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Genetic information encoded in DNA is largely identi-
cal in every cell of a eukaryote. However, cells in differ-
ent tissues and organs can have widely different gene 
expression patterns and can exhibit specialized func-
tions. Gene expression patterns in different cell types 
need to be appropriately induced and maintained and 
also need to respond to developmental and environ-
mental changes; inappropriate expression leads to 
disease. In eukaryotes, the chromatin state — the pack-
aging of DNA with histone proteins — is believed to 
contribute to the control of gene expression. Histone 
post-translationa l modifications (PTMs) include phos-
phorylation, acetylation, ubiquitylation, methylation 
and others1,2, and these modifications are thought to 
contribute to the control of gene expression through 
influencing chromatin compaction or signalling to 
other protein complexes. Therefore, an appropriate 
balance of stability and dynamics in histone PTMs is 
necessary for accurate gene expression.

Histone methylation occurs on all basic residues: 
arginines3, lysines4 and histidines5. Lysines can be mono-
methylated (me1)4, dimethylated (me2)6 or trimethyl-
ated (me3)7 on their ε-amine group, arginines can be 
monomethylated (me1)3, symmetrical ly dimethylate d 
(me2s) or asymmetrically dimethylated (me2a) on their 
guanidinyl group8, and histidines have been reported 
to be monomethylated8,9, although this methylation 
appears to be rare and has not been further character-
ized. The most extensively studied histone methylation 
sites include histone H3 lysine 4 (H3K4), H3K9, H3K27, 
H3K36, H3K79 and H4K20. Sites of arginine  (R) 

methylation include H3R2, H3R8, H3R17, H3R26 and 
H4R3. However, many other basic residues throughout 
the histone proteins H1, H2A, H2B, H3 and H4 have 
also recently been identified as methylated by mass spec-
trometry and quantitative proteomic analyses2 (reviewed 
in REF. 10). The functional effects and the regulation of 
the newly identified methylation events remain to be 
determined.

In general, methyl groups are believed to turn over 
more slowly than many other PTMs, and histone methyl-
ation was originally thought to be irreversible3. The 
discovery of an H3K4 demethylase, lysine-specific 
demethylase 1A (KDM1A; also known as LSD1), 
revealed that histone methylation is, in fact, reversible11. 
Now, a plethora of methyltransferases and demethyl-
ases have been identified that mediate the addition and 
removal of methyl groups from different lysine residues 
on histones. Depending on the biological context, some 
methylation events may need to be stably maintained 
(for example, methylation involved in the inheritance 
through mitosis of a silenced heterochromatin state), 
whereas others may have to be amenable to change (for 
example, when cells differentiate or respond to environ-
mental cues). Indeed, methylation at different lysine 
residues on histones has been shown to display differ-
ential turnover rates12. Importantly, the diverse array 
of methyl ation events provides exceptional regulatory 
power. A current model suggests that methylated his-
tones are recognized by chromatin effector molecules 
(‘readers’), causing the recruitment of other molecules to 
alter the chromatin and/or transcription states13.

Cell Biology Department, 
Harvard Medical School  
and Division of Newborn 
Medicine, Children’s Hospital 
Boston, 300 Longwood 
Avenue, Boston, 
Massachusetts 02115, USA.
Correspondence to Y.S. 
e-mail: 
yang_shi@hms.harvard.edu
doi:10.1038/nrg3173
Published online 3 April 2012

Symmetrically dimethylated
Symmetrically dimethylated 
arginines have methyl groups 
on each of the two nitrogens.

Asymmetrically dimethylated
Asymmetrically dimethylated 
arginines have two methyl 
groups on a single nitrogen.

Histone methylation: a dynamic mark 
in health, disease and inheritance
Eric L. Greer and Yang Shi

Abstract | Organisms require an appropriate balance of stability and reversibility in  
gene expression programmes to maintain cell identity or to enable responses to  
stimuli; epigenetic regulation is integral to this dynamic control. Post-translational 
modification of histones by methylation is an important and widespread type of 
chromatin modification that is known to influence biological processes in the context  
of development and cellular responses. To evaluate how histone methylation contributes 
to stable or reversible control, we provide a broad overview of how histone methylation 
is regulated and leads to biological outcomes. The importance of appropriately 
maintaining or reprogramming histone methylation is illustrated by its links to disease 
and ageing and possibly to transmission of traits across generations.
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To understand the dynamic regulation of and by 
histone methylation, it is useful to take a holistic view 
of regulation of and by this chromatin modification. 
Here we aim to draw together key points — rather than 
to provide comprehensive coverage — regarding how 
histone methylation is established, reversed or main-
tained across cell divisions or possibly even across 
generations. We describe the principles of how methyl 
marks might be converted into biological outcomes and 
examples that demonstrate the importance of appro-
priate establishment or maintenance of methylation by 
considering when methylation regulation goes awry in 
cancer, intellectual disability and ageing. Throughout, 
we refer readers to literature that considers each of 
these topics in more depth.

Regulation of histone methylation
Histone methyltransferases and demethylases. Three 
families of enzymes have been identified thus far that 
catalyse the addition of methyl groups donated from 
S-adenosylmethionine4 to histones. The SET-domain-
containing proteins14 and DOT1-like proteins15 have been 
shown to methylate lysines, and members of the protein 
arginine N-methyltransferase (PRMT) family have been 
shown to methylate arginines16 (TABLE 1). These histone 
methyltransferases have been shown to methylate his-
tones that are incorporated into chromatin14 and also free 
histones and non-histone proteins17. Calmodulin-lysine 
N-methyltransferase, a non-SET-domain-containing pro-
tein, has been shown to methylate calmodulin and might 
have the potential to methylate histones as well18.

Table 1 | Histone methyltransferases

Histone and residue Homo sapiens Drosophila melanogaster Caenorhabditis elegans

me3 me2 me1 me3 me2 me1 me3 me2 me1

H3R2 CARM1(a);  
PRMT6(a)*;  
PRMT5(s);  
PRMT7(s)‡

CARM1;  
PRMT6*; 
PRMT5; 
PRMT7

H3K4 SETD1A;  
SETD1B;  
ASH1L;  
MLL;  
MLL2;  
MLL3;  
MLL4;  
SMYD3§;  
PRMD9

SETD1A;  
SETD1B;  
MLL;  
MLL2;  
MLL3;  
MLL4;  
SMYD3§

SETD1A;  
SETD1B;  
ASH1L§;  
MLL;  
MLL2;  
MLL3:  
MLL4;  
SETD7

ASH1;  
SET1

TRX;  
TRR;  
SET1

TRX;  
TRR

SET-2;  
SET-16

H3R8 PRMT5(s) PRMT5

H3K9 SUV39H1;  
SUV39H2;  
SETDB1;  
PRDM2§

SUV39H1;  
SUV39H2;  
SETDB1;  
G9a;  
EHMT1;  
PRDM2§

SETDB1;  
G9a;  
EHMT1;  
PRDM2§

SU(VAR)3-9;  
Eggless

SU(VAR)3-9;  
Eggless

Eggless MES-2; 
SET-9§; 
SET-26§

MET-2

H3R17 CARM1(a) CARM1

H3R26 CARM1(a) CARM1

H3K27 EZH2; 
EZH1

EZH2; 
EZH1

E(Z) E(Z) MES-2 MES-2

H3K36 SETD2 NSD3;  
NSD2;  
NSD1;  
SMYD2§;  
SETD2

SETD2; 
NSD3;  
NSD2;  
NSD1;

