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Abstract 

In myelodysplastic syndrome (MDS), bone marrow (BM) histopathology is visually 

assessed to identify dysplastic cellular morphology, cellularity, and blast excess. Yet, 

many morphological findings elude the human eye. Here, we extracted visual features 

of 236 MDS, 87 MDS/MPN, and 10 control BM biopsies with convolutional neural 

networks. Unsupervised analysis distinguished underlying correlations between tissue 

composition, leukocyte metrics, and clinical characteristics. We applied morphological 

features in elastic net-regularized regression models to predict genetic and cytogenetic 

aberrations, prognosis, and clinical variables. By parallelizing tile, pixel, and leukocyte-

level image analysis, we deconvoluted each model to texture and cellular composition 

to dissect their pathobiological context. Model-based mutation predictions correlated 

with variant allele frequency and number of affected genes per pathway, demonstrating 

the models’ ability to identify relevant visual patterns. In summary, this study highlights 

the potential of deep histopathology in hematology by unveiling the fundamental 

association of BM morphology with genetic and clinical determinants. 
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Introduction 

Current diagnosis of myelodysplastic syndrome (MDS) is based on identifying cellular 

dysplasia by visual inspection of bone marrow (BM) aspirate or biopsy.1 Karyotype 

status, blast proportion, and peripheral blood (PB) cell count are assessed for disease 

subclassification, according to WHO guidelines and for risk stratification by the Revised 

International Prognostic Scoring System (IPSS-R) criteria.1,2 

 

Deep learning enables accurate visual pattern recognition with convolutional neural 

networks (CNN), where multiple processing layers detect and nonlinearly deconvolute 

image data into activation vectors.3 CNNs have recently led to significant 

breakthroughs in the analysis of biomedical images, such as diagnosis of skin tumors, 

retinal disease, intracranial hemorrhage, and breast cancer.3–8 In the context of routine 

hematoxylin and eosin (H&E) tissue stains, similar algorithms have improved Gleason 

scoring in prostate cancer, outcome prediction in colorectal cancer, and even 

discrimination of solid cancer patients by driver mutation status.5,9–11 

 

Here, we investigate the potential of CNN-based morphological analysis in 

hematology. To improve our understanding of MDS histopathology and its association 

with clinical factors, we predict diagnosis, prognosis, IPSS-R risk score, mutated 

genes, cytogenetics, and patient age and gender by utilizing solely BM morphological 

features. We demonstrate highest detection accuracy for point mutations, such as 

TET2 and ASXL1, which correlate with variant allele frequency (VAF), confirming the 

identification of mutation-specific features. To deconvolute the nonlinear interactions 

between disease determinants and BM histology, we introduce a novel 

multidimensional image analysis approach that combines information at tile, 
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segmented white blood cell (WBC) and pixel levels, ultimately facilitating the 

interpretation of complex BM histopathological patterns. 

 

 

Results 

Unsupervised modelling of BM morphology revealed morphologic lineages and distinct 

myelodysplastic clusters 

To dissect the multiple abstraction levels of BM morphology, we extracted ImageNet-

configured visual activations of H&E-stained BM biopsies from patients with MDS 

(n=236), myelodysplastic/myeloproliferative neoplasms (MDS-MPN) (n=87) and 

healthy control (n=10), using VGG16 and Xception CNN infrastructures (Fig. 1a). 

Images of tissue microarray (TMA) cores were grayscaled and split into 500 tiles to 

amplify robustness and granularity. To investigate the spectrum of CNN texture 

patterns, we mapped image tiles from diagnostic BM samples of MDS, MDS/MPN, and 

control subjects with two-dimensional uniform manifold approximation and projection 

(UMAP) representation (Fig. 1b). Unsupervised image segregation was principally 

driven by stromal and cellular texture. Images with cellular content were observed to 

subcluster according to WBC and red blood cell (RBC) abundance, and lipid droplet 

density. As expected, MDS/MPN patients harbored an increased number of 

hypercellular tiles, while MDS patients demonstrated heterogeneous histopathological 

phenotypes (Fig. 1b). Notably, tiles from healthy subjects represented a harmonized 

balance of cellularity and lipid droplets with scarce stroma. 

