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Abstract—Over the past decade, dramatic increases in computa-
tional power and improvement in image analysis algorithms have
allowed the development of powerful computer-assisted analytical
approaches to radiological data. With the recent advent of whole
slide digital scanners, tissue histopathology slides can now be
digitized and stored in digital image form. Consequently, digitized
tissue histopathology has now become amenable to the application
of computerized image analysis and machine learning techniques.
Analogous to the role of computer-assisted diagnosis (CAD)
algorithms in medical imaging to complement the opinion of a
radiologist, CAD algorithms have begun to be developed for dis-
ease detection, diagnosis, and prognosis prediction to complement
the opinion of the pathologist. In this paper, we review the recent
state of the art CAD technology for digitized histopathology. This
paper also briefly describes the development and application of
novel image analysis technology for a few specific histopathology
related problems being pursued in the United States and Europe.

Index Terms—Computer-aided diagnosis, computer-assisted in-
terpretation, digital pathology, histopathology, image analysis, mi-
croscopy analysis.

I. INTRODUCTION AND MOTIVATION

T
HE widespread use of computer-assisted diagnosis

(CAD) can be traced back to the emergence of digital

mammography in the early 1990s [1]. Recently, CAD has

become a part of routine clinical detection of breast cancer

on mammograms at many screening sites and hospitals [2] in
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the United States. In fact, CAD has become one of the major

research subjects in medical imaging and diagnostic radiology.

Given recent advances in high-throughput tissue bank and

archiving of digitized histological studies, it is now possible

to use histological tissue patterns with computer-aided image

analysis to facilitate disease classification. There is also a

pressing need for CAD to relieve the workload on pathologists

by sieving out obviously benign areas, so that the pathologist

can focus on the more difficult-to-diagnose suspicious cases.

For example, approximately 80% of the 1 million prostate

biopsies performed in the U.S. every year are benign; this

suggests that prostate pathologists are spending 80% of their

time sieving through benign tissue.

Researchers in both the image analysis and pathology fields

have recognized the importance of quantitative analysis of

pathology images. Since most current pathology diagnosis is

based on the subjective (but educated) opinion of pathologists,

there is clearly a need for quantitative image-based assessment

of digital pathology slides. This quantitative analysis of digital

pathology is important not only from a diagnostic perspective,

but also in order to understand the underlying reasons for a

specific diagnosis being rendered (e.g., specific chromatin

texture in the cancerous nuclei which may indicate certain

genetic abnormalities). In addition, quantitative characteriza-

tion of pathology imagery is important not only for clinical

applications (e.g., to reduce/eliminate inter- and intra-observer

variations in diagnosis) but also for research applications

(e.g., to understand the biological mechanisms of the disease

process).

A large focus of pathological image analysis has been on

the automated analysis of cytology imagery. Since cytology im-

agery often results from the least invasive biopsies (e.g., the cer-

vical Pap smear), they are some of the most commonly encoun-

tered imagery for both disease screening and biopsy purposes.

Additionally, the characteristics of cytology imagery, namely

the presence of isolated cells and cell clusters in the images and

the absence of more complicated structures such as glands make

it easier to analyze these specimens compared to histopathology.

For example, the segmentation of individual cells or nuclei is a

relatively easier process in such imagery since most of the cells

are inherently separated from each other.

Histopathology slides, on the other hand, provide a more

comprehensive view of disease and its effect on tissues,

since the preparation process preserves the underlying tissue

architecture. As such, some disease characteristics, e.g., lym-

phocytic infiltration of cancer, may be deduced only from
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a histopathology image. Additionally, the diagnosis from a

histopathology image remains the “gold standard” in diag-

nosing considerable number of diseases including almost all

types of cancer [3]. The additional structure in these images,

while providing a wealth of information, also presents a new set

of challenges from an automated image analysis perspective. It

is expected that the proper leverage of this spatial information

will allow for more specific characterizations of the imagery

from a diagnostic perspective.

The analysis of histopathology imagery has generally fol-

lowed directly from techniques used to analyze cytology im-

agery. In particular, certain characteristics of nuclei are hall-

marks of cancerous conditions. Thus, quantitative metrics for

cancerous nuclei were developed to appropriately encompass

the general observations of the experienced pathologist, and

were tested on cytology imagery. These same metrics can also

be applied to histopathological imagery, provided histological

structures such as cell nuclei, glands, and lymphocytes have

been adequately segmented (a complication due to the com-

plex structure of histopathological imagery). The analysis of

the spatial structure of histopathology imagery can be traced

back to the works of Wiend et al. [4], Bartels [5] and Hamilton

[6] but has largely been overlooked perhaps due to the lack of

computational resources and the relatively high cost of digital

imaging equipment for pathology. However, spatial analysis of

histopathology imagery has recently become the backbone of

most automated histopathology image analysis techniques. De-

spite the progress made in this area thus far, this is still a large

area of open research due to the variety of imaging methods and

disease-specific characteristics.

A. Need for Quantitative Image Analysis for Disease Grading

Currently, histopathological tissue analysis by a pathologist

represents the only definitive method (a) for confirmation of

presence or absence of disease and (b) disease grading, or the

measurement of disease progression. The need for quantitative

image analysis in the context of one specific disease (prostate

cancer) is described below. Similar conclusions hold for quan-

titative analysis of other disease imagery.

Higher Gleason scores are given to prostate cancers, which

are more aggressive, and the grading scheme is used to predict

cancer prognosis and help guide therapy. The Gleason grading

system is based solely on architectural patterns; cytological

features are not evaluated. The standard schematic diagram

created by Gleason and his group (see Fig. 1) separated archi-

tectural features into 1 of 5 histological patterns of decreasing

differentiation, pattern 1 being most differentiated and pattern 5

being least differentiated. The second unique feature of Gleason

grading is that grade is not based on the highest (least differen-

tiated) pattern within the tumor. Recently several researchers

have reported discrepancies with the Gleason grading system

for grading prostate cancer histopathology. Many researchers

have found grading errors (both under- and over-grading) in

prostate cancer studies [7]–[11]. Similar issues with cancer

grading have been reported for other diseases such as breast

cancer [12].

Fig. 1. Schema showing different cancer grades prevalent in prostate cancer.

In light of the above, Luthringer et al. [13] have discussed

the need for changes to be made to Gleason grading system. In

late 2005, the International Society of Urologic Pathologists in

conjunction with the World Health Organization (WHO) made

a series of recommendations for modifications to the Gleason

grading system, including reporting any higher grade cancer, no

matter how small quantitatively.

Luthringer et al. [13] have also suggested the need for

re-evaluation of original biopsy material by a highly experi-

enced pathologist which could help guide patient management.

Stamey et al. [14] discussed need for developing methods to

accurately measure cancer volume and better estimate prostate

cancer to better predict progression of cancer. King et al. [8]

has similarly called for developing a methodology to help

reduce pathologic interpretation bias which would likely result

in significantly improved accuracy of prostate cancer Gleason

grading.

B. Differences in CAD Approaches Between

Radiology and Histopathology

While CAD is now being used in radiology in conjunction

with a wide range of body regions and a variety of imaging

modalities, the preponderant question has been: can CAD

enable disease detection? Note that this question, as opposed

to more diagnostic questions, is motivated by the inherent

limitation in spatial resolution of radiological data. For in-

stance, in mammography, CAD methods have been developed

to automatically identify or classify mammographic lesions. In

histopathology, on the other hand, simply identifying presence

or absence of cancer or even the precise spatial extent of cancer

may not hold as much interest as more sophisticated questions

such as: what is the grade of cancer? Further, at the histological

(microscopic) scale one can begin to distinguish between dif-

ferent histological subtypes of cancer, which is quite impossible

(or at the very least difficult) at the coarser radiological scale.

It is fair to say that since CAD in histopathology is still

evolving, the questions that researchers have started to ask of

pathology data are not as well articulated as some of the prob-

lems being investigated in radiology. A possible reason for this
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is that image analysis scientists are still trying to come to terms

with the enormous density of data that histopathology holds

compared to radiology. For instance, the largest radiological

datasets obtained on a routine basis are high-resolution chest

CT scans comprising approximately 512 512 512 spatial

elements or million voxels. A single core of prostate

biopsy tissue digitized at 40 resolution is approximately

15 000 15 000 elements or million pixels. To put this

in context, a single prostate biopsy procedure can comprise

anywhere between 12 and 20 biopsy samples or approximately

2.5–4 billion pixels of data generated per patient study. Due

to their relatively large size and the content, these images fre-

quently need to be processed in a multiresolution framework.

Also, while radiological CAD systems mostly deal with gray-

scale images, histological CAD systems often need to process

color images. Furthermore, with the recent advent of multispec-

tral and hyperspectral imaging, each pixel in a histopathology

section could potentially be associated with several hundred

sub-bands and wavelengths.

These fundamental differences in radiology and

histopathology data have resulted in specialized CAD schemes

for histopathology. While several similar reviews have been

published for CAD in medical imaging and diagnostic radi-

ology [15]–[23], to the best of our knowledge no related review

has been undertaken for digitized histopathology imagery. A

survey for CAD histopathology is particularly relevant given

that the approaches and questions being asked of histological

data are different from radiological data. The motivation

of this paper is to present a comprehensive review of the

state-of-the-art CAD methods and the techniques employed for

automated image analysis of digitized histopathology imagery.

C. Organization of This Paper

We have organized this paper to follow the general image

analysis procedures for histopathology imagery. These analysis

procedures are generally applicable to all imaging modalities.

In Section II, we describe digital pathology imaging modalities

including immunofluorescence and spectral imaging and ex-

plain the difference between cytopathology and histopathology.

In Section III, image preprocessing steps such as color nor-

malization and tissue auto-fluorescence compensation are re-

viewed. In Section IV, we discuss recent advances in detec-

tion and segmentation in histopathological images. Section V is

dedicated to feature extraction and selection at different levels,

with real-world examples. In Section VI, we review classifi-

cation and sub-cellular quantification. Finally, in Section VII

we discuss some of the potential issues that image analysis of

histopathology could be used to address in the future and pos-

sible directions for the field in general.

While there are a large number of applicable methods

for preprocessing (Section III), detection and segmentation

(Section IV), feature extraction and selection (Section V), and

classification and sub-cellular quantification (Section VI), we

will present here only some common examples. We refer the

interested reader to the references contained within the various

sections for further reading.

