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Abstract

The human body is composed of diverse cell types with distinct functions. While it is known that

lineage specification depends on cell specific gene expression, which in turn is driven by

promoters, enhancers, insulators and other cis-regulatory DNA sequences for each gene1–3, the

relative roles of these regulatory elements in this process is not clear. We have previously

developed a chromatin immunoprecipitation-based microarray method (ChIP-chip) to locate

promoters, enhancers, and insulators in the human genome4–6. Here, we use the same approach to
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identify these elements in multiple cell types and investigated their roles in cell type-specific gene

expression. We observed that chromatin state at promoters and CTCF-binding at insulators are

largely invariant across diverse cell types. By contrast, enhancers are marked with highly cell

type-specific histone modification patterns, strongly correlate to cell type-specific gene expression

programs on a global scale, and are functionally active in a cell type-specific manner. Our results

defined over 55,000 potential transcriptional enhancers in the human genome, significantly

expanding the current catalog of human enhancers and highlighting the role of these elements in

cell type-specific gene expression.

We performed ChIP-chip analysis as previously described5 to determine binding of CTCF

(insulator-binding protein) and the coactivator p300, and patterns of histone modifications in

five human cell lines: cervical carcinoma HeLa, immortalized lymphoblast GM06690 (GM),

leukemia K562, embryonic stem cells (ES), and BMP4-induced ES cells (dES). We first

investigated 1% of the human genome selected by the ENCODE Consortium7, using DNA

microarrays consisting of 385,000 50-mer oligos that tile 30 million basepairs (bp) at 36bp

resolution. We examined mono- and tri-methylation of histone H3 lysine 4 (H3K4me1,

H3K4me3) and acetylation of histone H3 lysine 27 (H3K27ac) at well-annotated promoters,

reasoning that the state of these histone modifications would vary in a cell type-specific

manner. To our surprise, the chromatin signatures at promoters are remarkably similar

across all cell types (Figure 1A). Quantitative comparison of ChIP-chip enrichment (see

Supplementary Information) revealed highly-correlated histone modification patterns at

promoters across all cell types, with an average Pearson correlation coefficient of 0.71

(Figure S1A). This observation also holds for the larger set of Gencode promoters (Figure

S2).

Next, we identified putative insulators in the ENCODE regions for these cell types based on

CTCF binding, as mammalian insulators are generally understood to require CTCF to block

promoter-enhancer interactions3. We observed nearly identical CTCF binding sites (Table

S1, Figure S1E) and highly-correlated CTCF enrichment patterns across all five cell types

(Figure S1B), providing experimental support for the mostly cell type invariant function of

CTCF as suggested by DNase hypersensitivity mapping results8.

We then investigated transcriptional enhancers in the ENCODE regions, performing ChIP-

chip in HeLa, K562, and GM cells to locate binding sites for the transcriptional coactivator

protein p300 (Tables S2–S4) as p300 is known to localize at enhancers9. We observed

highly cell type-specific histone modification patterns at distal p300 binding sites (Figure

S1F), in sharp contrast to the similarities in histone modifications across cell types at

promoters. We then employed our chromatin signature-based prediction method5 to identify

additional enhancers in the ENCODE regions in these cell types (Figure 1B, Table S5–S9).

In addition to the characteristic H3K4me1 enrichment, predicted enhancers are frequently

marked by acetylation of H3K27, DNaseI hypersensitivity, and/or binding of transcription

factors and coactivators, and many contain evolutionarily conserved sequences (Figure S3–

S4, see Supplementary Information). Unlike promoters and insulators, but similar to p300

binding sites, the histone modification patterns at predicted enhancers are largely cell type-

specific (Figure 1B, S1D), in agreement with observations that H3K4me1 is distributed in a

cell type-specific manner10.

These results suggest that enhancers are the most variable class of transcriptional regulatory

element between cell types and are likely of primary importance in driving cell type-specific

patterns of gene expression. Knowledge of enhancers is therefore critical for understanding

mechanisms that control cell type-specific gene expression, yet our incomplete knowledge

of enhancers in the human genome has confined previous studies of gene regulatory

networks mainly to promoters. To identify enhancers on a genome-wide scale and facilitate
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global analysis of gene regulatory mechanisms, we performed ChIP-chip throughout the

entire human genome as described6, mapping enrichment patterns of H3K4me1 and

H3K4me3 in HeLa cells. Using previously described chromatin signatures for enhancers5,

we predicted 36589 enhancers in the HeLa genome (Figure 2A, Table S10, see

Supplementary Information). This method correctly located several previously characterized

enhancers, including the β-globin HS2 enhancer11 and distal enhancers for the PAX612 and