 

PhenoGraph-driven clustering of image tiles resulted in detailed tissue patterns, which 

we hypothesized to form dynamic morphological entities (Fig. 1b). Slingshot lineage 

analysis demonstrated potential developmental trajectories between histopathological 
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Fig. 1. Study design. (a) Tissue microarrays (TMA) were constructed from formalin-fixed paraffin-
embedded bone marrow (BM) trephine biopsies stained for hematoxylin and eosin. Images were 
analyzed at tile, pixel, and white blood cell-level (WBC). In the tile-level analysis, TMA spot images were 
split into patches, and morphological features were extracted with ImageNet-pretrained convolutional 
neural networks. We developed elastic net -regularized algorithms to predict multiple clinical and 
molecular genetics variable using only visual feature activations. Tile-level feature activations were 
visually merged as activation maps to deconvolve spatial prediction probability. A Weka pixel classifier 
was trained to identify WBC, red blood cell (RBC), stroma, and lipid droplet from images. Moreover, 
WBCs were segmented, and morphological metrics extracted. (b) Uniform manifold approximation and 
projection (UMAP) of image tile feature vectors from diagnostic myelodysplastic syndrome (MDS), 
myelodysplastic/myeloproliferative neoplasm syndrome (MDS/MPN), and healthy subjects. Each 
patient sample is presented here with random 10 tiles. Colors are encoded according to phenograph 
cluster (larger image) or diagnosis (right-most image). Clusters have been grouped into morphological 
subgroups (dashed circles). Result of a slingshot analysis has been superposed to demonstrate visual 
feature trajectories. (c) UMAP projection feature vectors mean-aggregated at the sample-level, 
clustered with k-means and color-labelled by the corresponding diagnose, (d) tissue proportion of WBC 
and (e) stroma, and (f) diagnostic WHO classification. (g) Each k-means cluster has been compared to 
remaining clusters (Wilcoxon test and Benjamin&Hochberg p-value correction) for segmented WBC and 
pixel-level image analysis parameters, and clinical information. Clinical information is not reported for 
healthy patients (Cluster 1). 
 

phenotypes such as diffuse transition from hypocellular to lipid droplet-dense areas12. 

Missing intercluster connections between high cellularity and lipid droplet-dense 

morphologies were also revealed confirming mutually exclusive pathologies. 

 

Similar texture classes were also discovered when studying MDS image tiles from 

diagnosis and follow-up (Extended Data Fig. 1a). WBC proportion was reduced in 

follow-up samples compared to baseline but tended to recover in later timepoints 

reflecting transition from frequent disease-modifying treatments at early follow-up and 

blast expansion at later timepoints (Extended Data Fig. 1b-d). In contrast, the 

proportion of stroma increased in follow-up samples. Interestingly, lower lipid droplet 

density was measured in follow-up samples and its level further decreased in later 

timepoints in samples with low blast burden. No difference in RBC levels by time or 

blast burden was observed. 

 

Tile features from MDS, MDS/MPN, and healthy subjects were averaged at the sample 

level and 2D-projected with UMAP (Fig. 1c and http://hruh-
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20.it.helsinki.fi/mds_visualization). Unsupervised k-means clustering was utilized for 

subgrouping aggregated vectors. A distinct cluster representing healthy subjects 

(Cluster 1) and four myelodysplastic clusters were principally formed according to 

tissue texture content including the proportion of WBC, stroma, and lipid droplets and 

RBC and WBC metrics (Fig. 1d-g). 

 

Interestingly, the unsupervised clustering structure of MDS and MDS/MPN samples 

was in line with the World Health Organization (WHO) disease classification (Fig. 1f). 

Cluster 3, defined histologically by high bone stroma content, was enriched with 

elevated blast type 1 (EB-1) and 2 (EB-2) MDS subtypes, dimmer hematoxylin staining, 

and leukopenic PB blood count (Fig. 1g). Cluster 5 was characterized with high WBC 

proportion and hypercellular BM typical for chronic myelomonocytic leukemia (CMML) 

and unclassifiable MDS/MPN-U patients. Moreover, these were also associated with 

darker hematoxylin staining and higher IPSS-R cytopenia score. Cluster 4 harbored 

histologically hypoplastic MDS, WHO-classified as single-lineage or multilineage 

dysplasia MDS as well as low erythroid frequency linked with Del(5q) MDS13. The 

remaining cluster 2 was characterized by increased cellularity. 

