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Abstract: We present a set of methods to improve the automation of the parametric 3D modeling of
historic roof structures using terrestrial laser scanning (TLS) point clouds. The final product of the
TLS point clouds consist of 3D representation of all objects, which were visible during the scanning,
including structural elements, wooden walking ways and rails, roof cover and the ground; thus, a
new method was applied to detect and exclude the roof cover points. On the interior roof points,
a region-growing segmentation-based beam side face searching approach was extended with an
additional method that splits complex segments into linear sub-segments. The presented workflow
was conducted on an entire historic roof structure. The main target is to increase the automation of the
modeling in the context of completeness. The number of manually counted beams served as reference
to define a completeness ratio for results of automatically modeling beams. The analysis shows that
this approach could increase the quantitative completeness of the full automatically generated 3D
model of the roof structure from 29% to 63%.

Keywords: architectural modeling; historic building structures; terrestrial laser scanning; point cloud
processing; 3D modeling

1. Introduction

The professional examination of existing roof structures made of timber represents
a separate field of activity for various disciplines. In the field of monument preservation,
for example, historical roof structures have to be assessed and classified with regard to their
monument value in order to ensure an appropriate future handling of the structures [1].
Historical building research is also dedicated to the development of traditional structures
and their (often regional) peculiarities in the field of roof structure research [2]. Planners
and structural engineers often have to evaluate historic roof structures in terms of their
stability or in relation to necessary retrofitting measures. Another field of work is roof
extensions, which are often used as a measure to provide living space, especially in dense
urban centers. For all exemplary mentioned fields of work, scaled plans and/or digital
models of the existing roof structures are today a basic requirement for further work steps.

The traditional method of surveying roof structures uses tape measures, paper and
pencil. It assumes vertical and parallel structures and requires a lot of manual effort. Thus,
there is a need to automate this process. Terrestrial laser scanning (TLS) is a method to
collect millions of points on object surfaces within a short period of time [3]. Alternatively,
structure from motion can be used to generate point clouds [4,5]. Many investigations
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showed that laser scanning is more precise, but requires a higher investment at the begin-
ning [6–9].

Reconstruction from laser scanning point clouds, also called reverse engineering,
is a technique regularly applied to document entire factories and installations within
these factories [10]. There is a concentration on piping installations, and high levels
of automation can be reached [11]; however, historic roof structures are different for a
number of reasons. Firstly, the cross sections are typically rectangular or polygonal but not
circular. Secondly, historic roof structures are characterized by limited regularity, despite
their generally repetitive layout. The latter, thirdly, leads to a lot of occlusions, which
hampers reconstruction.

This paper suggests a set of methods, which are combined in a workflow, to increase
the automation of structural and architectural 3D modeling of historic timber roof structures
using TLS point clouds.

Related Work

Continuous development of 3D data capturing devices and used techniques in the
field of measuring accuracy and data collection speed supports the usage of point cloud
with the objective of sustainable documentation or parametric modeling. Modeling of 3D
data as simple geometric primitives is a way of representing it in a compact manner and
simplifies any subsequent analysis that would be performed [12].

Up to present, there were several studies related to retrieving 3D parametric models
directly from point clouds. Rabbani and Heuvel [13] developed a method for 3D recon-
struction of industrial sites using a combination of images and point clouds focusing on
detection of plane and cylinder objects using the Hough transform. Masuda and Tanaka [14]
presented a solid modeling methodology based on a reflectance image and mesh models
that are based on laser scanner point clouds. Poullis [15] proposed a framework for the
automatic modeling from point cloud data. Three-dimensional models are generated based
on the roof outlines extracted from airborne laser scanner point clouds. Son et al. [10]
assumed industrial instrumentation objects as cylinders or boxes that fit to the acquired set
of 3D point clouds. Ochmann et al. [16] presented an automated method for reconstruction
of room models from indoor point clouds to transfer the model to Building Information
Modeling (BIM) using the Industry Foundation Classes (IFC) standard.

Balletti et al. [17], had a research study on the wooden structure of the dome of SS.
Giovanni e Paolo in Venice. Taking the advantage of laser scanning survey, they shortened
the data acquisition time on site; however, the final result, a 3D model, was obtained
after some months of data elaboration and modeling in Computer-aided desing (CAD)
software. The work of Cabaleiro et al. [18] provided a methodology for 3D modeling of
highly irregular timber beams from TLS data using cross sections. In this approach, cross
sections are assumed to follow a certain pattern, and this external knowledge must be
brought in. Pöchtrager et al. [19] presented a highly automated methodology to process
point clouds from laser scanning data to 3D modeling of linear beams of historic timber
roof structures. In the further study of Pöchtrager et al. [20], the extended version of the
developed method was applied on point clouds with different point density or complete-
ness. Even if the method fits well for processing and modeling of entire roof structure
point cloud, approximately 30% of beams of a historic roof structure could be modeled
without any manual operation, and the aim is to obtain a higher completeness. Murtiyoso
and Grusenmeyer [21] were inspired from exhibit [20] in modeling of timber beams. Addi-
tionally, they proposed a Hough transform analysis based method for separation of Y- or
L-shaped point cloud segments into I-shaped sub-segments. The method was applied to
less complex roof structures and solves only a part of the entire task.
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2. Materials and Methods
2.1. Roof Structure Site