SET2 MES4 MET-1 MES-4

H3K79 DOT1L DOT1L DOT1L DOT1L DOT1L DOT1L

H4R3 PRMT1(a);  
PRMT6(a)*;  
PRMT5(s);  
PRMT7(s)‡

PRMT1;  
PRMT6*; 
PRMT5; 
PRMT7

PRMT-1|| PRMT-1||

H4K20 SUV420H1;  
SUV420H2

SUV420H1;  
SUV420H2

SETD8 SUV4-20 SUV4-20 PRSET7

The histone (H) methyltransferases for various lysine (K) and arginine (R) residues are indicated in columns for the degree of methylation (trimethylation (me3); 
dimethylation (me2); monomethylation (me1)) and species. Some methyltransferases preferentially establish asymmetric (a) or symmetric (s) dimethylation. 
*Protein arginine N-methyltransferase 6 (PRMT6) can also methylate H2AR3 and H2AR29. ‡Indicates that the results have been disputed by some laboratories. 
§Indicates that the results have not been independently replicated. ||PRMT-1 was shown to monomethylate and asymmetrically dimethylate histone H4, but the 
specific residue that it methylates has not yet been identified. References for individual methyltransferases can be found in Supplementary information S1 
(reference list). ASH1, absent, small or homeotic discs 1; ASH1L, ASH1-like protein; CARM1, also known as PRMT4; DOT1L, DOT1-like protein (also known as GPP  
in D. melanogaster); Eggless, also known as SETDB1; E(Z), Enhancer of zeste; G9a, also known as EHMT2; MES-2, maternal effect sterile 2; SETD8, also known as 
PRSET7; SET-2, SET-domain-containing 2; SU(VAR)3-9, suppressor of variegation 3-9; TRX, Trithorax.
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Trithorax group proteins
(TrxG proteins). A group of 
chromatin regulatory proteins 
that typically act to activate or 
to maintain gene expression.

Polycomb group proteins
(PcG proteins). Chromatin 
regulatory proteins that are 
typically involved in repressing 
gene expression.

Polycomb repressive 
complex 2
(PRC2). A Polycomb group 
complex that trimethylates 
histone H3 lysine 27 (H3K27). 
The core PRC2 subunits  
are SUZ12, EED and the 
methyltransferases EZH2 (E(Z) 
in Drosphila melanogaster); 
there are additional 
components as well.

Two families of demethylases have been identified 
thus far that demethylate methyl-lysines. These are 
the amine oxidases11 and jumonji C (JmjC)-domain-
containing, iron-dependent dioxygenases19–21 (TABLE 2).  
These enzymes are highly conserved from yeast to 
humans and demethylate histone and non-histone 
substrates. Arginine demethylases remain more elu-
sive. Although an initial report suggested that one 
of the JmjC domain proteins, JMJD6, demethylates 
arginines22, a more recent study indicates that the main 
function of JMJD6 is to hydroxylate an RNA-splicing 
factor23. Monomethyl arginines have also been shown 
to be converted by protein arginine deiminase type 4 
(PADI4) to citrulline24,25. However, PADI4 is not an 
arginine demethylase, as it works on both methylated 
and unmethylated arginine24.

The diversity of chromatin-associated and non-
chromatin-associated substrates poses an important 
challenge for our understanding of the mechanisms by 
which these enzymes execute their biological functions.

How are the enzymes recruited to their genomic  
destinations? Determining how and when methyl-
transferases and demethylases are recruited to specific 
histone targets is an important area of current research. 
Specific DNA sequences have been identified that are 
responsible for the recruitment of several histone-
modifying enzymes. Some of the best-studied examples 
are the Drosophila melanogaster Trithorax group (TrxG)  
response elements (TREs) and Polycomb group  
(PcG) response elements (PREs), which direct recruit-
ment of TRX (which is an H3K4 methyltransferase) 
and PcG proteins (the Polycomb repressive complex 2 
(PRC2) complex catalyses H3K27 trimethylation), 
respectively, possibly through specific DNA-binding 
transcription factors that recognize these regulatory 
elements26–28. In human cells, a DNA sequence that 
enhances PcG binding has been identified, and this 
shows some similarity to D. melanogaster PREs29, sug-
gesting that at least some aspect of the PcG recruitmen t 
mechanism is conserved.

Table 2 | Histone demethylases

Histone and residue Homo sapiens Drosophila melanogaster Caenorhabditis elegans

me3 me2 me1 me3 me2 me1 me3 me2 me1

H3R2

H3K4 KDM2B; 
KDM5A; 
KDM5B; 
KDM5C; 
KDM5D; 
NO66

KDM1A; 
KDM1B; 
KDM5A; 
KDM5B; 
KDM5C; 
KDM5D; 
NO66

KDM1A; 
KDM1B; 
KDM5B; 
NO66

LID SU(VAR)3-3; 
LID

SU(VAR)3-3 RBR-2 LSD-1§; 
SPR-5; 
AMX-1§; 
RBR-2

LSD-1§;  
SPR-5; 
AMX-1§

H3R8

H3K9 KDM3B§; 
KDM4A; 
KDM4B; 
KDM4C; 
KDM4D

KDM3A; 
KDM3B§; 
KDM4A; 
KDM4B; 
KDM4C; 
KDM4D; 
PHF8; 
KDM1A; 
JHDM1D

KDM3A; 
KDM3B§; 
PHF8; 
JHDM1D

KDM4B JMJD-2 KDM7A;  
JMJD-1.1

KDM7A;  
JMJD-1.1

H3R17

H3R26

H3K27 KDM6A; 
KDM6B;

KDM6A; 
KDM6B; 
JHDM1D

JHDM1D UTX-1; 
JMJD-3.1

KDM7A; 
UTX-1; 
JMJD-3.1

H3K36 NO66; 
KDM4A; 
KDM4B; 
KDM4C

KDM2A; 
NO66; 
KDM2B; 
KDM4A; 
KDM4B; 
KDM4C

KDM2A; 
KDM2B

KDM4B; 
KDM4A

KDM4B; 
KDM4A

JMJD-2

H3K79

H4R3

H4K20 PHF8

The histone (H) demethylases for various lysine (K) and arginine (R) residues are indicated in columns for the degree of methylation (trimethylation (me3); 
dimethylation (me2); monomethylation (me1)) and species. §Indicates that the results have not been independently replicated. References for individual 
demethylases can be found in Supplementary information S1 (reference list). AMX-1, amine oxidase family member 1; KDM1A, lysine-specific demethylase 1A 
(also known as LSD1); KDM7A, also known as F29B9.1; JHDM1D, JmjC-domain-containing histone demethylation protein 1D; JMJD-2, JmjC-domain-containing 
histone demethylation protein 2; LID, little imaginal discs; SU(VAR)3-3, suppressor of variegation 3-3.
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RNAi
A series of processes in  
which small RNAs (that are  
in complexes with proteins) 
bind to specific mRNA 
molecules or to genes and  
can regulate their activity.