II. DIGITAL PATHOLOGY IMAGING MODALITIES

A. Histopathology and Cytopathology

Histopathology is the study of signs of disease using the mi-

croscopic examination of a biopsy or surgical specimen that

is processed and fixed onto glass slides. To visualize different

components of the tissue under a microscope, the sections are

dyed with one or more stains. The aim of staining is to reveal

cellular components; counter-stains are used to provide contrast.

Hematoxylin-Eosin (H&E) staining has been used by patholo-

gists for over a hundred years. Hematoxylin stains cell nuclei

blue, while Eosin stains cytoplasm and connective tissue pink.

Due to the long history of H&E, well-established methods, and

a tremendous amount of data and publications, there is a strong

belief among many pathologists that H&E will continue to be

the common practice over the next 50 years [24].

Cytology, on the other hand, is related to the study of cells in

terms of structure, function and chemistry. Resulting from the

least invasive biopsies (e.g., the cervical Pap smear), cytology

imagery is the most commonly encountered for both disease

screening and biopsy purposes. Additionally, the characteristics

of cytology imagery, namely the presence of isolated cells and

cell clusters in the images, and the absence of more complicated

structures such as glands make it easier to analyze these speci-

mens compared to histopathology.

B. Immuno-Fluorecence Imaging and Multiple

Imaging Modalities

Recently, immuno-fluorescent labeling-based image analysis

algorithms have been presented to quantify localization of pro-

teins in tissue [25]–[27]. Commonly used molecular markers

are based on chromogenic dyes (such as DAB), or fluorescent

dyes (such as Cy dyes or Alexa dyes). Fluorescent dyes have the

advantage of multiplexing the dyes to acquire images of mul-

tiple proteins. A general overview of molecular labeling, high

throughput imaging, and pattern recognition techniques is pre-

sented by Price et al. [28].

With current imaging techniques, it is not possible to simul-

taneously image H&E dyes and immuno-fluorescent molecular

biomarkers due to fluorescent characteristics of the H&E

dyes, and due to chemical interactions of H&E dyes with the

fluorescently labeled antibodies. Recently, methods have been

developed to facilitate sequential imaging and registration

techniques that enable different modalities presented digitally

from the same histological tissue section. Additionally, se-

quential imaging and registration enables imaging of multiple

immuno-fluorescent stains acquired in multiple steps rather

than conventional simultaneous multiplexing techniques. This

allows an order of magnitude increase in the number of molec-

ular markers to be imaged for the same tissue section. These

techniques make it possible to explore unexamined relation-

ships between morphology, sub-cellular spatial distribution

of proteins, and protein-protein interactions. An example of

these techniques is shown in Fig. 2. For brightfield images,

hematoxylin stains the nuclei blue [Fig. 2(a)], and for fluores-

cent images DAPI can be used to stain nuclei [blue channel in
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Fig. 2. (a) H&E image of a breast tumor tissue. Fluorescently labeled markers superimposed as green color on the H&E image, (b) �-catenin, (c) pan-keratin,
and (d) smooth muscle �-actin, markers.

Fig. 2(a)]. The first nuclei image is set as the reference image

and each of the subsequent nuclei images are registered to the

reference. Once the transformation parameters are estimated,

then all the channels at a sequential step are mapped onto

the reference coordinate system. Fig. 2(b)–(d) shows super-

imposed b-catenin, pan-keratin, and smooth muscle a-actin

markers superimposed on the H&E with green pseudo-color

[29]. Another recently developed sequential imaging method

known as MELC [30] has the ability to produce images of

the same specimen with up to 100 proteins by utilizing the

photo-bleaching characteristics of the fluorescent dyes.

One of the major problems with such “multichannel”

imaging methods is the registration of the multiplexed images,

since physical displacements can easily occur during sequen-

tial imaging of the same specimen. In [29], the authors used

mutual information-based error metrics to register the nuclei

images from sequential staining steps. While the fluorescent

images include dedicated nuclei channels (such as DAPI), the

nuclei images from the H&E images can be computed using

decomposition techniques [31], [32], or using simple ratio or

differencing methods that utilize the fact that blue wavelengths

are absorbed less than green and red channels by the hema-

toxylin dye.

C. Spectroscopic Imaging Modalities for Histopathology

In recent years, several spectral data acquisition methods

have been employed to aid the diagnosis process with additional

information about the biochemical makeup of cells and other

tissue constituents. Generally, computerized histopathology

image analysis takes as its input a three-channel (red, green,

and blue or RGB) color image captured by digital imaging

equipment (normally a CCD camera) and attempts to emulate

the manual analysis and/or provide additional quantitative

information to aid in the diagnosis. While analysis of ordinary

color images has been shown to be useful, one of the major

drawbacks is that only three color channels of the light spec-

trum are used, potentially limiting the amount of information

required for characterizing different kinds of tissue constituents.

On the other hand, recently proposed immuno-histochemistry

(IHC) methods are not sufficiently well developed for their use

in quantitative pathology [33].

Spectral methods offer a relatively inexpensive way of pro-

viding a deeper insight into tissue composition. Most of these

methods can be categorized into three broad classes: point spec-

troscopy, spectral imaging, and spectroscopic imaging. Point

spectroscopy is a well-established area of study whereby, in the

context of histopathology, the chemical composition of a tissue

sample is ascertained with the help of the spectrum emitted or

absorbed at a specific point on the biopsy. Point spectroscopy

methods can employ both visible light and beyond. Spectral

imaging, also known as multispectral or hyperspectral imaging,

measures intensity of light from the entire optical field after

exciting the sample with visible light of varying wavelengths.

Spectroscopic imaging combines the strengths of both of the

above two methods, building spatial imaging of the human

tissue in a multitude of wavelength regimes.

1) Point Spectroscopy: Vibrational spectroscopy is the most

widely researched point spectroscopy method for characteriza-

tion of normal and diseased tissue. It measures molecular vibra-

tions, induced by incident light, corresponding to the chemical

makeup at the molecular level in two different ways: absorption

of electromagnetic radiation or frequency shifts between inci-

dent and scattered light—the so-called Raman scattering effect.

In case of infrared (IR) absorption spectroscopy, the sample is

irradiated with a mid-IR beam and the transmitted light is exam-

ined for absorption of energy. The absorption spectrum, a plot

of absorption versus different wavelengths, can reveal the bio-

chemical makeup of the molecules. IR spectroscopy has been

used to analyze tissue constituents at a molecular level for al-

most 60 years [34], [35]. Indeed, IR spectra was investigated

for characterization of normal and neoplastic tissue as far back

as 1952 by Woernley [36], who also showed that the absorption

at certain frequencies can be correlated with the concentrations

of nucleic acids in tissues. Recent advances in machine learning

and pattern recognition algorithms and the development of the

IR spectroscopic imaging modality have renewed interest in this

technique for studying the biochemical makeup of healthy and

diseased tissue.

In Raman spectroscopy, the sample is illuminated with a

monochromatic visible or near-IR (NIR) light from a laser

source and frequency shifts in the scattered light are measured.

The Raman spectrum is a plot of intensity of the scattered

photon versus shifts in its frequency, often measured in terms

of wave numbers in cm . NIR-Raman spectroscopy is often

used as an alternative to IR spectroscopy since NIR light has

higher energy than mid-IR light and can penetrate much farther

into the sample.

Fourier-transform (FT) spectroscopy, known as FT-IR when

IR light is used, allows a faster acquisition of the IR spectra

by using an interferometer followed by the Fourier transform

(FT). FT-IR spectroscopy is the most commonly used form of

IR spectroscopy.
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2) Spectral Imaging: Spectral imaging is carried out by

building an image cube with slices corresponding to images of

the same scene obtained by incident light at differing wave-

lengths. This technique is referred to as multispectral (MS) or

hyperspectral (HS) imaging depending on the number of

spectral bands, individual slices of the image cube in the spec-

tral direction (generally with for MS and for

HS).

3) Spectroscopic Imaging: Spectroscopic imaging is similar

to spectral imaging in that a volumetric cube is obtained with

a spectrum per pixel in the optical field. The main difference is

that spectroscopic imaging builds the image cube by dividing

the image scene into a uniform Cartesian grid, raster scanning

the scene according to the grid, and collecting point spectra for

each of the grid points.

Fernandez et al. [33] have proposed an IR spectroscopic

imaging method based on a Michelson interferometer and

all-reflecting microscope equipped with a 16-element linear

array detector with a narrow aperture size of 6.25 6.25

m. A massive 1641-dimensional point spectrum was obtained

for each pixel spanning a spectral range of 4000–720 cm

at an effective spectral resolution of 2 cm and at a spatial

resolution of 6.25 m. Tissue sections were also stained with

H&E and imaged with a digital light microscope for manual

histopathology analysis.

While most of the above methods are generally invasive for

internal body organs, magnetic resonance spectroscopy (MRS)

is a completely noninvasive way of probing the biochemical

makeup of tissue. By this virtue, it is a particularly attractive

prospect for the imaging of brain tumors, along with magnetic

resonance (MR) imaging which has become a mainstay in the

diagnosis of suspicious brain lesions [37]. The main principle

behind MRS imaging is the chemical shift process, the process

whereby different metabolites in the tissue respond at different

resonating frequencies, with the chemical shift often measured

in parts per million (ppm). One particular advantage of MRS

is that it can be tuned to specific nuclei in the tissue; with hy-

drogen ( , also known as proton) being the most commonly

studied one. Studies have shown clear differences between

MRS spectra of brain tumors and normal brain [38].

4) Spectral Analysis for Histopathology: In IR spec-

troscopy, McIntosh et al. [39] investigated the use of infrared

spectroscopy for the characterization of in vitro basal cell carci-

noma (BCC) specimens, exploiting the fact that mid-IR light is

absorbed by a variety of skin components. Point spectroscopy

was performed using an IR spectrometer and an aperture of

20 m 20 m from carefully selected regions containing

only one type of skin lesion. Their analysis of the normalized

spectra employing linear discriminant analysis (LDA) iden-

tified absorption bands that arise mainly from CH2 and CH3

absorptions in dermal spectra that are similar to those seen

in samples rich in protein and collagen in particular. H&E

staining for standard histological examination was carried out

after the spectra had been obtained. In a more recent paper,

McIntosh et al. [40] utilized LDA to analyze the near-IR (NIR)

absorption spectrum for noninvasive, in vivo characterization of

skin neoplasms. Their rationale for using NIR light was that the

mid-IR light could be completely absorbed by samples greater

than 10–15 m in thickness, therefore limiting the utility of

mid-IR spectroscopy to in vitro analysis.