 

The MDS BM morphology is linked to mutation, karyotype, gender, and prognostic 

status 

MDS is characterized by recurrent oncogenic somatic variants in driver genes and 

chromosomal aberrations (Fig. 2a-b)14–16. We adapted a transfer learning approach, 

where elastic net-regularized regression was developed with VGG16 and Xception 

network feature activations extracted from tile-level H&E images. Following sample-

level prediction average-pooling, we observed high inference notably for TET2, 

ASXL1, and STAG2 mutations, chromosome 7 monosomy, and 7q deletion (Fig. 2c-f). 
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Fig. 2. Supervised learning on bone marrow (BM) morphological features. (a) Oncoprint visualization of 
mutation pattern and gene groups in myelodysplastic syndrome (MDS) patients. (b) Oncoprint 
visualization of cytogenetics pattern in samples from MDS patients. (c) Heatmap displaying area under 
the receiver operating characteristic curve (AUROC) values of elastic net -regularized logistic regression 
models. The left-most column shows the number of samples included in the analysis and the cell color 
represent the distribution of the binary variables to be predicted. The following two columns inform the 
AUROC values of the models in the training (2/3) and test (1/3) dataset in the tile-level images and the 
last two columns at the tissue microarray (TMA) spot-level. (d) Similar plot for elastic net -regularized 
linear regression models. The left-most column shows the Spearman correlation value in the training 
dataset and right-most in the test dataset. (e) Tile-level (left) and TMA spot-level (right) AUROC for the 
logistic regression of monosomy 7 and (f) ASXL1 mutation status. (g) Scatter plot for the Spearman 
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correlation (x-axis) between logistic regression predicting mutation status and the observed gene variant 
allele frequency for individual genes or number of genes mutated for functional pathways. (h) Linear 
regression (R represents Spearman correlation) between prediction probability of ASXL1 mutation and 
its detected variant allele frequency. (i) Wilcoxon comparison for predicted mutation probability and 
detected frequency of altered genes in the RAS pathway. (j) Linear regression (R represents Spearman 
correlation) between the predicted and observed IPSS-R score in the training (left) and test dataset 
(right). 
 

Moreover, morphological features were associated with point mutations in genes 

regulating splicing, cell differentiation, and cell cycle, which are commonly affected in 

MDS. Activations extracted with the Xception infrastructure were observed to be more 

generalizable compared to VGG16, concomitant with higher feature heterogeneity 

observed in Xception correlation matrix (Extended Data Fig. 2-3). In addition, lasso 

and elastic net penalization provided more generalizable models than ridge regression. 

 

Next, we investigated the validity of models predicting mutated genes and 

dysregulated pathways. Notably, the inferred probability of a distinct mutation 

correlated significantly with its variant allele frequency for ASXL1, KRAS/NRAS, 

IDH1/IDH2, and RUNX1 genes, as well as trended for TET2 and TP53 genes (Fig. 2g-

h and Extended Data Fig. 4). Moreover, the predicted likelihood of RAS, cell 

differentiation, and chromatin structure regulating gene pathway dysregulation was 

noted to correlate with the number of genes mutated in the respective pathways (Fig. 

2i). Of note, the initial models were developed with all patients with mutation data, while 

the correlation analysis was restricted to samples with known mutation, indicating BM 

tissue morphology to be impacted by molecular genetics and emphasizing the 

algorithms’ ability to identify variant-related histopathological patterns in an 

unprecedented fashion. 

 

Contrary to histopathological routines of solid tumors, tissue morphology is unutilized 

in risk stratification of MDS patients. Instead, the IPSS-R score accounting for PB cell 
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count, BM blast burden, and cytogenetics is the most-established stratification tool, 

and associated here with AML risk and OS (Extended Data Fig. 5a-b)2. Of note, we 

could predict IPSS-R score, 2-year OS and progression to AML by solely employing 

H&E-stained slides (Fig. 2c-d, 2j). Moreover, deep BM morphology was associated 

with higher concordance of progression to AML and OS in 2 years than IPSS-R score 

either individually or combined with deep histopathology (Extended Data Fig. 5c-d). 

These results might be impacted by differences in patient selection, as our cohort 

represented an unbiased real-world cohort, while patients treated with disease-

modifying therapies were excluded from the landmark prognostic study by Greenberg 

et al.2 However, patient prognostication and treatment stratification could be improved 

by including morphological features. 