X-chromosome inactivation
A mechanism for silencing one 
of the two X chromosomes  
in female mammals to 
compensate for the different 
gene dosage in XX females and 
XY males. Heterochromatin 
forms on the inactive 
X chromosome.

MLL complex
A protein complex containing 
mixed-lineage leukaemia or 
myeloid/lymphoid (MLL) 
proteins, which are the 
mammalian homologues  
of Trithorax and have 
methyltransferase activity.

PHD fingers
Plant homeo domains are 
nuclear Zn2+-binding domains 
ranging from ~50–80 amino 
acids and typically have a 
signature of four cysteines, 
one histidine and three 
cysteines. They bind to both 
histone and non-histone 
proteins and, in some cases, 
function as E3 ligases.

WD40 repeats
A short ~40 amino acid 
domain usually terminating in 
tryptophan (W) and aspartic 
acid (D), which forms a 
circularized beta-propeller 
structure. They can serve as 
scaffolding proteins for 
multiprotein complexes.

CW domains
A ~45–55 amino acid 
zinc-binding domain containing 
at least four cysteine (C) and 
two tryptophan (W) residues 
that are exclusively found in 
eukaryotes.

PWWP domains
These ~135 amino acid 
domains have a central core 
consisting of proline tryptophan 
tryptophan proline (PWWP) and 
are found in eukaryotes from 
yeast to mammals. The PWWP 
domain has a barrel-like 
five-stranded structure and  
a five-helix bundle.

Long non-coding RNAs (lncRNAs) have also been 
proposed to have a targeting role by binding to cer-
tain methyltransferases and demethylases and direct-
ing them to specific genomic locations. lncRNAs 
have been shown to bind to members of the PRC2 
complex30–33, the H3K9 methyltransferase G9a (also 
known as EHMT2)33,34 and the H3K4 methyltransferase 
complex member WD repeat domain 5 (WDR5)35. 
Particular lncRNAs may influence multiple methyl 
marks. For instance, the human lncRNA HOTAIR has 
been shown to bind to PRC2 and to a complex con-
taining the demethylase KDM1A, suggesting that this 
lncRNA might coordinate recruitment of an H3K27 
methyltransferase and an H3K4 demethylase to lead 
to efficient repression of specific loci32. However, the 
roles of lncRNAs in vivo remain unclear. A deletion of 
mouse Hotair had no effect on Hox gene expression 
or on H3K27me3 levels36, suggesting either functional 
redundancy or that the function of this lncRNA may 
have diverged between humans and mice. The iden-
tification of >1,000 lncRNAs37 in mammals, together 
with the proposal that lncRNAs act both in cis and in 
trans, suggest that lncRNAs might account for a large 
amount of the specific targeting of methyl-modifying 
proteins38. The mechanisms require further investi-
gation. Chemical tagging of lncRNAs and knockouts 
of lncRNAs will facilitate an in vivo examination of 
endogenous protein partners and will also help to  
validate real methylation targets.

Small non-coding RNAs also play a part in direct-
ing chromatin modifications, including histone 
methyl ation. For example, in Schizosaccharomyces 
pombe, the RNAi machinery is required for establish-
ing and/ or maintaining centromeric heterochromati n, 
which is characterized by H3K9 methylation39–41. 
The RNAi machinery has also been linked to H3K9 
methyl ation levels and heterochromatin in Arabidopsis 
thaliana42 and in mammals43, suggesting some evo-
lutionary conservation. In Caenorhabditis elegans, 
dsRNA-triggered knockdown of specific genes leads 
to decreased transcription in addition to increased 
H3K9me3 of the target gene44. In addition, the RNAi 
machinery has recently been linked to the induc-
tion of H3K27me3 and to heterochromatin changes 
during X-chromosome inactivation in mice45. However, 
the RNAi machinery might not solely be associated 
with inactivating transcription, as a recent report in 
D. melanogaster shows that Dicer 2 and Argonaute 2 
are associated with mostly euchromatic loci and affect 
global transcription46.

DNA methylation also seems to have a role in 
directing histone methylation47. For example, the 
A. thaliana H3K9 methyltransferase SUVH4 binds 
methylated DNA48 and mutation of the methyl-DNA-
binding domain of the A. thaliana H3K9 methyltrans-
ferase SUVH5 decreases H3K9me2 (REF. 49). There is 
also evidence that histone methylation can influence 
DNA methylation, and these two marks reinforce each 
other to establish repressive chromatin environments. 
This topic is beyond the scope of this Review, and we 
therefore refer readers to relevant reviews50,51.

Collaborative and antagonistic relationships among 
different histone marks. It is important to note that 
histone methylation marks do not appear in isolation. 
Methylation can occur at multiple different sites on the 
same histone, but some histone marks are mutually exclu-
sive. For instance, in mammals and yeast, dimethylation 
of H3R2 (which is established by the methyltransfer-
sase PRMT6 in mammals) is prevented by H3K4me3; 
conversely, H3R2me2a prevents H3K4 methylation52,53. 
Similarly, phosphorylation of H3S10 prevents H3K9 
methylation in vitro14. Combinatorial histone marks can 
also alter the recognition by and the binding of methyl-
binding proteins. Phosphorylation of H3S10 during the 
M phase of the cell cycle prevents the H3K9me3-binding 
protein heterochromatin protein 1 (HP1) from binding to 
doubly modified histone tails54. Some PTMs on histone 
tails can recruit methyl-modifying proteins and can play a 
part in determining their substrate specificities. For exam-
ple, histone lysine demethylase PHF8 binds to H3K4me2 
and/or to H3K4me3 and demethylates H3K9me2, but the 
related enzyme JmjC-domain-containing histone demeth-
ylation protein 1D (JHDM1D; also known as KDM7A) 
is directed towards demethylating H3K27me2 following 
binding to H3K4me2 and/or H3K4me3 (REF. 55). PTMs 
on one histone tail also influence other histone tails in 
trans. For example, H2B monoubiquitylation is neces-
sary for H3K4 methylation and H3K79 methylation56–58. 
In yeast, this relationship might be explained by a compo-
nent of the COMPASS complex (the yeast homologue of 
the mammalian MLL complex), Swd2, which interacts with 
chromatin in an H2B-monoubiquitylation-dependent 
manner59 and also interacts with the H3K79 methyltrans-
ferase Dot1 (REF. 59). Histone PTMs can therefore play an 
important part in the recruiting of methyl-modifying 
enzymes to specific genomic locations60 and, in some 
cases, in the determination of their substrate specificities.