In Raman spectroscopy, Frank et al. [41] examined Raman

spectra from breast and observed that visible laser excita-

tion could be used to reveal Raman features for lipids and

carotenoids. Huang et al. [42] explored the use of a rapid acqui-

sition NIR Raman spectroscopy system for in vitro diagnosis

of lung cancer. Student’s -test was performed to discriminate

between normal and malignant bronchial tissues using the ratio

of Raman intensity at two specific wavelengths. Chowdary et

al. [43] showed that the Raman spectra could be useful for

discriminating between normal and diseased breast tissues,

although a simple principle component analysis (PCA) of

spectra was employed for discrimination purposes. Analyzing

the Raman spectra of malignant breast tissues, they concluded

that malignant tissues had an excess of lipids and proteins.

Robichaux-Viehoever et al. [44] investigated the use of NIR

Raman spectra for the detection of cervical dysplasia and

achieved high correlation between the results of their spectral

analysis and the histopathology diagnosis.

Recently, Wang et al. [45] have shown that FT-IR spec-

troscopy can be effectively used for detecting premalignant

(dysplastic) mucosa and leads to better inter-observer agree-

ment, in terms of the -statistic. Oliveira et al. [46] have

explored a setup involving a fixed-wavelength (1064 nm) laser

line as an excitation source and FT-Raman for generating the

spectra. Spectral analysis using PCA and Mahalanobis distance

were used to detect dysplastic and malignant oral lesions.

Their results using LDA showed effective separation of spectra

of benign lesions from those of premalignant and malignant

lesions.

Over the years, MS and HS imaging have demonstrated an

enormous potential in remote-sensing applications, leading

many researchers to expect promise about their usefulness in

histopathology [47]. This promise has been demonstrated by

and [48] in their work on the diagnosis of colon adenocar-

cinoma. However, two recent studies [49], [50] have found

that the additional spectral information does not significantly

improve the classification results. This may be due to the fact

that most MS and HS imaging methods employ the visible part

of light spectrum which may not be very useful in terms of

highlighting important biochemical characteristics, as opposed

to the near-IR or mid-IR spectrum. The number of stains

present in the sample, as well as the characteristics of the stains

themselves will also directly affect the performance of MS and

HS image analysis methods.

In MRS, several studies, such as [51], can be found in

the literature that report high correlation between automatic

grading of in vivo tumors and their corresponding post-opera-

tive histopathology findings. However, MRS spectral analysis

has traditionally been limited to rather simplistic ratio tests.

Tiwari et al. [52] recently proposed an unsupervised spectral

clustering-based algorithm for diagnosis of prostate cancer

from the MRS spectra, reporting higher specificity compared

to the popular -score scheme, routinely used for the analysis

of MRS data.

Spectral analysis using different modalities discussed above

has demonstrated its potential for diagnosis and grading of
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cancer in tissue samples. However, as outlined above, most of

the proposed algorithms in the literature make use of linear

sub-space projection methods (PCA, LDA, etc.) for analysis

of the spectral data despite the fact that spectral signatures of

different types of tissue in the high-dimensional space may

not be linearly separable. Furthermore, a few challenges are

limiting the success of such methods in the realm of optical

diagnostics. These include, but are not limited to, storage

and transmission, registration, processing and analysis of large

amounts of data generated by spectral data acquisition methods.

The problem is further compounded when gathering spectral

imaging data for whole slides. However, the availability of

powerful computational resources at increasingly low prices

and recent advances in image analysis have meant that more

sophisticated methods can now be applied for analyzing large

amounts of spectral data.

III. IMAGE PREPROCESSING: COLOR AND ILLUMINATION

NORMALIZATION

A. Color Normalization

One of the first steps essential for both fluorescent and bright

field microscopy image analysis is color and illumination nor-

malization. This process reduces the differences in tissue sam-

ples due to variation in staining and scanning conditions. The

illumination can be corrected either using calibration targets or

estimating the illumination pattern from a series of images by

fitting polynomial surfaces [29]. Another approach is to match

the histograms of the images. Software that corrects for spec-

tral and spatial illumination variations is becoming a standard

package provided by most bright field manufacturers. This is

an essential step for algorithms that heavily depend on color

space computations. Yang and Foran [53] presented a robust

color-based segmentation algorithm for histological structures

that used image gradients estimated in the LUV color space to

deal with issues of stain variability. In the next section, we give

detailed description of correcting another artifact, tissue autoflu-

orescence, in fluorescent images.

B. Compensating for Tissue Auto-Fluorescence

Tissue auto-fluorescence (AF) is a fundamental problem in

microscopy applications, particularly in retrospective studies

that use formalin fixed paraffin embedded tissue sections. AF

reduces the signal detection sensitivity, and in some cases even

causes failure in the detection of fluorescent biomarker signals.

In [29], a two-step technique was used to remove the AF from

fluorescent microscopy images. Rather than acquiring images

of all the dyes at once using a set of optimum filter cubes

tuned to specific dyes, the acquisition is done in two steps.

In the first step, tissue is stained with only the low AF dyes

(e.g., ultraviolet or infrared), and images are acquired using

all the filter cubes. Images of these cubes, except the low AF

dyes, represent the tissue AF at their specific spectra. In the

second step, all the remaining dyes are added, and images of

all the cubes are acquired again. Then the first set of images is

aligned with the second set using a transformation estimated by

registering the low-AF images that are common in both steps.

The first step before any AF removal is the correction of the

excitation light pattern. The observed image, , can be

modeled as a product of the excitation pattern, and the emis-

sion pattern. While the emission pattern captures the tissue de-

pendent fluorescent staining, the excitation pattern captures the

excitation light. In the logarithm domain, the multiplicative re-

lation can be transformed into a linear form. The excitation pat-

tern can be estimated using the mean of the brightest set of pixels

from an ordered set of images

(3.1)

where denote the ordered pixels (

), and represents

the set of brightest pixels. Assuming that a certain percentage

of the image occupies stained tissue (nonzero backgound), is

set to an integer to represent this percentage (10% in our exper-

iments). This approximation holds if a large number of images

are used in the averaging process. However, a large percentage

of pixels are already excluded to eliminate the nontissue pixels

in the images. To overcome the limited sampling size, the log

of the excitation pattern estimated in (3.1) can be approximated

with polynomials. The surface generated by the polynomial

coefficients are then used to correct individual images [54].

After the images are corrected for their light excitation pat-

tern, the images between the two sequential steps are aligned.

From the two common images, one being the reference image

from the first step, , and the second being from the sub-

sequent step, , a rigid transformation is obtained,

such that the image similarity measure, between and

is maximized

(3.2)

Due to its robustness in registering multimodality images, a mu-

tual information-based image similarity measure is used to deal

with tissue loss and folding. Additional robustness is achieved

by incorporating the mutual information estimation in a mul-

tiresolution framework [55].

Once is estimated, all the channels are transformed with

this transformation to represent all the images in both acquisi-

tions in the same coordinate system. Then the first set of im-

ages is subtracted from the second set of images. To achieve

the highest dynamic range, the first set of AF images can be ac-

quired in longer exposure times than the second set of AF-dye

mixture images. Fig. 3 shows the acquisition of the Cy3 channel

before and after the tissue is stained with Cy3 dye directly con-

jugated with Estrogen Receptor (ER). The tissue is also stained

with a low AF ultraviolet nuclear stain, DAPI (not shown in the

figure), which is acquired in both steps and used for aligning

the images. The AF removed image is shown in Fig. 3(c). The

arrows point to successfully removed high-AF regions, such as

red blood cells. Removing the AF using the proposed two-step

approach enables accurate image analysis and quantitation for

low abundance proteins and directly conjugated antibodies.
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Fig. 3. (a), (b) Images from the first step acquisition. (c), (d) Images from the second acquisition. (e), (f) AF-free corrected images. Cy5 dye (a), (c), (e) is directly
conjugated to Pan-Cadherin, a membrane protein. Cy3 dye (b), (d), (f) is directly conjugated to Estrogen Receptor. The arrows point to successfully removed the
high-AF regions, such as blood cells and fat.

IV. AUTOMATED DETECTION AND SEGMENTATION

OF HISTOPATHOLOGY IMAGES

One of the prerequisites to grading or diagnosis of disease

in histopathology images is often the identification of cer-

tain histological structures such as lymphocytes, cancer nu-

clei, and glands. The presence, extent, size, shape, and other

morphological appearance of these structures are important

indicators for presence or severity of disease. For instance,

the size of the glands in prostate cancer tend to reduce with

higher Gleason patterns [56]. Similarly, the presence of a

large number of lymphocytes in breast cancer histopathology

is strongly suggestive of poor disease outcome and survival

[57]. Consequently, a prerequisite to identification and classi-

fication of disease is the ability to automatically identify these

structures. These approaches can either be global, in which

they attempt to simultaneously segment all the structures in

the image scene or local approaches which target specific

structures.

Another motivation for detecting and segmenting histological

structures has to do with the need for counting of objects, gener-

ally cells or cell nuclei. Cell counts can have diagnostic signifi-

cance for some cancerous conditions. Bibbo et al. [58] reported

1.1%–4.7% error in cell counts compared to manual counts for

Feulgen-stained prostate specimens. Belien et al. [59] found

19%–42% error in counting mitoses in Feulgen-stained breast

tissue sections. In immunohistochemically stained bone marrow

biopsies, Markiewicz et al. [60] reported 2.8%–10.0% differ-

ence in counts between manual and automatic methods, while

Kim et al. [61] found a correlation of 0.98 between manual

and automatic counts of immunostained slides of meningiomas.

Sont et al. [62] found a correlation of 0.98 between automated

and semi-automated methods for inflammatory cell counts in

immunostained bronchial tissue.

Authorized licensed use limited to: Rutgers University. Downloaded on June 14,2010 at 19:41:19 UTC from IEEE Xplore.  Restrictions apply. 



154 IEEE REVIEWS IN BIOMEDICAL ENGINEERING, VOL. 2, 2009

Fig. 4. (a) Original DCIS image with corresponding (b) likelihood scene obtained via a Bayesian classifier driven by color and texture. (c) Thresholded version
of likelihood scene (95% confidence). (d) The final nuclear segmentation obtained by integrating the Bayesian classifier with the template matching scheme.