 

Deconvolution of supervised prediction models with multilevel image analysis 

In clinical practice, MDS is differentially diagnosed from MDS/MPN by visual inspection 

of cytomorphology and histopathology, evaluation of PB counts, flow cytometry, 

karyotype, and increasingly, molecular genetics. Tissue samples were partitioned into 

small TMA cores possibly limiting effective diagnostic segregation. Yet, we could 

discern MDS patients from MDS/MPN patients with an AUROC validation accuracy of 

0.81 (Fig. 2c). To dissect the prediction model, we combined tile-level tissue texture 

predictions with pixel and WBC-level metrics (Fig. 3a, Extended Data Fig. 6). Pixel 

classification was trained to identify WBCs, RBCs, stroma including fibrotic stroma and 

bone trabeculae, as well as lipid droplets, composing the major tissue elements in 

standard H&E staining. Additionally, WBCs were segmented to extract nuclear, 

cytoplasmic, and pancellular measurements such as size, circularity, and hematoxylin 

and eosin dye variations. As expected, MDS likelihood increased if the sample 

represented hypoplastic texture (Fig. 3b-c). MDS morphology was also associated with  
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Fig. 3. Deconvolution of supervised prediction models. (a) Correlation matrix for logistic and linear 
regression model predictions (rows) and pixel-level and segmented white blood cell-level (WBC) image 
analysis metrics aggregated per sample. The color of individual matrix cells represents the Spearman 
correlation and the asterisks the Benjamin-Hochberg-adjusted significance values: * p<0.05, ** p<0.01, 
*** p<0.001. (b) H&E-stained TMA spots and corresponding activation maps for the prediction of 
myelodysplastic syndrome or myelodysplastic/myeloproliferative neoplasm diagnosis (MDS or 
MDS/MPN). For the activation map, tile-level predictions haves been color-scaled (blue: high probability 
for MDS/MPN, red: high probability for MDS). (c) Scatter plot and Wilcoxon test to compare WBC 
proportion by MDS and MDS/MPN diagnoses. Boxplots define the interquartile ranges and median 
values by diagnoses. (d) Scatter plot and Wilcoxon test to compare WBC proportion and (e) stroma 
proportion by ASXL1 mutation status. Boxplots define the interquartile ranges and median values by 
diagnoses. (f) Barplot comparing gender distribution by ASXL1 mutation status. Gender frequencies 
have been compared with Chi2 test. (g) Image tiles representing highest and lowest computed probability 
of chromosome 5q deletion. 
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dimmer hematoxylin and eosin staining and larger cell size likely due to technically 

larger cell segmentation area in hypocellular BM (Extended Data Fig. 7a-d). 

 

Following model deconvolution, ASXL1 mutation probability was observed to correlate 

with elevated accumulation of stroma and RBCs, depletion of WBCs and lipid droplets 

as well as reduced intracellular hematoxylin staining (Fig. 3a, Extended Data Fig. 6b). 

We confirmed the association between sequenced ASXL1 mutation and lower WBC 

and higher stroma content from clinical data (Fig. 3d-e). Interestingly, covariates 

involved in predicting ASXL1 mutation coincided with female gender inference, 

although ASXL1 mutations were observed to divide equally between genders (Fig. 3f). 

 

Chromosome 5q deletion has been described to associate with a decrease in erythroid 

precursor cells and increase in hypolobular megakaryocytes13. While RBCs have been 

commonly interpreted as tissue processing artefact, we observed a clear correlation 

between 5q deletion probability and infrequent RBCs (Fig. 3a and 3g and Extended 

Data Fig. 6c). In addition, when inspecting tiles associated with highest likelihood for 

5q deletion, we discovered enrichment of megakaryocytes with abnormally circular 

nuclei (Fig. 3g). 

 

We also noted a distinct cluster (yellow-colored in Fig. 3a) consisting of likelihood of 

gene pathway dysregulation, progression to AML, and OS. While we could accurately 

detect spliceosome (validation AUROC 0.89) and cell differentiation mutations 

(validation AUROC 0.88), these models were challenging to deconvolute implying 

association with heterogenous and complex tissue texture determinants. 

 

Discussion 
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Here, we demonstrate how the intricate and heterogeneous BM morphological 

landscape can be decomposed and associated with clinical data using multilevel 

computer vision. Remarkably, highest prediction accuracy of deep BM morphology 

was noted for mutation and cytogenetic aberrations, which even outweighed reported 

inference in solid tumors5,9,17,18. We suspect homogenous BM tissue consistency and 

lower mutation burden of MDS to account for the improved results. 

 

The black box dilemma hinders clinical translation of deep learning algorithms.19,20 To 

increase model transparency, we deconvoluted CNN-extracted morphological patterns 

associated with molecular and clinical determinants by linking image analysis at tile, 

pixel, and cellular levels. We emphasize that similar holistic approaches should be 

further explored with neural network-based semantic and instance segmentation 

methods to improve dissection of complex models. 