PLAT (t-PA)13 genes (Figure 2B). Most predicted enhancers are distal to promoters (Figure

2C), exhibit strong evolutionary conservation (see Supplementary Information), and are

marked by histone acetylation (H3K27ac), binding of coactivator proteins (p300, MED1), or

DNaseI hypersensitivity (DHS) (Figure 2A, 2D) (see Supplementary Information). We

verified the functional potential of predicted HeLa enhancers using luciferase reporter assays

as described5 (see Methods). Of nine predicted enhancers that we evaluated, seven (78%)

were active in reporter assays (Figure 2E, Table S11), with median activity significantly

different from random genomic regions (p = 3.25 × 10−4). These results support the

suitability of using chromatin signatures to identify genomic regions with enhancer function.

We evaluated the predicted enhancers for conserved motif-like sequences using several

hundred shuffled TRANSFAC motifs across 10 mammals in a phylogenetic framework that

tolerates motif movement, partial motif loss, and sequencing or alignment discrepancies (see

Methods). Predicted enhancers showed conservation for 4.3% of instances (at Branch-

Length-Score > 50%, see Methods), substantially greater than for the remaining intergenic

regions (2.9%, p < 1 × 10−100) and even promoter regions (3.9%, p = 1 × 10−57).

Additionally, testing a list of 123 unique TRANSFAC motifs as described14 (see

Supplementary Information), we found that 67 (54%) are over-conserved and 39 (32%) are

enriched in predicted enhancers (Table S12). We also performed de novo motif discovery in

enhancer regions using multiple alignments of 10 mammalian genomes (see Methods),

revealing 41 enhancer motifs, of which 19 match known transcription factor motifs while 22

are novel (Table S13). These motifs show conservation rates between 7% and 22% in

enhancers (median 9.3%), compared to only 1.1% for control shuffled motifs of identical

composition. Furthermore, over 90% of these motifs appear to be unique to enhancers, as

only 4 motifs are enriched in promoter regions and 12 are in fact depleted in promoters

(Table S13), indicating that predicted enhancers contain unique regulatory sequences that

may be specific to enhancer function.

To investigate the association of predicted enhancers with HeLa-specific gene expression,

we used Shannon entropy15 to rank genes by the specificity of their expression levels in

HeLa as compared to three other cell lines (K562, GM06990, IMR90) (Figure S5, see

Supplementary Information), then plotted the distribution of enhancers around genes within

insulator-delineated domains (as defined by CTCF binding sites in Figure S6, see

Supplementary Information). Predicted enhancers are strikingly enriched near HeLa-specific

expressed genes (Figure 3A), particularly within 200 kb of promoters. We observed a 1.83-

fold enrichment (p = 4.71 × 10−279) of predicted enhancers around HeLa-specific expressed

genes relative to random (see Supplementary Information) and significant depletion of

enhancers around non-specific expressed genes (p = 5.43 × 10−15) and HeLa-specific

repressed (p = 4.63 × 10−2) genes.

To more directly investigate the relationship between chromatin modification patterns at

enhancers and cell type-specific gene expression, we expanded our global analysis to

another cell type. We performed genome-wide ChIP-chip for H3K4me1 and H3K4me3 in

K562 cells and identified 24566 putative enhancers in this cell type using our chromatin

signature-based enhancer prediction method (Table S14) (see Supplementary Information).

Consistent with results in the ENCODE regions, the vast majority of enhancers predicted in

K562 and HeLa cells are unique to either cell type (Figure 3B) even though most expressed

Heintzman et al. Page 3

Nature. Author manuscript; available in PMC 2010 July 27.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



genes are common between the cell types (Figure 3C). Chromatin modification profiles at

predicted enhancers throughout the genome are highly cell type-specific (Figure 3D), with a

Pearson correlation coefficient of −0.32. Furthermore, these differences seem to have

regulatory implications, as domains with HeLa-specific expressed genes are enriched in

HeLa enhancers but depleted in K562 enhancers, and vice-versa (Figure 3E) (see

Supplementary Information). These observations hold across all five cell types in the

ENCODE regions (see Supplementary Information). To assess the cell type-specificity of

enhancer activity, we cloned enhancers predicted specifically in K562 cells (and not in HeLa

cells) and subjected them to reporter assays in HeLa cells as described above. Of nine K562-

specific enhancers tested, only two (22%) were active in HeLa cells (Figure S7), and the

median activity of the K-562 specific enhancers was not significantly different from random

(p = 0.11), suggesting that the enhancer chromatin signature is a reliable marker of cell type-

specific enhancer function.