A. Local, Structural Segmentation

1) Nuclear Segmentation: Numerous works have been

conducted [63]–[65] on segmentation of various structures

in breast histopathology images using methodologies such as

thresholding, fuzzy c-means clustering, and adaptive thresh-

olding [65]. Thresholding tends to work only on uniform

images and does not produce consistent results if there is con-

siderable variability within image sets. Watershed algorithms

tend to pose the same problem [64] due to variability in image

sets. Active contours are widely used in image segmentation;

however, contours enclosing multiple overlapping objects pose

a major limitation. In addition, inclusion of other irrelevant

objects from the background further complicates the possibility

of obtaining a viable segmentation.

The pixel-level analysis of unstained prostate slides

by Fourier transform infrared spectroscopy resulted in

94%–100% accuracy in the pixel-level classification of ten

histologic classes as reported by Fernandez et al. in [66]. The

pixel-level classification of nuclear material by Boucheron

et al. [67] resulted in performances (equal tradeoff between

detection and false alarm rates) of 88%–90% for H&E stained

breast tissue. The use of automated methods for pixel-level

analysis is perhaps more common for immunostained or

fluorescently stained specimens. Singh et al. [68] reported

98% accuracy in the detection of positive and negative

prostate nuclei immunostained for androgen receptor protein

expression. Analysis of cytokeratin-stained lymph node

sections yielded 95% detection of stained cells as reported

by Weaver et al. in [69]. However, these studies focus only

on finding nuclei on a pixel level.

In H&E stained imagery of astrocytomas and bladder tissue,

Glotsos et al. [70] reported that 94% of nuclei were correctly

delineated. Latson et al. found 25% poorly segmented nuclei,

4.5%–16.7% clumped nuclei, and 0.4%–1.5% missed nuclei

in H&E stained breast biopsies. Fluorescently stained imagery

of cervical and prostate carcinomas allowed for 91%–96% ac-

curacy in cell segmentation by Wahlby et al. [71], where the

accuracy here is calculated based on manual cell counts (i.e.,

not taking into account the accuracy of the actual nuclear de-

lineation). Korde et al. used image intensity thresholding to

segment nuclei in the bladder and in skin tissue [72]. Gurcan

et al. leveraged gray level morphology followed by hysteresis

thresholding to achieve cell nuclei segmentation in digitized

H&E stained slides [73], [74]. Other algorithms have been pro-

posed using more complex techniques, such an active contour

scheme for pap-stained cervical cell images by Bamford and

Lovell [75] and a fuzzy logic engine proposed by Begelman et

al. [76] for prostate tissue that uses both color- and shape-based

constraints.

In [63] and [77], nuclear segmentation from breast and

prostate cancer histopathology was achieved by integrating

a Bayesian classifier driven by image color and image tex-

ture and a shape-based template matching algorithm (Fig. 4).

Fig. 4(a) shows a Ductal carcinoma in situ (DCIS) study with a

number of nuclei closely packed together. The likelihood image

representing the probability of each pixel corresponding to a

nuclear region is shown in Fig. 4(b). Note that several nuclei

lie adjacent to each other and hence template matching is used

to extricate the individual nuclei. Fig. 4(c) shows the result of

thresholding the Bayesian likelihood scene (95% confidence

level). Template matching is then done at every location in

Fig. 4(c). Only those image locations where correspondence

between the binary segmentation [Fig. 4(c)] and the template

was found are shown as bright. The final nuclear boundary

detection (green dots) is displayed in Fig. 4(d).

2) Gland Segmentation: In a recently presented scheme for

extracting glandular boundaries from histopathology scenes

[63], the algorithm consists of three distinct components: In

the first stage, a Bayesian classifier is trained based on color

and textural information to automatically identify nuclei, cy-

toplasm, and lumen regions in the scene. Following low-level

Bayesian classification, structural constraints are incorporated

to constrain the segmentation by using image information

regarding the specific order of arrangement of glandular

structures (central lumen, surrounding cytoplasm, and nuclear

periphery) in order to reduce the number of false positive gland

regions. Finally, a shape-based segmentation method in the

form of level sets [78] is initialized within candidate lumen

regions as determined from the Bayesian classifier. Hence,

the level set surface evolution is controlled by the Bayesian

probability scene derived via use of the low-level image in-

formation. The level set evolution is stopped at the interface

between lumen and cytoplasm and, thus, a segmentation of

the inner gland boundary is obtained. A second level set is

then initialized within the cytoplasm area and used to capture

the outer gland margin. Once the possible gland lumens are

found, boundary segmentation is performed using level-sets.

A boundary evolving in time and in the 2-D space defined

by the grid of pixels is represented by the zero level set

of a level set function , where
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Fig. 5. Results of the automatic segmentation algorithm (blue contours: lumen
boundary, black contours: inner boundary of the nuclei of the epithelial cells
surrounding the gland). Shown from left to right are example images of benign
epithelium, intermediate-, and high-grade cancer.

and are 2-D Cartesian coordinates of . The evolution of

is then described by a level-set formulation adopted from [78]

(4.1)

where the function defines the speed of the evolution. The

curve evolution is driven by the nuclei likelihood image. The

initial contour is initialized automatically using

the detected lumen area from the candidate gland regions. The

curve is evolved outward from the detected lumen regions in

the combined nuclei likelihood image to avoid noise and allow

smoother evolution relative to the original image. The intensities

of the nuclei likelihood image form the stopping gradient. The

algorithm is run until the difference in the contours in two con-

secutive iterations is below an empirically determined threshold.

During training, size distributions similar to those used to calcu-

late object likelihood are created using the final contours. These

nuclear boundary based distributions are used to remove regions

that are too large to be true glands. Finally, the lumen and nu-

clear boundaries extracted from true gland regions are passed on

to the next step for feature extraction. Sample results from the

automated gland segmentation algorithm are shown in Fig. 5.

The lumen boundaries are displayed in a solid blue contour and

the interior nuclear boundaries are displayed as dashed black

lines. Results of our gland segmentation algorithm are shown

for sample images from benign epithelium, intermediate, and

high-grade prostate cancer (from left to right).

B. Global Scene Segmentation Approaches

In [26], a unified segmentation algorithm for sub-cel-

lular compartmentalization was presented. Quantitation of

biomarkers at sub-cellular resolution requires segmentation

of sub-cellular compartments such as nuclei, membranes, and

cytoplasm. While different segmentation algorithms can be

used for each of the sub-cellular compartments, an alternative

is to use the same algorithm in different modes. The algorithm

in [26] captured a set of bright pixels sharing a common shape

distribution. The algorithm used a set of three features, one is

the fluorescent emission intensity, and the other two are based

on curvature descriptors that are computed from the eigenvalues

of the Hessian matrix.

For an image, , the eigenvalues ( )

of the Hessian matrix encode the curvature information of

the image, and provide useful cues for detecting ridge-like

membrane structures, or blob-like nuclei structures. However,

the eigenvalues are dependent on image brightness. The fol-

lowing two curvature-based features are independent of image

brightness:

(4.2)

(4.3)

and referred to as shape index, and normalized-curvature index,

respectively. This is essentially the same as defining the eigen-

values in a polar coordinate system. This transformation also

results in bounded features, , and

.

The estimation process starts with the expected distributions

of the shape index for the structures to be segmented. For ex-

ample, for bright membrane and vessel like structures the shape

index is close to , because the smaller eigenvalue is nega-

tive and the larger eigenvalue approaches to zero. On the other

hand, for the blob-like nuclei structures, the shape index is close

to , because both eigenvalues are negative and close in

value. For both structures, positive values indicate a pixel being

more like a background. These constraints are used to compute

the initial foreground and background sets for membrane and

nuclei structures. An initial segmentation based on the shape

index and the normalized-curvature index separates the image

pixels into three subsets: background, foreground, and indeter-

minate. The indeterminate subset comprises all the pixels that

are not included in the background or foreground subsets. From

these subsets, the background and foreground intensity distri-

butions, as well as the intensity log-likelihood functions are es-

timated. The algorithm keeps iterating by using two out of the

three features at a time to estimate the distribution of the feature

that is left out. In the final step, these log-likelihood functions

are combined to determine the overall likelihood function. A

probability map that represents the probability of a pixel being

a foreground is calculated.

Cytoplasm can be detected either by using a specific cy-

toplasmic marker, or can be detected using computational

methods using the fact that the cytoplasmic areas are between

nuclear and membrane areas. For most cancer tissue types,

it is very important to differentiate the epithelial tissue from

the stromal and connective tissue, so that for IHC studies the

expression levels of most markers in the epithelial regions

can be quantified. Computational methods that use the high

connectivity of membrane meshes can be used to differentiate

the epithelial regions. For the sample images, any connected

component larger than 800 pixels is accepted as a part of the

epithelial mask. The nuclei set is then separated into epithelial

nuclei and stromal nuclei using the epithelial mask.
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EMLDA is an image segmentation method, which uses the

Fisher–Rao criterion as the kernel of the expectation maximiza-

tion (EM) algorithm [79]. Typically, the EM-algorithm is used

to estimate the parameters of some parameterized distributions,

such as the popular Gaussian mixture models, and assign labels

to data in an iterative way. Instead, the EMLDA algorithm uses

the linear discriminant analysis (LDA), a supervised classifica-

tion technique, as the kernel of EM-algorithm and iteratively

group data points projected to a reduced dimensional feature

space in such a way that the separability across all classes is

maximized. In [62], the authors successfully applied this ap-

proach in the context of histopathological image analysis to

achieve the segmentation of digitized H&E stained whole-slide

tissue samples.

V. FEATURE EXTRACTION

Research on useful features for disease classification has

often been inspired by visual attributes defined by clinicians

as particularly important for disease grading and diagnosis.

The vast majority of these features are nuclear features and

many have been established as useful in analysis of both cy-

topathology and histopathology imagery. Other features that

assume discriminatory importance include the margin and

boundary appearance of ductal, stromal, tubular, and glan-

dular structures. While there is a compilation of features for

cytopathology imagery [80], there is relatively little such work

for histopathology imagery.

Humans’ concept of the world is inherently object-based, as

opposed to the largely pixel-based representation of computer

vision. As such, human experts describe and understand images

in terms of such objects. For pathologists, diagnosis criteria are

inevitably described using terms such as “nucleus” and “cell.”

It is thus important to develop computer vision methods capable

of such object-level analysis.

A. Object Level Features

Fundamentally, object-level analysis depends greatly on

some underlying segmentation mechanism. It is the segmenta-

tion methodology that determines what constitutes an object.