To evaluate the suggested methods and the workflow from scratch to end, the roof
structure of St. Michael, a medieval church in the city center of Vienna, was chosen as a case
study. As part of the medieval Vienna Imperial Palace, the roof structures of the church have
been analyzed for several years by experts of the Vienna University of Technology in coop-
eration with the Federal Monument Authority of Austria and further scientific partners in
the frame of research-based student courses [22]. The selected roof structure of St. Michael
was newly erected after 1525, when a disastrous city fire destroyed the former structure [23].
It was built as a rafter roof with a double standing truss combined with hanging struts in
the ridge level and represents a typical construction of late medieval carpentry.

For a visual impression, the ground plan of the roof structure is presented in Figure 1.
In perspective of dimensions, the length of the roof structure along the longitudinal axis
above nave and chancel is around 65 m, the extend of the latitudinal axis above the
transept is 32 m, height is near to 10.5 m and the span length of the vertical slice of the
repetitive sections is nearly 11.5 m. Distance between neighbor rafters is approximately
70 cm. The roof structure consists of around 1 m to 10 m long timber beams with the
width of 10 cm to 25 cm. As the roof structure comprise two floors, there are also wooden
walking ways and railings located on both floors. Stairs, infrastructure elements (cables,
etc.) and roof covering are some other visible objects that are irrelevant for architectural or
structural modeling.

Figure 1. The ground plan obtained from point cloud of the roof structure of St. Michael.

2.2. Point Cloud Acquisition

Different sensors and techniques can be used to acquire 3D point cloud data. These
methods include 3D laser scanning, photogrammetry, videogrammetry, RGB-D camera
and stereo camera [24]. TLS have a great potential due to their ability to capture objects
in high speed with accuracy up to sub-millimeter [25]. The capability of obtaining highly
detailed and accurate point cloud within minutes is fitting well with surveying and docu-
mentation of structures such as historic timber roofs. The principle result of single scanning
is a 3D point cloud in the scanner coordinate system. To cover as much as possible surfaces
of the working area, scanning needs to be applied from more than one position. Afterwards,
point clouds from different scan positions can be transformed into a superior coordinate
system using artificial targets or a registration approach such as Iterative Closest Point
(ICP) [26].

Scanning of the roof structure was made with a Riegl VZ-2000i [27] device. The device
has the ability of up to 500,000 points measurement per second, 3 mm to 5 mm accuracy
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within a range of 1 m to 2.5 km. The scanning was planned to cover as much as possible
of the dense structure of the roof. Therefore, in both floors the scanner was positioned
between rafters sequentially keeping approximately 2 m distances. Totally, 241 scans were
made and each scan took around 20–40 s. Over 600 million points from inside the roof
structure were collected at the end of one day of work. While the coarse registration of
the scans was already performed internally by the scanner for spatially consecutive scan
positions, coarse registration of non-registered scan positions, refinement of the registration
and multi-station adjustment applications were performed afterwards using RiScanPro [28]
software. While the registration after scanning was completed within two working days,
the multi-station adjustment process resulted in 0.004 m root mean square error (RMSE) in
approximately 40 min.

2.3. Method
2.3.1. Overview

The methods and workflow applied in this study aim to reduce the manual effort
during parametric 3D modeling of historic timber roof structures using TLS point cloud
data. The process chain takes registered point clouds and corresponding scan positions as
input data. After the registration, the point clouds can be exported separately for each scan
position or as a single file, which is a combination of selected scans. To determine the beam
surface normal directions, the relation between each point and the source scan position are
used during normal vector computation.

In this study, timber beams of the roof structure are assumed as straight or slightly
bending objects with rectangular cross shapes. As a result of that, the primary output
is a set of cuboid objects, which include dimensions, orientation and position for each
timber beam within the same coordinate system as the point cloud. Woodworking joints
are detected and stored with the help of intersections of cuboid objects.