Is the enzymatic activity of methyl-modifying enzymes 
important for their function? When considering the 
action of methyl-modifying enzymes, it is important 
to bear in mind recent findings that suggest some of 
these proteins have functions that are independent  
of their enzymatic activities. For instance, although the 
enzymatic activity of the H3K27 demethylase UTX has 
been shown to be important for zebrafish posterior 
development61 and for muscle-specific gene expression 
during myogenesis62, it has also been shown to regu-
late T box family-member-dependent gene expression 
in a demethylase-independent manner63. Similarly, the 
related H3K27 demethylase JMJD3 has been reported to 
function in ways that are dependent and independent of 
its enzymatic activity63.

Regulation by histone methylation
How is methylation recognized? Recognition of meth-
ylated histones is accomplished by proteins with 
methyl-binding domains13, including PHD fingers64,65, 
WD40 repeats66, CW domains67, PWWP domains68, ankyrin 
repeats69 and proteins of the Royal superfamily. This 
superfamily includes proteins with chromodomains70,71, 
double chromodomains72, chromobarrels73, Tudor 
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MBT
A royal superfamily domain 
that binds to methylated lysine.

ADD domain
This domain is named after  
its presence in three proteins 
ATRX, DNMT3 and DNMT3L, 
which bind to histone H3.  
It contains a GATA-like C2C2 
zinc finger and a C4C4 
imperfect PHD finger. It 
contains ~120 amino acids.

domains74, double or tandem Tudor domains75,76 and 
MBT repeats77. Some proteins containing these domains 
— including PHD finger protein 21A (PHF21A; also 
known as BHC80)78, transcription intermediary factor 1α  
(TIF1α; also known as TRIM24)79 and E3 ubiquitin pro-
tein ligase UHRF1 (REF. 80) — also recognize unmeth-
ylated lysine and arginine residues on histones, and 
methylation inhibits their interaction with histones. 
Addition of the methyl moieties increases the posi-
tive charge and hydrophobicity of lysine and arginine, 
thus facilitating their interactions with the hydrophobic 
properties of proteins. Indeed, aromatic cages have been 
found in several methyl-binding proteins, which ena-
ble direct interaction with methylated arginine74,81 and 
lysine residues75,82. Exceptions include the ADD domain 
of the transcriptional regulator ATRX, which recog-
nizes H3K9me3 by means of a composite pocket that is  
distinct from the aromatic cages discussed above83–85.

The effects of methylation are context-dependent. The 
location of the methyl-lysine residue on a histone tail and 
the degree of methylation (whether me1, me2 or me3) 
have been associated with differential gene expression 
status. For example, H3K4me3 is generally associated 
with active transcription86,87 or with genes that are poised 
for activation, whereas H3K27me3 is associated with  
repressed chromatin. H3K4me1 is often associated 
with enhancer function88, whereas H3K4me3 is linked 
to promoter activity. H3K79me2 is important for cell-
cycle regulation, whereas H3K79me3 is linked to the  
WNT-signalling pathway89,90.

However, there are instances in which the same mod-
ifications can be associated with opposing activities, such 
as transcriptional activation and repression. H3K4me2 
and H3K4me3 are demonstrative of this point; generally, 
these marks are associated with transcriptional activa-
tion, but they can also be associated with transcriptional 
repression64,91. Probably, the change in activity is due to 
different effector proteins. For instance, when H3K4me2 
or H3K4me3 marks are bound by the PHD-domain-
containing co-repressor protein inhibitor of growth 
family member 2 (ING2), they are associated with tran-
scriptional repression64 through the stabilization of a  
histone deacetylase complex. We propose that the 
‘reader’ proteins that recognize specific histone modi-
fications are important components in determining the 
function of modifications.

Combined marks can also have different roles to the 
same marks appearing in isolation. Although H3K4me3 
and H3K27me3 are marks associated with active and 
repressive transcription, respectively, when they are 
present together, they appear to have a role in poising 
genes for transcription91. Combinatorial histone modifi-
cations are efficiently recognized by proteins with multi-
ple domains to effect specific outcomes. For instance, the 
chromatin regulator TRIM24 has a PHD domain and 
a bromodomain, which recognize unmethylated H3K4 
and acetylated H3K23 on the same histone tail79. This 
finding suggests that proteins with multiple histone-
binding domains are ideally suited to incorporation of 
the information from multiple histone modifications 

to ensure specific biological outcomes; in the case of 
TRIM24, this binding leads to oestrogen-dependent 
gene activation.

Combinatorial action of methyl-modifying enzymes 
is also context-specific. Coordinated addition of his-
tone methyl marks that are generally associated with 
transcriptional activation and removal of marks that 
are generally associated with transcriptional repres-
sion is thought to occur. For instance, in mammals, 
the H3K27 demethylase UTX has been shown to asso-
ciate with H3K4 methyltransferase complex MLL2–
MLL3 (REF.92); presumably, adding the ‘activating’ 
mark (H3K4me3) and removing the ‘inhibitory’ mark 
(H3K27me3) achieves optimal transcriptional acti-
vation. Similarly, the T box transcription factors can 
bring together the H3K4 methyltransferase complex 
subunit retinoblastoma-binding protein 5 (RBBP5) 
and the H3K27 demethylase JMJD3 (REF. 93). For effi-
cient repression, the H3K4me3 demethylases have been 
shown to associate physically with the repressive PcG 
proteins (which establish and bind to H3K27me3) and 
with H3K9 methyltransferases94,95. In addition, some of 
these repressive complexes also contain histone deacety-
lases96, suggesting that coordinated methylation, regu-
lation and deacetylation occurs to repress target genes 
efficiently. These findings suggest that coordinated and 
reciprocal relationships may help to form and possibly to 
maintain a stable methylation pattern when and where 
it is appropriate.

Roles of methylation in transcriptional processes. Most 
of the associations between histone methylation status 
and transcription are based on correlations between 
gene expression level and genome-wide or locus-specific 
chromatin immunoprecipitation (ChIP) studies86,87,97. 
However, several studies have begun to address the role 
of histone modifications at specific stages of transcrip-
tion. It appears that histone methylation has a role in 
many levels of transcriptional regulation from chroma-
tin architecture to specific loci regulation through the 
recruitment of cell-specific transcription factors and 
interaction with initiation and elongation factors (BOX 1).  
In addition, histone methylation influences RNA  
processing (BOX 2).

Biological importance of methylation dynamics
Histone methylation dynamics is known to have 
important roles in many biological processes, includ-
ing cell-cycle regulation, DNA damage and stress 
response, development and differentiation (reviewed in  
REFS 60,98–101). The importance of the tight regulation 
of histone methylation is demonstrated by emerging 
links of histone methylation to disease and ageing.

Cancer. Several lines of evidence suggest that aberrant 
histone methylation is likely to have a role in cancer 
(reviewed in REFS 102,103). Initial studies showed that 
changes in global levels of certain histone methylation 
events are correlated with increased cancer recurrence 
and poor survival (TABLE 3). Although it remains to be 
determined whether these changes are causal, they 
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Box 1 | Histone methylation regulation is important for transcriptional control

An interesting and untested hypothesis is that histone methylation could 
influence transcription by bringing physically separate regions of chromatin 
close together through chromosomal looping163 (panel a of the figure). This 
could include enhancer and promoter regions or, in the case of repressive 
interactions, it could include insulator elements164. However histone 
methylation might be a consequence of chromosomal looping. For instance, 
Polycomb group (PcG) proteins can regulate histone H3 lysine 27 (H3K27) 
methylation of distal sites after initial recruitment to a specific site165. 
Whether chromosomal looping is a cause or a consequence of transcriptional 
regulation remains to be determined.