Commonly, an object is defined as a connected group of pixels

satisfying some similarity criterion. The main focus is often

on the segmentation of nuclei; there exists little work that

explicitly uses features of cytoplasm and stroma, although

some researchers have hinted at the need for such features

[81], [82]. Preliminary work [83] has demonstrated the feasi-

bility of other histologic features for image classification in

H&E stained breast cancer. Madabhushi et al. [63] used cyto-

plasmic and stromal features to automatically segment glands

in prostate histopathology. Moreover, it appears that histologic

objects may not need to be perfectly segmented to be properly

classified when a list of comprehensive features is used in a

feature selection framework [83]. Classification performance

in distinguishing between different grades of prostate cancer

was found to be comparable using manual and automated

gland and nuclear segmentation [63]. These results suggest that

perfect segmentation is not necessarily a prerequisite for good

classification.

Object-level features can be categorized as belonging to one

of four categories: size and shape, radiometric and densito-

metric, texture, and chromatin-specific. While the radiometric

and densitometric, texture, and chromatin-specific features

could be considered low-level features that can be extracted

from local neighborhoods, the size and shape metrics are true

object-level metrics. A summary of object-level features is

listed in Table I; definitions for all listed features can be found

in [83]. These features were compiled from a comprehensive

literature search on cytopathology and histopathology image

analysis. In addition, various statistics measures for any of
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the vector quantities are also commonly calculated. Thus,

the mean, median, minimum, maximum, standard deviation,

skewness, and kurtosis can be calculated for all vector fea-

tures. For an RGB image, all relevant features are extracted

for each individual color channel; hence, the total number

of object-level features can easily exceed 1000 for the list of

features in Table I. It should be noted that these features are

most commonly extracted from high-resolution imagery (see

next section), but are relevant for any resolution.

An approach that semantically describes histopathology

images using model based intermediate representation (MBIR)

and incorporates low-level color texture analysis was presented

in [84]. In this approach, basic cytological components in the

image are first identified using an unsupervised clustering in

the La*b* color space. The connected components of nuclei

and cytoplasm regions were modeled using ellipses. An exten-

sive set of features can be constructed from this intermediate

representation to characterize the tissue morphology as well as

tissue topology. Using this representation, the relative amount

and spatial distribution of these cytological components can be

measured. In the application of follicular lymphoma grading,

where the spatial distribution of these regions varies consid-

erably between different histological grades, MBIR provides

a convenient way to quantify the corresponding observations.

Additionally, low-level color texture features are extracted using

the co-occurrence statistics of the color information. Due to the

staining of the tissue samples, the resulting digitized images

have considerably limited dynamic ranges in the color spectrum.

Taking this fact into account, a nonlinear color quantization

using self-organizing maps (SOM) is used to adaptively model

the color content of microscopic tissue images. The quantized

image is used to construct the co-occurrence matrix from which

low-level color texture features are extracted. By combining the

statistical features constructed from the MBIR with the low-level

color texture features, the classification performance of the

system can be improved significantly.

Fig. 6 shows some of the textural image features for dis-

criminating between benign breast epithelial tissue [77] (DCIS,

Fig. 6(a)) and DCIS (Fig. 6(d)). Fig. 6(b), (e), shows the corre-

sponding Gabor filter responses while Fig. 6(c), (f) shows the

corresponding Haralick feature images.

B. Spatially Related Features

Graphs are efficient data structures to represent spatial data

and an effective way to represent structural information by

defining a large set of topological features. Formally, a simple

graph is an undirected and unweighted graph

without self-loops, with and being the node and edge set

of graph , respectively.

Application of graph theory to other problem domains is im-

pressive. Real-world graphs of varying types and scales have

been extensively investigated in technological [85], social [86]

and biological systems [87]. In spite of their different domains,

such self-organizing structures unexpectedly exhibit common

classes of descriptive spatial (topological) features. These fea-

tures are quantified by definition of computable metrics.

Fig. 6. Supervised extraction of histological features to describe tissue appear-
ance of (a) benign epithelium, and (b) DCIS. Feature images for the two tissue
classes (benign epithelium, DCIS) corresponding to Gabor wavelet features (b),
(e) and Haralick second order features (c), (f) are shown.

Fig. 7. Bone fracture and its corresponding ECM-aware cell-graph represen-
tation. Note the presence of a link between a pair of nodes in an ECM-aware
cell-graph indicates not only topological closeness but also it implies the simi-
larity in the surrounding ECM [90].

The use of spatial-relation features for quantifying cellular

arrangement was proposed in the early 1990s [88], but did not

find application to clinical imagery until recently. Graphs have

now been constructed for modeling different tissue states and

to distinguish one state from another by computing metrics on

these graphs and classifying their values. Overall, however, the

use of spatial arrangement of histological entities (generally at

low resolutions) is relatively new, especially in comparison to

the wealth of research on nuclear features (at higher resolu-

tions) that has occurred during the same timeframe. A compi-

lation of all the spatial-relation features published in the litera-

ture is summarized in Table II. Definitions for all graph struc-

tures and features can be found in [83]. The total number of

spatial-relation features extracted is approximately 150 for all

graph structures.

Graph theoretical metrics that can be defined and computed

on a cell-graph induce a rich set of descriptive features that can

be used for tissue classification. These features provide struc-

tural information to describe the tissue organization such as: i)

the distribution of local information around a single cell cluster

(e.g., degree, clustering coefficient); ii) the distribution of global

information around a single cell cluster (e.g., eccentricity, close-

ness, between-ness); iii) the global connectivity information of

a graph (e.g., ratio of the giant connected component over the

graph size, percentage of the isolated and end data points in

the graph); iv) the properties extracted from the spectral graph
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theory (e.g., spectral radius, eigen exponent, number of con-

nected components, sum of the eigenvalues in the spectrum).

Refer to Table II for a list of commonly extracted graph features.

1) 2-D Cell-Graph Construction: In cell-graph generation

as proposed in [89], there are three steps: i) color quantiza-

tion; ii) node identification; and iii) edge establishment. In

the first step, the pixels belonging to cells from those of the

others are distinguished. These steps are explained in the next

sub-sections.

Node Identification: The class information of the pixels is

translated to the node information of a cell-graph. At the end

of this step, the spatial information of the cells is translated to

their locations in the two-dimensional grid. After computing the

probabilities, these are compared against a threshold value.

Edge Establishment: This step aims to model pair-wise re-

lationships between cells by assigning an edge between them.

Cells that are in physical contact are considered to be in commu-

nication, thus edges can be established between them determin-

istically. For other node pairs, a probability function is used to

establish edges between a pair of nodes randomly. Since struc-

tural properties of different tissues (e.g., breast, bone and brain)

are quite different from each other, edge establishment must be

guided by biological hypothesis.

2) 3-D Cell-Graphs: The first step in 3-D cell-graph con-

struction is to define the distance between a pair of nodes, which

is simply the 3-D Euclidean distance between a pair of nodes.

Based on this distance definition, edges can be established be-

tween a pair of nodes. In addition to the simple spatial distance

metrics, a multidimensional distance measure can be defined

using the cell-level attributes that can be provided by sophisti-

cated image analysis and segmentation. Cell-level attributes in-

clude: , , physical contact, volume with respect to number

of pixels, peripheral (i.e., surface area), shared border as per-

centage of shared voxels relative to total, and polarity. Then

each node of the 3-D cell-graph can be represented by a vector

of -dimensions, each dimension corresponding to an attribute.

The norm can be used to compute the multidimensional dis-

tance between them. Once the notion of distance is determined,

edge functions of cell-graphs can be applied to construct 3-D

cell-graphs. The mathematical properties of cell-graphs in 3-D

can be calculated as the feature set. Although most of the fea-

tures defined on 2-D cell-graphs can be extended to the 3-D case,

their calculation is not trivial.

3) Application of Graph-Based Modeling for Different

Histopathology Related Applications:

Graph-Based Modeling of Extra Cellular Matrix: The

extra cellular matrix (ECM) is composed of a complex network

of proteins and oligosaccharides that play important roles in

cellular activities such as division, motility, adhesion, and

differentiation. Recently, a new technique was introduced for

constructing ECM-aware cell-graphs that incorporates the

ECM information surrounding the cells [90]. ECM-aware

cell-graphs aim to preserve the interaction between cells and

their surrounding ECM while modeling and classifying the

tissues. The ECM-aware cell-graphs successfully distinguish

between different types of cells that co-exist in the same tissue

sample. For example, in bone tissue samples there are usually

several cell types, including blood cells, normal cells, and

sometimes fracture cells (e.g., chondrocytes and osteoblasts)

and cancerous cells. Since these cells are functionally different

from each other, the hypothesis is that they would exhibit

different spatial organization and structural relationships in the

same tissue. This hypothesis has been validated by showing

that ECM-aware cell-graphs yield better classification results
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Fig. 8. Illustrating the differences between cell-graphs for cancerous, healthy, and inflamed brain tissues. Panels (a)-(c) show brain tissue samples that are (a)
cancerous (gliomas), (b) healthy, and (c) inflamed, but noncancerous. Panels (d)-(f) show the cell-graphs corresponding to each tissue image. While the number
of cancerous and inflamed tissue samples appear to have similar numbers and distributions of cells, the structure of their resulting cell-graphs shown in (d) and (f)
are dramatically different. (Figure is taken from [91]).

for different states of bone tissues than the current state of art.

In the construction a color value is assigned to each cell (i.e.,

vertex) based on the RGB values of its surrounding ECM. This

is done by examining the neighboring pixels in each direction,

and computing a dominant color for the ECM surrounding each

cell using the RGB values of nearly neighboring pixels.

Application to Discriminating Different States of Brain

Tissue: Fig. 8 shows the cell-graphs of brain tissues exhibiting

distinctive graph properties that enable discrimination between

the different states of brain tissue.

Application to Studying Temporal Activity of Adult Human

Mesenchymal Stems Cells in a 3-D Collagen Matrix: Fig. 9

shows relationships between adult human mesenchymal stem

cells in a 3-D collagen protein matrix over time in culture

[90]. The graphs are generated from 3-D sections of tissue

(900 900 800 ) imaged using confocal microscopy. The

nuclei of stem cells in the constructs were stained and imaged

at the time points indicated (0–24 h).

Application of Graph Theory to Modeling Cancer Grade:

In [92], the Voronoi diagram is constructed from a set of seed-

like points that denote the centers of each structure of interest

(nuclei). From the Voronoi diagram, two more graphs of interest

can be constructed: the Delaunay triangulation, which is created

by connecting points that share an edge in the Voronoi diagram,

and the minimum spanning tree, which is the series of lines that

spans the set of points such that the Euclidean sum of the lengths

of the lines is smaller than any other spanning tree. From each

of these three graphs, a series of features are calculated that

captures the size, shape, and arrangement of the structures of

the nuclei. The graph-based representations of a Gleason grade

4 prostate histopathology image are shown in Fig. 10.