Though most enhancers are cell type-specific, the presence of predicted enhancers shared by

HeLa and K562 (Figure 3B, 3D) suggests that some enhancers may be active in multiple cell

types or conditions. We compared the HeLa enhancer predictions with the results of several

genome-wide studies of binding sites for sequence-specific transcription factors in different

cell types, namely estrogen receptor16 (ER), p5317, and p6318 in MCF7, HCT116, and

ME180 cells, respectively. Interestingly, significant percentages of binding sites for each

transcription factor (from 21.4% to 32.6%) overlap with predicted enhancers in HeLa cells

(Figure 4A, Table S15), in sharp contrast to a significant depletion of the repressor NRSF/

REST19 at predicted enhancers and minimal overlap with CTCF-binding sites (see

Supplementary Information).

To examine the potential role of enhancers in regulating inducible gene expression, we

treated HeLa cells with the cytokine interferon-gamma (IFNγ) and identified binding sites

for the transcription factor STAT1 throughout the genome using ChIP-chip. STAT1

generally binds its target DNA sequences only after IFNγ induction20 with a small fraction

of binding possible prior to induction21. In IFNγ-treated HeLa cells, we identified 1969

STAT1 binding sites (Table S16), with 85.8% of STAT1 binding sites occurring distal to

Known Gene 5′-ends. Comparison of these distal STAT1 binding sites with recent ChIP-seq

analysis of STAT1 binding in uninduced HeLa cells21 shows only 6.5% of IFNγ-induced

STAT1 binding sites are occupied by STAT1 prior to induction. We observed that 429 distal

STAT1 binding sites overlapped enhancers predicted in HeLa cells prior to induction

(Figure 4A, Table S15). The H3K4me1 enhancer chromatin signature is present prior to

induction at these STAT1 binding sites, which we designated as STAT1 group I, while no

evidence of this signature is visible at the remaining 1260 distal STAT1 binding sites,

designated STAT1 group II (Figure 4B). Intriguingly, we observed significant relative

induction of expression of genes in the domains of STAT1 group I binding sites after just 30

minutes of IFNγ-induction, while induction levels remained relatively unchanged for genes

in the domains of other distal STAT1 group II binding sites during this time (Figure 4C).

These findings suggest that an enhancer chromatin signature confers increased regulatory

responsiveness to a STAT1 binding site, in agreement with our previous discovery of

functional enhancers in HeLa cells that were marked by the enhancer chromatin signature

but were not active until they were bound by STAT15.

Our findings offer the first genome-wide evaluation of the relationship between chromatin

modifications at transcriptional enhancers and global programs of cell type-specific gene

expression. We determined over 55,000 potential enhancers in the human genome and

showed that the chromatin modifications at the enhancers correlate with cell type-specific

gene expression and functional enhancer activity. Perhaps the most intriguing observation is

the large number of enhancers identified from the investigation of just two cell lines. Since
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enhancers are mostly cell type-specific, our data suggest the existence of a vast number of

enhancers in the human genome, on the order of 105–106, that are used to drive specific

gene expression programs in the 200 cell types of the human body. Future experiments with

diverse cell types and experimental conditions will be necessary to comprehensively identify

these regulatory elements and understand their roles in the specific gene expression program

of each cell type.

Methods Summary

HeLa, K562, and IMR90 cells were obtained from ATCC. GM06990 cells were acquired

from Coriell. All were cultured under recommended conditions. Passage 32 H1 cells were

cultured as described22 with/without 200ng/ml BMP4 for 6 days (RND systems). Chromatin

preparation, ChIP, DNA purification, and LM-PCR were performed as described using

commercially available and custom antibodies, and ChIP samples were hybridized to tiling

microarrays and to custom condensed enhancer microarrays (NimbleGen Systems, Inc.) as

described5,6. DNase-chip was performed and the data analyzed as described23. Cloning and

reporter assays were performed as described5. Data were normalized as described5 and

ChIP-chip targets for CTCF, p300, MED1, and STAT1 were selected with the Mpeak

program. We used MA2C24 to normalize and call peaks on Nimblegen HD2 arrays.