Histone modifications can affect the higher-order chromatin structure 
directly166 or indirectly by recruiting chromatin-remodelling complexes167,168. 
For example: BPTF, which is a component of the chromatin-remodelling 
complex NURF, contains a PHD finger that recognizes H3K4me3 (REF. 65); 
zinc finger protein DPF3, a component of the BAF chromatin-remodelling 
complex, contains a double PHD finger that interacts with methylated 
histones169; and the chromodomains of chromodomain helicase (CHD) 
proteins also bind to methylated histones72,170,171. In yeast, H3K36me3 can 
recruit a histone deacetylase to affect transcription indirectly172.

Inaccessible chromatin domains can be ‘opened’ by so-called pioneering 
factors173, which are sequence-specific DNA-binding transcription factors 
(such as forkhead box protein A1 (FOXA1) and GATA4; panel b of the figure). 
After binding of the pioneering factors, DNA methylation and histone 
modifications could participate in making the chromatin more accessible for 
other transcription factors, the pre-initiation complex (PIC) and RNA 
polymerase II (RNAPII)174.

Certain histone methylation patterns (such as stretches of chromatin that 
are marked by a high density of H3K4 and H3K79 methylation) also appear 
to be necessary for binding of transcription factors (panel c of the figure), 
as highlighted by a study demonstrating that histone modifications affect 
binding of the transcription factor MYC to promoters in humans175 
(presumably by providing a euchromatic environment, which facilitates 
sequence-specific binding). More work needs to be done to determine 
how widespread the role of histone modifications is in setting up local 
regions with specific histone modification signatures that are either 
conducive or antagonistic to the stable localization of DNA-binding 
factors, histone-modifying enzymes and effector proteins.

It is still unclear whether the recruitment of chromatin-remodelling 
machinery to sites of transcription176 enables more efficient transcription 
and/or is necessary for elongation to begin. The PHD finger of TAF3 — a 
component of the transcription factor II D complex (which itself is an 
essential component of the RNAPII PIC) — binds to H3K4me3 (REF. 177), 
suggesting that the RNAPII machinery directly communicates with histone 
methylation to regulate transcription. The phosphorylation status of RNAPII 
(which determines whether RNAPII is in the initiation or elongation phase) 
regulates the binding of different chromatin-modifying proteins to RNAPII; 
these proteins methylate H3K4 or H3K36 or demethylate H3K27 potentially 
to facilitate transcription initiation or elongation (elongation is shown in 
panel d of the figure).

Despite advancements in understanding the role of histone methylation 
in transcriptional control, there is still a lot of uncertainty regarding the order 
of events; these are beginning to be deciphered176 but are still far from clear.
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Pre-initiation complex
A large complex of proteins 
that is necessary for the 
transcription of protein-coding 
genes. It helps to position RNA 
polymerase II appropriately 
and to orient the DNA in the 
active site of RNA polymerase II.

Small nuclear 
ribonucleoprotein
(snRNP). These are RNA–
protein complexes that, 
together with other proteins 
and precursor mRNA, form a 
complex where splicing occurs.

nevertheless might be developed into potential biomark-
ers for drug discovery, diagnosis or prognosis. More 
recent studies provide increasing genetic evidence sug-
gesting that histone methylation events play a causal part 
in tumorigenesis.

Mutations in or altered expression of histone methyl 
modifiers and methyl-binding proteins correlate with 
increased incidence of various different cancers (reviewed 
in REFS 102,103). For example, the H3K27me3 methyl-
transferase EZH2 is upregulated in a number of cancers, 
including prostate cancer104, breast cancer105 and lympho-
mas106. Importantly, activating point mutations in EZH2 
have recently been identified that are associated with B cell 
lymphomas106: a finding that is in agreement with the idea 
that EZH2 is oncogenic. Consistent with this, somatic 
inactivating point mutations in the H3K27 demethylase 
UTX were found in various human cancers107. However, 
EZH2 does not always work as an oncogene; mutations 
that cause a loss of methyltransferase activity of EZH2 
have been identified in myeloidysplastic syndromes108, 
suggesting that EZH2 functions as a tumour suppressor in 
that cancer type. The dual role of EZH2 as an oncogene or 
as a tumour suppressor highlights the context-dependent 
nature of oncogenes and tumour suppressor genes and 
raises the possibility that H3K27me3 may have alternative 
functions in different cell types.

Importantly, methyltransferases and demethylases 
are found at sites of chromosomal translocations (BOX 3),  
and several of these chromosomal fusion proteins have 
been shown to have tumorigenic properties109–111. Such 
gene fusions could either lead to aberrant deposition or 
to removal of histone methylation (if the fusion results in 
mistargeting of the methyltransferase or demethylase) or 
inappropriate recruitment of other proteins (such as tran-
scription factors) by the mutant methyl-binding domain.

These links between methyl-modifying enzymes and 
cancer indicate that an appropriate balance between sta-
ble methylation and dynamic methylation of histones is 
essential for cancer prevention. Methyl-modifying and 
methyl-binding proteins are thus candidate pharmaco-
logical targets for cancer and possibly for other human 
diseases.

Intellectual disability. Various histone modifiers have 
been implicated in intellectual disability syndromes112, 
supporting the concept that appropriate regulation of 
histone modifications during nervous system develop-
ment is essential for brain function. For example, trunca-
tions in the histone methyltransferase NSD1 have been 
found in 77% of patients with Sotos syndrome, which 
is associated with intellectual disability113. Additionally, 
9q subtelomere deletion syndrome (9qSTDS) is caused 
by mutations in the H3K9 methyltransferase EHMT1, 
and haploinsufficiency of EHMT1 is thought to cause 
intellectual disability114. Mice that are heterozygous 
for Ehmt1 display autistic-like features115, suggesting 
that EHMT1 has a conserved role in regulating normal  
neural function.