Fig. 9. Cell graphs produced from human MSC embedded in 3-D collagen
matrices. Graphs show nuclei and development of edges (relationships) between
them over time [90]. There is a phase transition sometime between hour 10 and
hour 16 and the graph becomes connected.

C. Multiscale Feature Extraction

Owing to the density of the data and the fact that patholo-

gists tend to employ a multiresolution approach to analyzing

pathology data, feature values are related to the viewing scale
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Fig. 10. (a) A digitized histopathology image of Grade 4 CaP and different graph-based representations of tissue architecture via Delaunay Triangulation, Voronoi
Diagram, and Minimum Spanning tree.

Fig. 11. Digitized histological image at successively higher scales (magnifica-
tions) yields incrementally more discriminatory information in order to detect
suspicious regions.

or resolution. For instance at low or coarse scales color or tex-

ture cues are commonly used and at medium scales architec-

tural arrangement of individual histological structures (glands

and nuclei) start to become resolvable. It is only at higher res-

olutions that morphology of specific histological structures can

be discerned.

In [93], [94], a multiresolution approach has been used for the

classification of high-resolution whole-slide histopathology im-

ages. The proposed multiresolution approach mimics the eval-

uation of a pathologist such that image analysis starts from the

lowest resolution, which corresponds to the lower magnification

levels in a microscope and uses the higher resolution represen-

tations for the regions requiring more detailed information for

a classification decision. To achieve this, images were decom-

posed into multiresolution representations using the Gaussian

pyramid approach [95]. This is followed by color space con-

version and feature construction followed by feature extraction

and feature selection at each resolution level. Once the classifier

is confident enough at a particular resolution level, the system

assigns a classification label (e.g., stroma-rich, stroma-poor or

undifferentiated, poorly differentiating, differentiating) to the

image tile. The resulting classification map from all image tiles

forms the final classification map. The classification of a whole-

slide image is achieved by dividing into smaller image tiles and

processing each image tile independently in parallel on a cluster

of computer nodes.

As an example, refer to Fig. 11, showing a hierarchical

cascaded scheme for detecting suspicious areas on digitized

prostate histopathology slides as presented in [96].

Fig. 12 shows the results of a hierarchical classifier for detec-

tion of prostate cancer from digitized histopathology. Fig. 12(a)

Fig. 12. Results from the hierarchical machine learning classifier. (a) Original
image with the tumor region (ground truth) in black contour, (b) results at scale
1, (c) results at scale 2, and (d) results at scale 3. Note that only areas determined
as suspicious at lower scales are considered for further analysis at higher scales.

shows the original image with tumor outlined in black. The next

three columns show the classifier results at increasing analysis

scales. Pixels classified as “nontumor” at a lower magnification

(scale) are discarded at the subsequent higher scale, reducing

the number of pixels needed for analysis at higher scales. Ad-

ditionally, the presence of more discriminating information at

higher scales allows the classifier to better distinguish between

tumor and nontumor pixels.

At lower resolutions of histological imagery, textural analysis

is commonly used to capture tissue architecture, i.e., the overall

pattern of glands, stroma and organ organization. For each digi-

tized histological image several hundred corresponding feature

scenes can be generated. Texture feature values are assigned

to every pixel in the corresponding image. 3-D statistical, gra-

dient, and Gabor filters can be extracted in order to analyze

the scale, orientation, and anisotropic information of the re-

gion of interest. Filter operators are applied in order to extract

features within local neighborhoods centered at every spatial

location. At medium resolution, architectural arrangement of

nuclei within each cancer grade can be described via several

graph-based algorithms. At higher resolutions, nuclei and the

margin and boundary appearance of ductal and glandular struc-

tures have proved to be of discriminatory importance. Many of

these features are summarized in Tables I and II.

D. Feature Selection, Dimensionality Reduction,

and Manifold Learning

1) Feature Selection: While humans have innate abilities to

process and understand imagery, they do not tend to excel at
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explaining how they reach their decisions. As such, large fea-

ture sets are generated in the hopes that some subset of features

incorporates the information used by the human expert for anal-

ysis. Therefore, many of the generated features could be redun-

dant or irrelevant. Actually, a large set of features may possibly

be detrimental to the classification performance, a phenomenon

known as “the curse of dimensionality.” Feature selection is a

means to select the relevant and important features from a large

set of features. This is an increasingly important area of research

now that automated quantitative image analysis techniques are

becoming more mainstream.

Feature selection in histopathological image analysis pro-

vides several benefits in addition to improving accuracy. Since

images tend to be relatively large, a smaller subset of features

needs to be calculated, reducing the computational complexity

of classification algorithms. In some applications, it may be

preferable to sacrifice the overall performance slightly if this

sacrifice greatly reduces the number of selected features. A

smaller number of features would also make it easier to explain

the underlying model and improve the chances of generaliza-

tion of the developed system. Additionally, in a multiresolution

framework, a set of features proven useful at a given resolution

may not be relevant at another resolution, even within the same

image. A feature selection algorithm helps determine which

features should be used at a given resolution.

An optimal feature selection method would require an ex-

haustive search, which is not practical for a large set of features

generated from a large dataset. Therefore, several heuristic al-

gorithms have been developed, which use classification accu-

racy as the optimality criterion. Well-known feature selection

methods include the sequential search methods, namely sequen-

tial forward selection (SFS) and sequential backward selection

(SBS) [97]. SFS works by sequentially adding the feature that

most improves the classification performance; similarly, SBS

begins with the entire feature set and sequentially removes the

feature that most improves the classification performance. Both

SFS and SBS suffer from the “nesting effect” whereby features

that are selected (SFS) or discarded (SBS) cannot be revisited

in a later step and are thus sub-optimal [97]. The use of floating

search methods, sequential floating forward search (SFFS) and

sequential floating backward search (SFBS), in which previ-

ously selected or discarded features can be re-evaluated at later

steps avoids the nesting problem [97]. While these methods still

cannot guarantee optimality of the selected feature subset, they

have been shown to perform very well compared to other feature

selection methods [98] and are, furthermore, much more com-

putationally efficient [97]. SFFS is one of the most commonly

encountered feature selection methods in pathology image anal-

ysis literature.

More recent feature selection research has focused on such

methods as genetic algorithms, simulated annealing, boosting

[99] and grafting [100]. A taxonomy of feature selection

algorithms is presented in [98]. Genetic algorithms and sim-

ulated annealing are applications of traditional optimization

techniques to feature selection. Boosting, which will be ex-

plained in Section VI-C, basically acts as a greedy feature

selection process. Grafting (from “gradient feature testing”)

[100] is based on an elegant formulation of the feature selection

problem, whereby the classification of the underlying data

and the feature selection process are not separated. Within the

grafting framework, a loss function is used that shows prefer-

ence for classifiers that separate the data with larger margins.

Grafting also provides an efficient framework for selection of

relevant features. Feature selection based on a measure of dis-

criminatory power was proposed in [101], whereby the authors

compute the discriminatory power of each of the wavelet packet

sub-bands (features) using a dissimilarity measure between ap-

proximated probability density functions for different classes.

Derived features are then sorted according to the discriminatory

power values associated with the corresponding features.

2) Dimensionality Reduction: While feature selection aims

to select features (and reduce the feature dimensionality) that

best optimize some criterion related to the class labels of the

data (e.g., classification performance), dimensionality reduction

techniques aim to reduce dimensionality based on some other

criterion. Three well-known and commonly used methods of

linear dimensionality reduction are principal component anal-

ysis (PCA), independent component analysis (ICA), and linear

discriminant analysis (LDA).

Principal component analysis (PCA) [102] looks to find a new

orthogonal coordinate system whereby the maximum variance

of the data is incorporated in the first few dimensions. Projection

of the data onto the individual coordinates encompasses varying

degrees of variance; the first coordinate encompasses the largest

variance in the data, the second coordinate the next largest vari-

ance, and so forth.

On the other hand, the LDA is a supervised method; it thus re-

quires class labels for each data sample, mapping the data onto

a lower dimensional sub-space that best discriminates data. The

goal is to find the mapping, where the sum of distances between

samples in different classes is maximized; while the sum of dis-

tances between samples in same classes is minimized. LDA can

also be formulated in terms of eigenanalysis. A comprehensive

discussion of PCA and LDA can be found in [103].

Independent component analysis [104], looks to find some

mixing matrix such that a mixture of the observations (features)

are statistically independent. This provides a stronger constraint

on the resulting components than PCA, which only requires that

the components be uncorrelated. This is why it is particularly

well suited for decorrelating independent components from hy-

perspectral data. Rajpoot and Rajpoot have shown ICA to per-

form well for extracting three independent components corre-

sponding to three tissue types for segmentation of hyperspectral

images of colon histology samples. ICA, however, provides no

ranking of the resulting independent components, as does PCA.

There are a variety of methods for calculating the independent

components (refer to [104]), which are generally very computa-

tionally intensive. ICA is a higher order method that seeks linear

projections, not necessarily orthogonal to each other, as in the

case of PCA.

3) Manifold Learning: Recently, nonlinear dimensionality

reduction methods have become popular in learning applica-

tions. These methods overcome a major limitation of linear di-

mensionality reduction methods, which assume that geomet-

rical structure of the high-dimensional feature space is linear.

In reality, high-dimensional feature spaces comprise of highly
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Fig. 13. Low-dimensional embedding reveals innate structure in textural features of invasive breast cancers, with clear separation of high grade tumors from low
and intermediate grade tumors as assessed by Nottingham score. Combined Nottingham score 5 (yellow triangle), 6 (green squares), 7 (blue circles), and 8 (red
triangles). The score of 8 corresponds to high grade tumors. (a) Low grade (Yellow triangles). (b) High grade (Red triangles).

nonlinear structures and locality preserving dimensionality re-

duction methods are highly sought after. Manifold learning is a

method of reducing a data set from to dimensions, where

while preserving inter- and intra-class relationships

between the data. This is done by projecting the data into a

low-dimensional feature space in such a way to preserve high

dimensional object adjacency. Many manifold learning algo-

rithms have been constructed over the years to deal with dif-

ferent types of data.

Graph embedding constructs a confusion matrix describing

the similarity between any two images and with feature

vectors and , respectively, where

and is the total number of images in the data set

(5.1)

The embedding vector is obtained from the maximization of

the function

(5.2)

where is the so-called degree matrix, with nonzero values

being along the diagonal and .