 

Taken together, deep mining of the BM tissue texture in a larger scale could assist 

pathologists by revealing intricate morphological patterns defining disease subtypes 

and eventually improving clinical stratification of MDS patients. 
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Materials and methods 

Patients. The study population comprised MDS (n=142) and MDS/MPN patients 

(n=51) and control subjects (n=10) treated between 2000-2018 at the Department of 

Hematology in the Helsinki University Hospital (Supplementary Table 1). BM trephine 

biopsies taken at diagnosis and follow-up were applied for from the Helsinki Biobank. 

According to Helsinki University Hospital’s ethical board guidelines, BM trephine 

samples were collected from subjects without diagnosis of hematologic malignancy, 

chronic infection, nor autoimmune disorder in six years of follow-up. Control subjects 

were 54.5% males and 55.4 [40.0-82.0] years old at the time of BM sampling. MDS 

and MDS/MPN patients were older than control subjects (p=0.02 and p=0.002, 

respectively) but did not differ significantly by gender distribution (Supplementary Table 

1). All subjects gave written informed research consent. The study complied with the 

Declaration of Helsinki and the HUS ethics committee (DNRO 303/13/03/01/2011). All 

clinical data were collected from the HUS hematology datalake, a GDPR-compliant 

database integrating data from electronical health registries and the Finnish 

Hematology Registry. 

 

Sequencing. Genomic DNA was isolated from diagnostic BM samples (n=108) using 

the QIAsymphony DSP DNA kit. Driver gene mutations were defined using a clinical-

grade, myeloid amplicon sequencing panel capable of identifying mutations with 

variant allele frequency >2% (mean sequencing depth 6000x; Extended Data Fig. 8). 

In addition, data from additional 40 samples analyzed with the Illumina TruSight 

myeloid amplicon sequencing panel were included (mean sequencing depth 100x). 

 

Tissue Microarrays (TMAs). Upon sampling, fresh BM biopsies were conformed to 

routine formalin-fixation and paraffin-embedding (FFPE). TMAs were cast by a single 
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2 mm core (MDS and MDS/MPN) or double 1 mm cores (controls) per sample from 

representative BM biopsy areas (Fig. 1a). Tissue blocks were cut into 4 µm thick 

sections and stained with hematoxylin and eosin (H&E). Slides were digitized at 0.22 

μm/pixel (20x objective magnification) with the whole-slide scanner Pannoramic 250 

FLASH (3DHISTECH Ltd.).  

 

Image preprocessing. H&E images were preprocessed by converting RGB images 

into grayscale to avoid bias from technical artifacts caused by sample processing and 

to increase the robustness of texture features. Moreover, we standardized non-tissue 

background pixels by converting pixels exterior to binary tissue masks into 255 (white). 

H&E images were resized to 6.000 pixels in horizontal length and split into 500 equally-

sized tiles. Tiles with mean pixel intensity over 240 represented non-tissue background 

and were excluded from the analysis resulting in 73.531 tiles. Tile size was optimized 

to marginally outsize the largest BM lipid droplets to avoid their classification as non-

tissue background. 

 

Feature extraction. We adapted a transfer learning approach where image tiles 

activations were obtained with pretrained Xception and VGG16 convolutional networks 

as well as the Keras deep learning framework, which have achieved high accuracy in 

classifying ImageNet data21–23. Individual tiles were resized into equal sizes (224x224 

for VGG16 and 299x299 for Xception) and rescaled (0,1) for feature extraction. For 

each tile, a 2.048-bin feature vector was extracted at the second last fully-connected 

Xception network layer. To tackle the nonidentical dimensionality of the VGG16 

architecture and enable unbiased network comparison, we exported features from the 

last layer (n=25.088) and retained only the top 2.048 features with the highest 

variance-to-mean ratio (Extended Data Fig. 3). 
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Regression models. To predict genomic, cytogenetic, prognostic, and patient 

demographics, image tiles were first split at the sample level into training (2/3) and test 

(1/3) datasets. Models were trained with L1 (alpha = 1) and L2-penalized (alpha = 0) 

and elastic net-regularized (alpha = 0.5) regression models using 5-fold cross-

validation24,25. Lambda values were optimized for each fixed mixing parameter alpha 

to reach minimum cross-validation error (lambda.min) and to choose the lambda at 

one standard error of the minimum (lambda.1se). Training occurred at the tile level, 

and the prediction results were assessed at tile level and after sample-wise average-

aggregation also at sample level. In summary, each predicted variable was estimated 

based on 12 algorithms (two CNN models and three alpha and two lambda elastic net 

regularization parameter values). 