The role of histone modifiers in cognitive disorders 
is supported by studies of X-linked intellectual dis-
ability. At least seven proteins that have been identified 
as being mutated in X-linked intellectual disability are 
potential methyl-modifying enzymes or methyl-binding  
proteins, including: methyl-CpG-binding protein 2 
(MECP2)116; JARID1C (also known as SMCX; an H3K4 
demethylase)95,117; PHF8 (an H3K9 and H4K20 demeth-
ylase)118–120; BCL-6 corepressor (BCOR; an ankyrin-
repeat-containing protein that forms complexes with PcG 
proteins)121; ATRX83–85 (an H3K9me3-binding protein); 
PHD finger protein 6 (PHF6)122; and bromo domain and 
WD repeat-containing protein 3 (BRWD3)123. Detailed 
molecular mechanisms for how these proteins regulate 
cognitive function remain largely unknown. In the case 
of MECP2, its disruption leads to Rett’s syndrome and 
to global changes in neuronal chromatin structure124 
that accompany global changes in histone methylation 
patterns. ATRX has been shown to bind to H3K9me3 
and to have a role in chaperoning variant histones to 
telomeres83–85,125–127. Exactly what ATRX does at regions 
of heterochromatin (such as telomeric and pericentro-
meric heterochromatin) is unclear. However, the activity 
of ATRX probably involves remodelling of heterochro-
matin structure through the helicase activity of this 
protein, as some mutations in ATRX that cause ATRX 
syndrome have recently been shown to disrupt its ATP 

Box 2 | The role of methylation in RNA splicing

Histone methylation has been implicated in the control of RNA splicing. Intriguingly, the average exon length of 
many eukaryotic species is similar to the length of DNA wrapped around one nucleosome178, whereas intron length 
varies greatly. The association of the splicing factor U2 small nuclear ribonucleoprotein (snRNP) with chromatin is 
enhanced by histone H3 lysine 4 trimethylation (H3K4me3)179,180. In human cell lines, this appears to be mediated by 
U2 snRNP interacting with the H3K4-binding proteins chromodomain helicase 1 (CHD1) and SAGA-associated 
factor 29 (SGF29)179,180. Also, recent global chromatin immunoprecipitation followed by sequencing (ChIP–seq) 
analyses in Caenorhabditis elegans, mice and humans show that exons are enriched for H3K36me3 compared to 
introns and that alternatively spliced exons have lower levels of H3K36me3 than constitutively spliced exons181.
In vitro assays have shown that the rate of transcriptional elongation can affect splicing. As H3K36me3 can recruit a 

histone deacetylase complex175, which represses transcription, a kinetic model for splicing has been proposed in which 
the histone methylation can affect the rate of transcription and thus can influence splicing182. In addition, several studies 
have shown that knockdown of SETD2 (which is a H3K36 methyltransferase) affects alternative splicing183, potentially owing 
to the interaction of the splicing regulator polypyrimidine-tract-binding protein 1 (PTB1) with the H3K36me3-binding 
protein MRG15 (also known as MORF4L1)73,179,184. More recent studies have shown that global splicing inhibitors can lead to 
repositioning of H3K36me3 and to impaired recruitment of SETD2, suggesting that splicing also regulates H3K36 
trimethylation183,185. These results suggest that there may be two-way communication between histone methylation and 
splicing; additional work is necessary to understand the functional consequence of this communication fully.
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hydrolysis activity128. Interestingly, a recent study iden-
tified a patient with a severe intellectual disability who 
carries duplication of both MECP2 and ATRX, suggesting 
a possible functional link between these two proteins in 
regulating cognition129.

We speculate that the above X-linked intellectual 
disability gene products regulate cognition by means of  
different molecular mechanisms, such as regulation  
of a specific gene expression signature that is important 
for cognition, of heterochromatin structure and func-
tion and/or of the balance between heterochromatin and 
euchromatin. It is also possible that all of these proteins 
regulate a common process that influences human cogni-
tion but that they do so by different paths. Mouse models 
with point mutations that eliminate the specific binding 
or enzymatic activity of proteins that are implicated in 
intellectual disability will be powerful tools in determin-
ing the impact of chromatin modifications through use of 
the battery of cognitive analysis tools available for mice.

Ageing. Histone methylation and methyl-modifying pro-
teins have recently been shown to have a role in the regu-
lation of organismal lifespan and tissue ageing. Loss of the 
appropriate balance between stable and dynamic methyl 
marks in adult stem cells may contribute to the decline 
of individual tissue function with age130. Evidence that 
global histone methylation levels change with age raise the 
possibility that global acquisition or loss of stable methyl 
marks could contribute to organismal ageing. Specifically, 
H4K20me3 levels increase with age in rat livers131, but 
H3K27me3 levels show a decrease in somatic tissues with 
age in C. elegans132. Heterochromatin seems to decrease 

in cells from older individuals133 or in cells from patients 
with the premature ageing disease Hutchinson–Gilford 
progeria syndrome (HGPS)134. Cells from individuals with 
HGPS also show decreased H3K27me3 on the inactive 
X chromosome as well as a decrease in the level of the 
H3K27 trimethyltransferase EZH2 (REF. 135). These results 
suggest that a global decrease in heterochromatin and the 
concomitant misregulation and misexpression of many 
genes that are silenced in young healthy individuals could 
have a causal role in ageing.

Several recent studies have shown that manipula-
tions of histone methyltransferases136–138 and demeth-
ylases132,137,139,140 alter lifespan in C.  elegans and 
D. melanogaster. Knockdown of the methyltransferases 
SET-domain-containing 2 (set-2), set-4, set-6, set-9, set-15, 
set-26 and blmp-1 and of the demethylases retinoblastoma- 
binding protein related 2 (rbr-2), lsd-1, T26A5.5 (a hypo-
thetical protein) and utx-1 each affected longevity in 
C. elegans132,136,137,139,141. It was further shown that knock-
down or mutation of the H3K4 methyltransferase SET-2 
and of the H3K4 methylation complex components 
ASH-2 and WDR-5 predominantly extends C. elegans 
lifespan by influencing the activity of these components 
in the germline137. Consistent with these findings, over-
expression of the H3K4me3 demethylase RBR-2 extends 
worm lifespan, whereas mutation or knockdown of RBR-2 
causes reversion to the long lifespan caused by mutation 
or knockdown of members of the H3K4 methyltransferase 
complex137. The D. melanogaster homologue of RBR-2, 
little imaginal discs (LID), has also been shown to slow 
ageing140, suggesting that H3K4me3-regulatory proteins 
are conserved regulators of longevity. Also, knockdown 
or deletion of one copy of the H3K27me3 demethyl-
ase UTX-1 was sufficient to extend worm lifespan in a 
germlin e-independent manner132,139. Interestingly, a recent 
report in D. melanogaster showed that heterozygous muta-
tion of Enhancer of zeste (E(z)), a member of the H3K27 
trimethyltransferase PRC2 complex, also extends longev-
ity138. The apparent contradiction that mutations in both 
a H3K27 methyltransferase and in a demethylase extend 
lifespan could be due to specific regulation of longevity in 
different tissues, cells or organisms, perhaps depending on 
the loci targeted by these enzymes. Methyltransferases and 
demethylases could be potential targets of small molecules 
to slow ageing and to prevent diseases. However, these 
links to ageing need to be investigated in higher organ-
isms. Histone methyl marks have not yet been shown to 
play a direct part in regulating longevity. In lower organ-
isms, this could be addressed by investigating the impact 
on longevity of mutating a given lysine residue to an 
amino acid that cannot be methylated, although caution 
would have to be exercised in the interpretation of these 
results, as altering the lysine residue by mutation is not 
equivalent to the loss of modification.