The dimensional embedding space is defined by the eigen-

vectors corresponding to the smallest eigenvalues of

. The value of is generally optimized by ob-

taining classification accuracies for and se-

lecting the that provided the highest accuracy for each clas-

sification task. For image , the feature vector given as input

to the graph embedding algorithm produces an -dimensional

eigenvector , where

is the principal eigenvalue associated with .

In [92], a graph embedding algorithm employing the normal-

ized cuts algorithm was used to reconstruct the underlying man-

ifold on which different breast cancer grades were distributed.

Fig. 13 shows the embedding of different grades of breast cancer

histopathology (low, intermediate, high) on the reconstructed

manifold; low grades (yellow triangles), intermediate grades

(green squares and blue circles), and high grades (red triangles).

The manifold captures the biological transformation of the dis-

ease in its transition from low to high-grade cancer.

Manifold learning has also been shown to be useful for shape-

based classification of prostate nuclei [105]. Rajpoot et al. [105]

employ diffusion maps [106] in order to reduce the dimension-

ality of shape descriptors down to two dimensions and a fast

classification algorithm is derived based on a simple thresh-

olding of the diffusion coordinates.

VI. CLASSIFICATION AND SUB-CELLULAR QUANTIFICATION

For histopathology imagery, unlike some other applications

of image analysis, one of the primary considerations in the

choice of a classifier is its ability to deal with large, highly dense

datasets. Also due to multiple image scales at which relevant

information may be extracted from histological imagery, use of

an ensemble of classifiers as opposed to a single classifier has

been proposed.

A. Multiclassifier Ensemble Schemes

Theoretical and empirical results alike have established that,

in terms of accuracy, ensembles of classifiers generally outper-

form monolithic solutions. Learning ensembles or multiple clas-

sifier systems are methods for improving classification accuracy

through aggregation of several similar classifiers’ predictions

Authorized licensed use limited to: Rutgers University. Downloaded on June 14,2010 at 19:41:19 UTC from IEEE Xplore.  Restrictions apply. 



GURCAN et al.: HISTOPATHOLOGICAL IMAGE ANALYSIS: A REVIEW 163

TABLE III
THE AVERAGE ACCURACY RESULTS OF THE DISEASED-HEALTHY-DAMAGED CLASSIFICATION ON THE TEST SET BY USING FIVE DIFFERENT APPROACHES.

and thereby reducing either the bias or variance of the individual

classifiers [107].

1) A Support Vector Machines (SVM): SVMs project a set of

training data representing two different classes into a high-

dimensional space by means of a kernel function . The al-

gorithm then generates a discriminating hyper-plane to sepa-

rate out the classes in such a way to maximize a cost function.

Testing data is then projected into the high-dimensional space

via , and the test data is classified based on where it falls

with respect to the hyper-plane. The kernel function de-

fines the method in which data is projected into the high-dimen-

sional space. A commonly used kernel known as the radial basis

function has been employed to distinguish between three dif-

ferent prostate tissue classes [108]. Radial basis functions with

a grid search for their parameters have also been used to differ-

entiate colon adenocarcinoma histopathology images from be-

nign histopathology images [109] and to classify four different

subtypes of meningioma [101].

2) Adaboost: The AdaBoost is an adaptive algorithm in

the sense it combines a number of weak classifiers to generate

a strong classifier. Image pixels determined as diseased by

a pathologist during the training stage are used to generate

probability density functions (pdfs) for each of the individual

texture features , for which are consid-

ered as weak classifiers [110]. Bayes Theorem is then used

to generate likelihood scenes

for each which constitute the weak learners. These are

combined by the AdaBoost algorithm into a strong classifier

where for every pixel , is the

combined likelihood that pixel belongs to cancer class ,

is the weight determined during training for feature , and

is the number of iterations.

In [110] a hierarchical boosted cascade scheme for detecting

suspicious areas on digitized prostate histopathology, inspired

by the work of Viola and Jones [111] was presented. Efficient

and accurate analysis is performed by first only detecting those

areas that are found to be suspicious at lower scales. Analysis

at subsequent higher magnifications is limited to those regions

deemed to be suspicious at lower scales. Pixels classified as

“nontumor” at a lower magnification (scale) are discarded at the

subsequent higher scale, reducing the number of pixels needed

for analysis at higher scales. The process is repeated using an

increasingly larger number of image features and an increasing

classification threshold at each iteration. Qualitative results with

a hierarchical Boosted classifier at three different image resolu-

tions are shown in Fig. 14.

Fig. 14. From left to right, (a) A digitized histopathology image, (b) cancer ex-
tent delineated in black by an expert pathologist, and cancer probability images
generated by an Adaboost classifier at (c) low-, (d) intermediate, and (e) high
image resolutions.

B. Disease Discrimination Based on Graph-Based Features

Table III shows the average accuracy and corresponding

standard deviation over 20 runs of randomized cross validation

based classification of the diseased-healthy-damaged studies

by using five different approaches: 1) the cell graph approach;

2) the cell-distribution approach in which features are extracted

from the spatial distribution of cells without considering their

pair-wise spatial relations (i.e., without considering the edge

information); 3) the textural approach in which features are

derived from the gray-level interdependency of pixels in a

tissue image; 4) the intensity-based approach in which features

are derived from the intensity values of pixels in a tissue image;

and 5) the Voronoi diagram-based approach in which features

are extracted by making use of the spatial interrelationships of

adjacent cells [112], [113].

C. Grade-Based Classification of Histopathology Imagery

The classification of histopathology imagery is often the

ultimate goal in image analysis, particularly in cancer appli-

cations. Features derived from segmented nuclei and glands

from histopathology are usually a prerequisite to extracting

higher level information regarding the state of the disease. For

instance, the grading of prostate cancer by Jafari-Khouzani and

Soltanian-Zadeh [114] yielded 97% accuracy for H&E stained

imagery based on features derived from nuclear structures in

histopathology. Weyn et al. [115] reported 87.1%–96.8% accu-

racy in the correct diagnosis (3 diagnoses) of Feulgen-stained

lung cancer specimens, 79.5%–92.3% accuracy in typing (3

types) malignant mesothelioma, and 74.3%–82.9% accuracy

in the prognosis (3 classes of survival time) of malignant

mesothelioma cases. Analysis of Feulgen-stained breast tissue

sections by van de Wouwer et al. [116] found 67.1% accuracy
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Fig. 15. (a) (left panel) Low dimensional representation (via nonlinear dimensionality reduction) of prostate cancer histopathology images (green circles are Grade
3 images and blue squares represent Grade 4 prostate cancer images). A nonlinear SVM is used to classify objects in the reduced dimensional space. (b) Right
panel shows a classification accuracy of over 90% in distinguishing between Grade 3, Grade 4 images and comparable accuracy in distinguishing between benign
stromal, epithelial, and prostate cancer tissue.

in clasifying nuclei as benign or malignant, but 100% clas-

sification on a patient level. Tabesh et al. [117] found 96.7%

accuracy in discriminating between prostate tissue slides with

cancer and no cancer, and 81% accuracy in the discrimination

between low and high Gleason grades in the same imagery.

Immunohistochemically stained colon mucosa allowed for an

accuracy of 92% in classification of benign and malignant

images by Esgiar et al. [118].

The classification of histopathology imagery using spatial ar-

chitecture information as presented in Weyn et al. [115] re-

sulted in 88.7%–96.8% accuracy in the diagnosis of lung cancer,

94.9% accuracy in the typing of malignant mesothelioma, and

80.0%–82.9% accuracy in the prognosis of malignant mesothe-

lioma for Feulgen-stained lung sections. The analysis of H&E

stained brain tissue by Demir et al. [112] gave 95.5%–97.1%

accuracy in the discrimination between benign and cancerous

tissue. Keenan et al. [119] reported accuracies of 62.3%–76.5%

in the grading of H&E stained cervical tissue.

Fig. 15(a) shows the low dimensional embedding of the high

dimensional attribute space via locally linear embedding of 20

images representing prostate cancer grades 3 (green circles)

and 4 (blue squares). Each image is displayed as a point in 3D

eigenspace. The clustering clearly shows very good discrim-

ination between these 2 classes which clinically is the most

challenging problem in terms of Gleason grading. Fig. 15(b)

shows bar plots reflecting the classification accuracy obtained

via a supervised classifier in distinguishing between pairs of

tissue classes – grade 3\4, grade 3 vs. benign epithelium, and

grade 4 vs. benign epithelium via a SVM classifier. Note that

in every case the classification accuracy is over 90%.

D. Sub-Cellular Quantification

Quantifying expression levels of proteins with sub-cel-

lular resolution is critical to many applications ranging from

biomarker discovery, pharmaceutical research, and systems

biology to treatment planning. In this section, a fully automated

method to quantify the expression levels of target proteins in

immunofluorescently stained samples in tissue micro arrays

(TMAs) is presented. Kolmogorov-Smirnov (KS) statistics, a

well-known method in statistics to test if two distributions are

different from each other, can be used to compute the relative

expression levels in each of the epithelial and nonepithelial

tissue regions. After the sub-cellular compartments are deter-

mined using membrane and nuclear markers, the distribution

of target proteins in each of these compartments are calcu-

lated. The estimated distribution comprises target distribution

from the expressed regions as well as nonspecific background

binding and tissue autofluorescence that may have left out

after the AF removal step. A signed KS distance (sKS) can be

defined as the product of the standard KS distance and a sign

function ( ) to indicate which compartment is expressed. For

example if sign function is computed between the nuclear and

the membrane expression levels, a negative sKS distance will

indicate a nuclear expression, and a positive sign will indicate

membrane expression. While the magnitude of the sKS distance

indicates how strong the expression level difference is between

these compartments, its sign indicates in which compartment

the protein is expressed.

The standard KS distance is defined as the maximum sepa-

ration between the cumulative distribution functions (CDF) of

two data sets. The CDF of a target protein in any compartment

can be calculated by integrating its intensity distribution esti-

mated using a Parzen window approach with Gaussian kernels.