 

Separate prediction models for IPSS-R score, IPSS-R cytopenia score, and age at 

diagnosis were developed with linear regression and using only diagnostic MDS 

samples. Age was transformed into <50.0, 50.0-59.9, 60.0-69.9, 70.0-79.9, and >80.0 

years age categories, which ameliorated the accuracy and interpretation of results. 

Gender, mutations, cytogenetic aberrations, overall survival (OS) in 2 years, AML 

progression in 2 years, and MDS etiology were predicted with logistic regression using 

both diagnosis and follow-up samples (Fig. 2c). Only genes and chromosomal 

aberrancies present in over 9% of samples were selected (Fig. 2a-b). Disease etiology 

was assigned as either “de novo” or “secondary MDS”. Azacytidine response was 

predicted with logistic regression using samples taken 0-365 days before treatment 

start. 
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Abbreviations used for predicted variables. SPLICINGmut: spliceosome mutations. 

CELLDIFFERENTIATIONmut: mutation in genes regulating cell differentiation. 

CELLCYCLEmut: mutation in genes regulating cellcycle. DNACHROMATINmut: 

mutation in genes regulating DNA chromatin structure. RASmut: mutation in NRAS or 

KRAS. ABNCHR: presence of any abnormal chromosome. IDHmut: mutation in IDH1 

or IDH2. OS2y: overall survival event in 2 years of follow-up. RASPATHWAYmut: 

mutation in genes regulating RAS pathway. AML2y: progression to AML in 2 years of 

follow-up. AZA: azacytidine treatment response. 

 

Pixel classification. Each RGB TMA spot images were analyzed with the trainable 

Weka pixel classification module of Fiji using default parameters26. Each pixel was 

classified as either WBC, RBC, stroma, or lipid droplet.  Stroma included fibrotic stroma 

and bone trabeculae. The area of individual classes was calculated as proportion to a 

binary tissue mask area to estimate their relative tissue area rather than absolute 

quantity. The tissue mask was created by converting H&E images into binary format 

and performing mask dilatation, empty hole fill and mask erosion steps (Extended Data 

Figure 9). Lipid droplets were defined as filled image holes from the initial tissue mask. 

 

WBC analysis. Each RGB TMA spot images were analyzed with the open-source 

software QuPath (v0.2.0)27. WBCs were segmented with the watershed cell detection 

and background radius 30px, median filter radius 0px, sigma 6px, minimum area 

10px2, maximum area 10.000px2, threshold 0.1, max background intensity 2, and cell 

expansion 5px (Extended Data Figure 7). Nucleus and cytoplasm staining intensity 

and size as well as cell circularity metrics were extracted for individual WBC and 

averaged at the TMA spot level. While not quantifying identical measurements, a clear 

correlation between the frequency of segmented WBCs and proportion of the WBC 
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pixel area was observed (R = 0.52, p<0.001, Spearman correlation; Extended Data 

Figure 10). 

 

Statistical Analysis. Continuous variables were compared with Wilcoxon test 

(unpaired, two-tailed), and correlated with Spearman’s rank correlation coefficient. 

Categorical variables were compared with Chi2 test. P-values were adjusted with 

Benjamini-Hochberg’s correction when necessary.28 Cox regression analysis (log-rank 

test) was used for survival analysis. Model fitness was assessed by calculating 

statistical significance of area under the receiver operating characteristic curves 

(AUROC). AUROC values for predicting AML progression, OS and IPSS-R were 

further compared with DeLong’s test29. 

 

For unsupervised analysis, we selected uniform manifold approximation and projection 

(UMAP) method, over principal component analysis (PCA), as visual features follow 

non-normal distribution. PhenoGraph is a graph-based community detection method 

designed for high-resolution single-cell data analogical to visual features30. Therefore, 

single tiles were clustered with Phenograph with default settings to attain higher 

morphological granularity. K-means clustering was selected for sample grouping to 

simplify interpretation of patient grouping, and the k parameter was harmonized using 

the consensus of 30 indices based on Euclidean distance31. Feature extraction, 

regression models, and statistical analysis were performed with R 3.5.1 and packages 

are listed in Supplementary Table 232. 
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Code and data availability. Code used for data analysis are available at 

https://github.com/obruck/MDS_HE_IA/. Image data, activation maps and 

deconvolution metrics are available at https://hruh-20.it.helsinki.fi/mds_visualization. 
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