Inheritance of histone methylation marks
The examples of cancer and ageing indicate the impor-
tance of maintaining the correct patterns of methylation 
throughout the lifetime of an organism. Therefore, there 
need to be mechanisms to ensure the stability of meth-
ylation through cell divisions. By contrast, most methyl 

Table 3 | Global changes in histone methylation in various types of cancers

Cancer type Methyl mark Consequence

Prostate cancer ↓H3K4me2 Higher recurrence

↓H4K2me2 Higher recurrence

Lung cancer ↓H3K4me2 Poorer survival

Kidney cancer ↓H3K4me2 Poorer survival

Breast cancer ↓H3K4me2 Poorer survival

↓H3K27me3 Poorer survival

↓H4R3me2 Worse clinical outcomes

↓H4K20me3 Worse clinical outcomes

Pancreatic cancer ↓H3K4me2 Poorer survival

↓H3K9me2 Poorer survival

↓H3K27me3 Poorer survival

Gastric adenocarcinoma  ↑H3K9me3 Poorer survival

Ovarian cancer ↓H3K27me3 Poorer survival

Lymphomas ↓H4K20me3 Associated with

Colon adenocarcinomas ↓H4K20me3 Associated with

Correlative studies report altered histone (H) methylation patterns (dimethylation (me2), 
trimethylation (me3)) in specific cancer types. Arrows indicate whether the change is an 
increase (↑ ) or decrease (↓) in methylation. In some of these cases, multiple methyl marks 
have been shown to change in concert, highlighting the importance of combinatorial 
modifications effect on biological functions. A full list of references for this table can be 
found in Supplementary information S2 (reference list). K, lysine; R, arginine.
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Box 3 | Chromosomal translocations of histone methyltransferases and demethylases

Gene names 
(alternative names)

Methyl mark Chromosomal 
location

Fused gene Chromosomal 
translocation

Cancer type 
associated with 
translocation

KMT2A (MLL1, HRX, 
TRX1, ALL1) 

Histone H3 lysine 4 
(H3K4)

11q23 AF4, ELL, AF9, ENL, 
AF6 and others

t(X;11)(q13;q23)  
t(1;11)(p32;q23)  
t(1;11)(q21;q23)  
t(2;11)(p21;q23)  
t(4;11)(q21;q23)  
t(6;11)(q27;q23)  
t(9;11)(p22;q23)  
t(10;11)(p11–13;q23) 
t(11,11)(q23;q25)  
t(11;14)(q23;q32)  
t(11;17)(q23;q12)  
t(11;17)(q23;q21)  
t(11;17)(q23;q25)  
t(11;19)(q23;p13)

Acute myeloid leukaemia, 
acute lymphoblastc 
leukaemia, mixed lineage 
leukaemia

KMT2D (MLL4, ALR) H3K4 19q13.1 HBXIP t(19;17)(q13;p11) Hepatocellular carcinoma 
(HCC), hepatitis B virus 
related HCCs

KMT3B (NSD1, STO, 
SOTOS)

H3K36 5q35 NUP98 t(5;11)(q35;p15.5)  
t(5;2)(q35;p23)

Acute myeloid leukaemia, 
Sotos syndrome

NSD2 (WHS, TRX5, 
MMSET)

H3K36 
dimethylation 
(H3K36me2)

4p16.3 IGH t(4;14)(p16;q32) Multiple myeloma 
tumours, lung cancers, 
Wolf–Hirschhorn 
syndrome

NSD3 (WHSC1L1) H3K36me2 8p11.2 NUP98 t(8;11)(p11;p15)  
t(8;16)(p11;p13)

Acute myeloid leukaemia, 
myelodysplastic 
syndrome

KDM4C (JMJD2C, 
GASC1, JHDM3C)

H3K9me2,  
H3K9me3, 
H3K36me2, 
H3K36me3

9p24.1 IGH t(9;14)(p24.1;q32) Mucosa-associated 
lymphoid tissue 
lymphoma, chronic 
myeloid leukaemia

KDM5A (JARID1A, 
RBP2, RBBP2)

H3K4me2,  
H3K4me3

12p11 NUP98 t(11;21;12)(p15;p13;p13) Acute myeloid leukaemia

JMJD1C (TRIP8) H3K9 10q21.3 46,XY,inversion(10)
(q11.1;q21.3)

Autism

HSPBAP1 (PASS1) Unknown 3q21.1 DIRC3 t(2;3)(q35;q21) Familial renal cell cancer

Histone methyltransferases and demethylases are found at sites of 
chromosomal translocations in several reported types of cancer (see the 
table), suggesting that regulation of histone methylation could have a 
causal role in tumorigenesis. For comprehensive reviews on histone 
modifications and cancer please see REFS 102,103.

A notable example of a histone methyltransferase implicated in 
tumorigenesis is the H3K4 methyltransferase MLL1, which is a frequent 
target of chromosomal translocations in acute myeloid leukaemia (AML), 
acute lymphoblastic leukaemia (ALL) or mixed lineage leukaemia (MLL). 
It is unclear whether it is the misregulation of the methyltransferase 
activity of MLL1 or the activity of the new fusion proteins that is 
tumorigenic. Fusion of MLL and AF9 causes cell proliferation and 
increased expression of the homeobox protein HOXA9, and mutation of 
the DNA binding or recruitment domains of this fusion protein prevented 
leukaemic transformations111. Interestingly, MLL1 has roles in proliferation 
of normal haematopoietic stem cells186, which may be the cells of origin 
for some leukaemias.

The gene encoding the histone H3 lysine 36 (H3K36) methyltransferase 
nuclear receptor binding SET domain protein 1 (NSD1) has also been 
shown to be a site of translocations in various cancers. A translocation 
between nucleoporin 98 (NUP98) and NSD1 occurs in 5% of childhood 
acute myeloid leukaemias187. The fusion protein, which includes the PHD 
and SET domains of NSD1, is sufficient to cause AML in mice coincidently 

with increases in H3K36me and decreases in H3K27me3 at specific 
genomic loci109. Whereas the wild-type fusion protein permits myeloid 
progenitor proliferation, point mutations in the SET domain of this fusion 
protein do not, suggesting that the methyltransferase activity of this 
fusion protein is essential for its tumorigenic potential109.

In certain leukaemias, NUP98 is fused to lysine-specific demethylase 5A 
(also known as JARID1A); the fusion protein contains the PHD domain but 
not the demethylase domain of JARID1A188. This fusion protein or an 
artificial fusion of the PHD domain of PHF23 to NUP98 induces AML. 
Mutations in the PHD domain that eliminate its H3K4me3 binding abolish 
its leukaemic transformative potential110. These results suggest that it is 
the mislocalization of NUP98 by the PHD domain, rather than the 
misregulation of JARID1A, that causes the leukaemia.

These findings suggest that loss- and/or gain-of-function through 
translocation events can cause cancer, although the possibility that 
some of the translocation events may represent ‘passenger’ 
translocations cannot be excluded. It is interesting to note that, in some 
cases, such as in NSD1 proteins in leukaemia, cancer progression is 
dependent on the methylase or demethylase activity of these proteins. 
In other cases, such as in the NUP98–JARID1A fusion protein, the 
capacity to bind to a certain methyl mark through the PHD domain may 
cause progression by inappropriate targeting of a fusion protein to 
novel genomic locations.
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Stable isotope labelling by 
amino acids in cell culture
(SILAC). Two cell populations 
(an experimental one and a 
control one) that have been 
grown in media containing only 
heavy or only light forms of 
particular amino acids can be 
compared by quantitative 
mass spectrometry proteomics.