Fig. 16(c) shows the CDF of the target distributions shown in

Fig. 16(a) (green color), on each of the segmented sub-cellular

regions; nuclei (blue), membrane (red), and cytoplasm (green)

shown in Fig. 16(b). The CDFs clearly indicate the overexpres-

sion of the nuclear region (blue plot) where approximately 10%

of the nuclear pixels express intensity values more than 50, as

opposed to a very small percentage for other compartments. The

sign of the sKS is determined based on sign of the difference

between the CDF of the first compartment and the CDF of the
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Fig. 16. (a) A histological section stained with nuclear (DAPI-Blue), mem-
brane (Pan-cadherin, red), and a target protein (Estrogen Receptor (ER), green).
(b) Automatically segmented sub-cellular regions; membrane (red), nuclei
(blue), cytoplasm (green). Dark colors show the nonepithelial regions. (c) CDF
of the ER distributions (nuclei in blue, membrane in red and cytoplasm in green
plots).

second compartment at the protein expression level with highest

CDF separation.

The sKS metric on 123 TMA images from 55 patients (some

patients are represented as multiple tissue cores) stained with

DAPI (nuclei), pan-cadherin (membrane), keratin (tumor/ep-

ithelial mask), and ER markers were tested. DAPI and pan-cad-

herin are used to segment the sub-cellular compartments, and

keratin to segment the epithelial mask. Then the distribution of

the ER protein is calculated on each of the epithelial sub-cellular

regions. ER is expected to partially or fully express in the nu-

clear region for ER positive patients. A target distribution is usu-

ally observed mixed with nonspecific expression and auto-fluo-

rescence (AF). The sKS based metric was compared to the ma-

jority decision of a group of 19 observers scoring estrogen re-

ceptor (ER) status, and achieved 96% detection rate with 90%

specificity. The presented methods have applications from diag-

nostics to biomarker discovery and pharmaceutical research.

VII. LOOKING AHEAD: FUTURE TRENDS, OPEN PROBLEMS

Since histopathological image analysis is inherently a cross-
disciplinary area, there are unique challenges to the dissemi-
nation of research results. One of these is the wide range of
publications in which research is published. While there are a
few journals that focus on the automated analysis of medical
imagery, the majority of histopathological image analysis tends
to be published in the leading journals of the researchers’ field
(pathology, computer vision, etc.). Additionally, there is a need

for more evidence regarding the clinical applicability and im-
portance of automated histopathology image analysis methods.
We have mentioned areas throughout this paper for which we
anticipate ongoing research to have a clear and tangible affect
on clinical and pathology workflow.

Comparison of the various methods presented in the literature
is difficult, since each research team uses their own dataset and
presents their results with different metrics. There is a great need
for standard datasets and ground truth for validation of methods.
As an example, researchers at the University of South Florida
have put together a database of digital mammograms.1 While the
variety of conditions studied in histopathology image analysis
is greater, it is still important that standard datasets be compiled
as well as a standard metric of performance. This will allow for
direct comparison of the variety of analysis methods being re-
ported in the literature. An additional complication is the variety
of analyses performed on the histopathology imagery. Thus,
there is a need for a dataset with ground truth pertaining to all
the analyses described in this paper.

Going forward, clinical annotation of histopathology data
will be a large bottleneck in the evaluation of histopathology
related CAD algorithms. Apart from the time constraints on
the pathologist to generate this data, the process should be
streamlined with active communication between the image
analysis scientists and the clinicians with regard to the sort of
annotation required, the format and scale at which the annota-
tion is generated, and the ease with which the data can be shared
(since histopathology files typically tend to be very large). For
instance, the sophistication of annotation required to train a
CAD system to distinguish cancerous versus noncancerous
regions on pathology images may be very different than the
annotation detail required to train a classifier to distinguish
grades of cancer. While for the former problem the annotation
could be done on a coarser scale (lower resolution), the latter
annotation may require explicit segmentation of glands and
nuclei, a far more laborious and time consuming process.
Due to the large size of pathological images, usually it is not
possible to process the whole image on a single-core processor.
Therefore, the whole image may be divided into tiles and each
tile is processed independently. As a consequence, automatic
load balancing in the distribution of the cases to different
processors need to be handled carefully [120]. Additionally,
the processing can be accelerated even further by the use of
graphical processing units (GPUs), cell blades, or any other
emerging high-performance architecture [121].

Histopathological image analysis system evaluation needs to
be carried out in a statistical framework. Depending on whether
it is a problem of detection (e.g., nuclei detection) or charac-
terization (e.g., grading), some commonly accepted evaluation
methodologies need to be followed. Some of these methods,
e.g., receiver operating characteristics (ROC) and free response
operating characteristics (FROC), have been successfully used
for many years in radiology [122]. These techniques could be
adopted or adapted accordingly. The level and detailed of quan-
titative evaluation will vary as a function of the specific problem
being addressed. For instance, in order to evaluate a nuclear
segmentation algorithm on a digitized histological section con-
taining several tens of thousands of nuclei, it is unreasonable to

1http://marathon.csee.usf.edu/Mammography/Database.html
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Fig. 17. (a) Histology section of prostate gland with CaP extent stained in
purple (upper right) and corresponding mapping of CaP extent via COFEMI
onto (b) MRI (CaP extent shown in green). (c) Overlay of histological and MRI
prostate sections following registration.

expect that a human reader will be able to manually annotate
all nuclei. Evaluation of the scheme may have to be performed
on randomly chosen segments of the image. Similarly, if the ul-
timate objective of the CAD algorithm is, for instance, cancer
grading, perfect segmentation of histological structures may not
guarantee perfect grade-based classification. Evaluation should
hence be tailored towards the ultimate objective that the CAD
algorithm is being employed for. Additionally, special attention
needs to be paid to clearly separate training and testing datasets
and explain the evaluation methodology.

A. Multimodal Data Fusion/Registration

While digital pathology offers very interesting, highly dense
data, one of the exciting challenges will be in the area of mul-
timodal data fusion. One of the big open questions, especially
as it pertains to personalized medicine, will be the use of multi-
modal data classifiers to be able to make therapy recommenda-
tions. This will require solving questions both in terms of data
alignment and in terms of knowledge representation for fusion
of heterogeneous sources of data, in order to answer questions
that go beyond just diagnosis, such as theragnosis (therapy pre-
diction) and prognosis.

H&E staining is traditionally used for histopathology
imaging. Several other modalities exist for imaging of the
tissue, each offering its own advantages and limitations. Com-
bining images from different modalities, therefore, may seem
to be an attractive proposition, although it does not come
without its own challenges, most importantly registration, not
to mention the extra cost associated with imaging, storage,
and computational time. Registration of image data across
the different modalities and fusion of the information con-
tained therein result in a powerful resource of information
for diagnosis and prognosis purposes. Fusion methods have
been developed for images from different microscopy imaging
methods [26] and micro-scale histopathology and large-scale
MR images [123]–[125].

Madabhushi et al. [126] have been developing computerized
detection methods for prostate cancer from high-resolution mul-
timodal MRI . A prerequisite to training a supervised classi-
fier to identify prostate cancer (CaP) on MRI is the ability to
precisely determine spatial extent of CaP on the radiological
imaging modality. CaP can be precisely determined on whole
mount histopathology specimens [Fig. 17(a)] which can then
be mapped onto MRI [Fig. 17(b)]. Fig. 17(c) shows the result
of registering [Fig. 17(b)] the 2-D MRI slice to the histological
section [Fig. 17(a)]. This requires the use of sophisticated and

robust multimodal deformable registration methods to account
for (a) deformations and tissue loss in the whole mount histo-
logical specimens during acquisition, and (b) ability to over-
come intensity and feature differences between the two modal-
ities (histopathology and MRI). In [123], [124] a rigid registra-
tion scheme called combined feature ensemble based mutual in-
formation (COFEMI) was presented that used alternate feature
representations of the target and source images to be registered
to facilitate the alignment.

B. Correlating Histological Signatures With Protein

and Gene Expression

Multiplexing, imaging of a tissue sample with several an-
tibodies simultaneously, allows correlation of characteristic
patterns in histopathology images to expression of proteins.
Teverovskiy et al. [127] recently proposed a novel scheme for
automated localization and quantification of the expression of
protein biomarkers using a DAPI counter-stain and three other
biomarkers. They showed it to be useful for predicting recur-
rence of prostate cancer in patients undergoing prostatectomy.
Recently, it has become clear that information regarding ex-
pression of certain proteins related to the onset of cancer is not
sufficient. Analyzing multiple-stained histopathology images
can help identify oncogenesis-induced changes in sub-cellular
location patterns of proteins. Glory et al. [128] proposed a
novel approach to compare the sub-cellular location of proteins
between normal and cancerous tissues. Such a method can also
be used for identification of proteins to be used as potential
biomarkers.

C. Exploratory Histopathology Image Analysis

Exploratory analysis of histopathology images can help in
finding salient diagnostic features used by humans, associating
them with the computed features, and visualizing relationships
between different features in high-dimensional spaces. Less-
mann et al. [129] have proposed the use of self-organizing maps
(SOMs) for exploratory analysis of their wavelet-based feature
space. The SOM-based visualization of the feature space al-
lowed the authors of [129] to establish a correlation between
single features and histologically relevant image structures,
making the selection of a subset of clinically important features
possible. Iglesias-Rozas and Hopf [130] showed that SOMs can
be effectively employed to correctly classify different subtypes
of human Glioblastomas (GB) and also to select significant
histological and clinical or genetic variables. Alternatively,
dimensionality reduction methods may offer a way of looking
at trends and patterns in the data in a reduced dimensional
space [131]–[133].

D. Computer-Aided Prognosis

The use of computer-aided diagnosis for digitized
histopathology could begin to be employed for disease prog-

nostics, allowing physicians to predict which patients may be
susceptible to a particular disease and also predicting disease
outcome and survival. For instance, since grade is known to
be correlated to outcome (high grade correlates to worse out-
come), image-based predictors could be used to predict disease
recurrence and survival based on analysis of biopsy specimens
alone. This would have significant translational implications in
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that; more expensive molecular assays may not be required for
predicting disease.

While there may be a small minority of researchers who are
experts in both computer vision and pathology, the vast majority
of histopathology image analysis researchers are computer vi-
sion researchers. As such, it is important to maintain a constant
collaboration with clinical and research pathologists throughout
the research process. There are unique challenges to analysis of
medical imagery, particularly in the performances required for
eventual use of the technique in a clinical setting. It is the pathol-
ogist who can best provide the feedback on the performance of
the system, as well as suggesting new avenues of research that
would provide beneficial information to the pathologist com-
munity. Additionally, it is the pathologist that is best equipped
to interpret the analysis results in light of underlying biolog-
ical mechanisms which, in turn, may lead to new research ideas.
Similarly, where appropriate it might be pertinent to include the
oncologist and radiologist within the algorithmic development
and evaluation loop as well.
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