582*) 

DN Het No Severe Elective mutism Duplicated right 

thumb and left 

preauricular tag  

SS (-2.1) 

LW (-2.74) 

Mi (-2.42) 

Yes Hearing loss and delayed 

puberty 

 F (4y) 3 7:151873688-
151873689 

c.8849_8850delAT 
p.(His2950Argfs*17) 

DN Het Hydrocephalus 
and Dandy-

Walker anomaly 

Severe Hydrocephalus and 
hypoplasia of 

cerebellar vermis 

No SS (-2) 
LW (-2) 

Mi (-1.97) 

Yes No 

  F (5y) 4 7:151836279 c.14526dupG  
p.(Pro4843Alafs*12) 

DN Het No Severe 
(motor 

delay 

was 
mild) 

Autistic traits, 
developmental 

regression, 

insensitivity to pain 
and abnormal gait 

No N (0.4) 
N (0.18) 

N (-1) 

Yes Constipation 

ASH1L F (13y) 5 1:155449628 c.3033delA 

p.(Val1014Cysfs*24) 

DN Het Feeding 

difficulties 

Mild Behavioural problems Bicuspid AV, VSD 

and PFO 

N (0.2) 

N (0.82) 

N (1.16) 

Yes Hypermetropia, precocious 

puberty and hypermobility 

 M (9y) 6 1:155322602 c.7276C>T 

p.(Arg2426*) 

DN Het Feeding 

difficulties and 

hydronephrosis 

Severe Seizures, autistic traits 

and hypotonia. 

Cryptorchidism and 

inguinal hernia 

N (1.6) 

O (2.33) 

N (1.36) 

Yes Hypermetropia, 

hyperacusis and 

hypermobility 

  M (7y) 7 1:155271366-

155804269 

532.9 Kb DN 

 

No Severe Behavioural problems Cryptorchidism and  

blocked 

nasolacrimal duct 

N (-0.59 SD) 

N (-0.44 SD) 

Mi (1.72SD) 

Yes Constipation 

KMT5B F (13y) 8 11:67953337 c.219delC 
p.(Ala74Profs*10) 

DN Het No Moderate Autistic traits No TS (2.91) 
N (0.9) 

Ma (4.43) 

Yes Hypermobility 

M 
(19y) 

9 11:67941365 c.559C>T 
p.(Arg187*) 

DN Het No Severe Seizures,hypotonia 
and autistic traits 

No N (0.74) 
N (0.9) 

N (1.93) 

Yes No 

  M 

(14y) 

10 11:67888021-

68287033 

399.01 Kb DN No Mild Seizures, enlarged 

right ventricle and 
white matter signal 

alterations 

No N (0.63) 

 
Ma (2) 

Yes Strabismus and scoliosis 

  M 
(16y) 

11 11:67550395-
68389391 

839 Kb DN No Mild to 
moderate 

No Cryptorchidism, 
pectus excavatum, 

and overlapping 2-3 

toes 

N (1.68) 
N (0.24) 

N (1.87) 

Yes Strabismus, diabetes 
mellitus and hypermobility 

KDM5B M 
(18y) 

12 1:202700104 c.4109T>G 
p.(Leu1370*) 

Mat & 
Pat 

Hom 

Feeding 
difficulties 

Severe Abnormal gait and 
agenesis of corpus 

callosum 

Inguinal hernia and 
camptodactyly of 4th 

and 5th fingers 

N (-0.23) 
LW (-1.52) 

N (-1.66) 

Yes Myopia and astigmatism 

 M 
(10y) 

13 1:202711635 
1:202731850 

c.2475-2A>G; 
c.895C>T 

(p.Arg299Ter) 

Mat & 
Pat 

CoHet 

No Moderate No Dolichocephaly and 
supernumerary 

nipple 

N (0.98) 
N (0.51) 

N (0.26) 

No  
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 M 

(11y) 

14 1:202702532 

1:202736143 

c.3906delC, 

(p.Asn1302Lysfs*45) 
c.622dupT 

(p.Tyr208Leufs*5) 

Mat & 

Pat 
Het 

Feeding 

difficulties,  

Moderate No Atrial septal defect, 

cryptorchidism,  
hypospadias and 

camptodactyly of 4th 

and 5th fingers 

N (-0.09 SD) 

 
N (-1.05) 

Yes Myopia and strabismus 

a The transcript IDs are KMT2B NM_014727.2; KMT2C NM_170606.2; ASH1L ENST00000368346.7; KMT5B NM_017635.4; KDM5B NM_001314042.1. 
Abbreviations: AV=Aortic valve; CNS=Central Nervous System; CD=Craniofacial dysmorphisms; CoHet=Compound heterozygous; DD=developmental delay; DN=de novo; F=female; Het=Heterozygous; Hom=Homozygous; 

ID=intellectual disability; Inh=inheritance; IUGR=intra-uterine growth retardation; LW=Low weight; M=male; Ma=Macrocephaly; mat=maternal; Mi=Microcephaly; N=Normal/Not present; O=Overweight/Obesity; PDA=patent 

ductus arteriosus; PFO=Patent foramen ovale; SD=Standard deviation; SS=short stature; TS=Tall stature; VSD=Ventricular septal defect; y=years; zyg=zygosity. 
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