Epigenetic
In this context, we use the term 
‘epigenetic’ to refer to heritable 
changes in gene expression 
that occur without alterations 
in DNA sequence.

marks need to be ‘reset’ in the germline, but some recent 
evidence suggests that stability of methylation across 
generation s is possible.

Inheritance through cell divisions. Initial in vitro and 
ex vivo studies on the SV40 replication fork showed that 
histones were not present immediately after replica-
tion and that nucleosomes reassociated with the DNA 
a short distance (225–285 nucleotides) from the branch 
point142. A subsequent in vitro study using a hybrid 
bacterio phage and a eukaryotic DNA replication sys-
tem demonstrated that the entire histone octamer could 
be segregated to one of the newly replicated daughter 
strands without being dissociated from the DNA143. 
More recently, stable isotope labelling by amino acids in 
cell culture (SILAC) quantitative mass spectrometry 
analysis using temporally labelled histones suggests that  
H3.1–H4 tetramers are conservatively segregated, whereas 
new H2A and H2B histones are incorporated into new 
DNA144. Similarly, in S. cerevisiae, analysis using inducible 
expression of tagged histone H3 revealed that there was a 
predominantly conservative inheritance of whole nucleo-
somes but that actively transcribed genes did contai n both 
new and old H3–H4 dimers145.

Moreover, the mechanism by which PTMs are trans-
mitted seems to be inherently problematic. If histones 
are indeed maintained through replication on one 
daughte r strand, how can histones with the same PTMs 
be reintroduce d to the appropriate DNA loci on the 

other strand? If histones are removed during DNA 
replication and then replaced with new histones after 
replication, the problem of reintroducing the same PTMs 
on appropriate histones is doubled. If histone dimers are 
split to each daughter strand in a semi-conservative man-
ner, then marks would only have to be reintroduced on 
the other dimers; recent papers suggest that this is a rare 
event144,145 but that inheritance of histone methylation  
is also rare.

Several current theories exist to explain the propa-
gation of histone PTMs96,146,147 (FIG. 1). First, histones on 
newly synthesized DNA could be immediately modified 
to maintain an epigenetic memory. Interestingly, studies 
showing that MLL is retained on mitotic chromatin148 
and that PcG proteins remain bound to chromatin during 
DNA replication149 provide some evidence in support of 
this hypothesis. Another theory19 suggests that histones 
are replicated in a semi-conserved manner (FIG. 1a);  
each daughter chromosome would get one-half of the 
histone octamer and then PTMs on the newly introduced 
histones would be introduced using the old histones as 
a template. Alternatively, entire histone octamers could 
be segregated to each of the daughter strands, and the 
PTMs of new histones could be informed by neigh-
bouring marked histones (FIG. 1b). Another idea is that 
DNA methylation could help to maintain histone PTM 
modifications by recruiting methyl modifiers146 (FIG. 1c). 
However, it is unknown whether DNA methylation 
always correlates with inherited histone methylation, and 
DNA methylation has not yet been observed in quantifi-
able amounts in C. elegans150, which displays inheritance 
of histone methylation marks.

Another model suggests that lncRNAs could be inher-
ited and could subsequently recruit appropriate histone-
modifying enzymes to regions that need to maintain an 
epigenetic memory38,96. Also, because the RNAi machin-
ery can play a part in maintaining heterochromatin (as 
discussed above)39–41, inherited small interfering RNAs 
(siRNAs) could be a mechanism of re-establishing his-
tone methylation patterns. Another viable model is that 
free histones are modified before binding (‘pre-marked’) 
to the newly synthesized DNA (FIG. 1d). In this scenario, 
only a limited number of methylation marks would be 
inherited or else the cell would need hundreds of unique 
combinations of modified free histones to ensure faith-
ful inheritance. These models rely on a system in which 
the cell ‘knows’ which methyl marks it must maintain 
on newly synthesized DNA and which marks should be 
erased; how this could be accomplished is unknown. The 
above-discussed theories are not mutually exclusive and 
could potentially work together.

Transgenerational epigenetic inheritance. Traits can be 
inherited in a non-Mendelian fashion by extranuclear 
nucleic acids, gene conversion, mosaicism, prions and 
epigenetic transgenerational inheritance, adding to the 
complexity of phenotypic diversity. Epigenetic inher-
itance has been implicated in inherited phenotypic 
differ ences in model organisms ranging from yeast to 
rats, and correlative reports suggest that transgenera-
tional epigenetic effects occur in humans (reviewed in  
REF. 151), although the molecular mechanisms have not 
yet been deciphered. Some transgenerational effects of 
RNAi have been shown to be transmitted from genera-
tion to generation in C. elegans152–154, raising the possibil-
ity that a subclass of small RNAs could — through their 
reported role in maintaining heterochromatin — be one 
mechanism of re-establishing appropriate histone methyl-
ation patterns in descendants. Indeed, dsRNAs that are 
directed against smg-1 led to inherited siRNAs and altered 
H3K9me3 levels at the smg-1 locus for two generations 
after the removal of C. elegans from the dsRNA44.

Some specific cases of transgenerational epigenetic 
inheritance seem to involve inherited histone methyl-
ation patterns151, although transmission of chromatin 
modification through the gametes has not been conclu-
sively shown. Histone modifications can be propagated 
during mitosis and meiosis146,149,155,156; however, histone 
methylation marks are generally thought to be erased 
between generations by epigenetic reprogramming157. 
Nevertheless, possible inheritance of histone methylation 
levels has been reported in Dictyostelium discoideum and 
C. elegans. Live-cell imaging of single-gene transcription 
in D. discoideum suggests that states of high levels of tran-
scription of specific genes can be passed from mother to 
daughter158. Interestingly, knockout of the H3K4 meth-
yltransferase Set1, the H3K4 methyltransferase complex 
subunit Ash2 or mutation of H3K4 to alanine eliminated 
the inheritance of active transcriptional states158. Deletion 
of the DNA (cytosine-5)-methyltransferase (DnmA) or  
the H3K36 methyltransferase Set2 did not have this 
effect158. Mutations of one of the C. elegans homo-
logues of KDM1A, SPR-5, causes progressive sterility159.  
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Figure 1 | Models for the inheritance of histone methylation marks. Several models for the inheritance of histone 
methylation marks have been proposed and are depicted here. a | Semiconservative replication of histones (and their 
marks). The half of the histone octamer that is inherited (and therefore appropriately marked) could inform the  
cell machinery to mark the newly added histone proteins. b | Entire histone octamers are segregated to each  
of the daughter strands in an alternating fashion, and the newly synthesized histones could be informed by the 
neighbouring parental histone marks. c | DNA methylation acts as a signal to methylate specific new histones.  
d | Deposition of histones containing pre-existing modifications. Previously labelled free histones could be recruited 
to important sites at which an epigenetic memory is needed and integrated into newly synthesized DNA.
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