Enhancers were predicted and K-means clustering, intersection analysis, and evolutionary

conservation analysis were performed as described5. Motif analysis was performed as

described25. Gene expression was analyzed using HGU133 Plus 2.0 microarrays

(Affymetrix) as described5. Specificity of expression was determined using a function of

Shannon entropy15. We use the MAS5 algorithm from the Bioconductor R package to

generate gene expression Present/Absent calls. Detailed methods may be found in the

Supplementary Information. Supplementary data for the microarray experiments has been

formatted for viewing in the UCSC genome browser via

http://bioinformatics-renlab.ucsd.edu/enhancer

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Chromatin modifications at promoters are cell type-invariant while those at enhancers
are cell type-specific

We employed ChIP-chip to map histone modifications (H3K4me1, H3K4me3, and

H3K27ac) in the ENCODE regions in five cell types (HeLa, GM, K562, ES, dES). (A) We

performed k-means clustering on the chromatin modifications found +/− 5 kb from 414

promoters, and observe them to be generally invariant across cell types. (B) As in (A), but

clustering on 1423 non-redundant enhancers predicted on the basis of chromatin signatures.
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Figure 2. Genome-wide enhancer predictions in human cells

(A) We predict 36589 enhancers in HeLa cells based on chromatin signatures for H3K4me1

and H3K4me3 as determined by ChIP-chip using genome-wide tiling microarrays and

condensed enhancer microarrays (see Supplementary Information). Enhancer predictions are

located at the center of 10 kb windows as indicated by black triangles, and ordered by

genomic position. Enrichment data are shown for histone modifications (H3K4me1,

H3K4me3, and H3K27ac), DNaseI hypersensitivity (DHS), and binding of p300 and MED1.

(B) ChIP-chip enrichment profiles at several known enhancers (indicated in red) recovered

by prediction: β-globin HS2 (chr11:5258371-5258665)11, PAX6

(chr11:31630500-31635000)12, PLAT (chr8:42191500-42192400)13 (5 kb windows

centered on enhancer predictions; images generated in part at the UCSC Genome Browser).

(C) Most enhancers have intergenic (56.3%) or intronic (37.9%) localization relative to

UCSC Known Gene 5′-ends. (D) Most enhancers (64.8%) are significantly marked by

DNaseI hypersensitivity, binding of p300, binding of MED1, or some combination thereof.

(E) 7 of 9 enhancers predicted in HeLa cells were active in reporter assays (red bars) as

compared to none of the random fragments selected as controls (gray), where activity is

defined as relative luciferase value greater than 2.33 standard deviations (p = 0.01) above

the median random activity (gray dashed line). Error bars represent standard deviation.

Regions of ~1–2kb in size were randomly selected for validation in reporter assays based on

histone modification patterns as in (A), overlap with features in (D), and sequence features

amenable to cloning via PCR (see Supplementary Information).
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Figure 3. Chromatin modifications at enhancers are globally related to cell type-specific gene
expression

(A) Enhancer localization relative to genes that are HeLa-specific expressed compared to

K562, GM06990, and IMR90 cells (red), non-specific expressed (green), HeLa-specific

repressed (black), and a random distribution (dashed grey). Predicted enhancers are enriched

around HeLa-specific expressed genes within insulator-defined domains and depleted in

domains of ubiquitous or non-expressed genes (p-value reflects significance of enhancer

enrichment in domains of HeLa-specific expressed genes, see Supplementary Information).

(B) Most enhancers predicted in HeLa and K562 cells are cell-type specific while (C) most

genes in HeLa and K562 cells are not specifically expressed; n = integer number of

enhancers or genes in each set. (D) Chromatin modification patterns are cell type-specific at

the majority of 55454 enhancers predicted in HeLa and K562 cells. (E) Comparison of

enhancer enrichment and differential gene expression between HeLa cells and K562 cells
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revealed that HeLa enhancers are enriched near HeLa-specific expressed genes (blue line)

while K562 enhancers are enriched near K562-specific expressed genes (orange line).
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Figure 4. Chromatin modifications are associated with increased regulatory response of
transcription factor binding sites at enhancers

(A) Predicted enhancers in steady-state HeLa cells overlap with significant fractions of

transcription factor binding sites (ER, p53, p63) in diverse cell types (MCF7, HCT116,

ME180), as well as with STAT1 binding sites in HeLa cells treated with the cytokine

interferon-gamma (HeLa-IFNγ) (TFBS = Transcription factor binding sites, TF =

Transcription Factor). (B) Hundreds of STAT1 binding sites after treatment (+IFNγ) are

marked by the enhancer chromatin signature in HeLa cells even prior to treatment (−IFNγ).
(C) In HeLa cells treated with IFNγ (upper panel), gene expression is significantly (p = 5.8 ×

10−8) more likely to be induced by STAT1 binding at sites with the enhancer chromatin

signature (red, STAT1 group I) than by STAT1 binding at other distal sites (red, STAT1

group II) relative to a random distribution (gray). Error bars represent standard deviation.
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