Figure 2 shows the main workflow of this study. The gray colored steps in the first
stage cover on site work and registration of multiple scan positions. Second stage covers
general point cloud pre-processing operations. The third stage is specific to the historic
roof structures. Blue colored steps are applied with OPALS [29] software, a point cloud
processing software and the resulting point cloud and computed attributes are stored in
the OPALS Datamanager (ODM) [30] file. All the algorithms and process chains shown in
green colors are developed in Python [31]. In the last stage, while classification of shapes
and cuboid modeling steps are applied with the same approach as in the Pöchtrager et al.
(2017, 2018) method, new roof cover filtering and linear segment splitting steps are de-
veloped and included to the workflow for the purpose of both data simplification and
increased automation.

Figure 2. Main stages of the 3D modeling workflow.

In the first new method presented in this article, roof cover filtering is performed,
in order to avoid processing irrelevant points. The point cloud is separated into the roof
face and the roof interior. The roof face consists of large planes, whereas the interior
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includes the roof structure, our primary object of interest, and other elements such as
infrastructure (cables) and scanning artefacts (persons). The interior is segmented into
planar or slightly bending objects in the next step. In the classification step, segmentation
results are grouped into linear, non-linear separable and complex segments. Linear segment
splitting, the second new method in this workflow, is developed to split the non-linear
separable segments into linear sub-segments. Finally, cuboid fitting is performed using all
linear segments after which woodworking joints are detected using cuboid intersections.

2.3.2. Combining of Point Clouds

Manufacturers of TLS devices provide their own software to fulfill the need of point
cloud processing operations such as registration, adjustment and data export. Registration
of scan positions and multi-station adjustment of the scans are applied on RiScanPRO [28],
which is the software provided by RIEGL, (Horn, Austria). While the registered point
clouds from different scan positions are exported as separated files in the .las [32] format,
the final positions of each scanner, more precisely the origin of the scan in the superior
coordinate system, are available (as a text file) as well.

A single point cloud file can be generated using separated .las files and the corre-
sponding scan positions. In the merged file all points from all scan positions are stored,
augmented by information of the measurement rays. They are also stored for each point
using Equation (1).

−−→
Rayi = (Pi − SPi) (1)

In Equation (1), Pi are the coordinates of point i measured by scan position SPi and
−−→
Rayi is direction vector of point i.

As the scanning is applied from different positions inside the roof structure, the merged
point cloud of all scan positions includes a higher amount of points than is necessary for
the next stages of the processing chain. While some regions are visible from multiple scan
positions, some others do not contain any points because of the shadow effect. The distance
from scanner is also influencing the density of measured points on the surfaces. Sub-
sampling is applied to achieve a point cloud with a regular or at least more uniform point
density. Pöchtrager et al. [20] pointed out that lower point density had only little effect on
the quality of final model. During sub-sampling, only one point within a sphere defined
with a search radius (e.g., 0.01 m) is stored while other points are ignored. As a result,
sub-sampled points are measured real (not interpolated) scan points. A robust plane is
fitted to k-nearest neighbor (e.g., k = 16) inside a search sphere to compute normal vectors
of each point. Computed normal vectors are oriented towards the scanner using ray vectors
(Equation (1)). The normal vectors are oriented outwards, which is obtained by ensuring
that the normal vector and the ray vector for each point have a negative dot product.

2.3.3. Roof Cover Filtering

The roof cover filtering is a set of automated steps, which allows to separates the point
cloud into exterior and interior points (Figure 3). This does not only exclude roof faces but
also the ground from the entire point cloud.

The filtering has two sub-steps: (i) the preparation of the cutting reference surface;
(ii) the comparison of the reference surface and the source point cloud.
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Figure 3. Workflow of roof cover filtering.

Preparation of Cutting Reference Surface

As the roof structure is scanned from the inside, the point cloud includes roof cover
surfaces as well as timber beam, wooden walking ways, etc. From an outer view point,
the entire point cloud is covered by mostly roof material. Interior and exterior points are
separated by a reference surface, which surrounds the entire point cloud from outside.

Even if the surrounding surface mostly contains roof material and ground points
(located on the bottom of the point cloud), there are also points of structural elements that
have continuous contact with the roof cover. A voxel-based sub-sampling is applied to
the entire point cloud with a search radius approximately equal to the maximum width of
beams directly connected to the roof cover (e.g., 15–20 cm) in order to reduce the number
of the points belonging to these beams.

Generation of a reference surface that is fitting well to the roof cover is achieved
through application of a hidden point removal [33] method. First, the Euclidean distance
between a point and the input view position is stored as attribute. Then, the points that
have minimum distance value within an oriented infinite cylinder search region (e.g.,
radius = 10 cm) are considered as visible points as shown in Figure 4.

Figure 4. Hidden point removal approach.

Figure 4 illustrates a cylinder, a search point (orange), a view point (yellow), and the
visible point that has minimum distance to view point (red). Points that have larger distance
value (gray) are not considered further, until the view point is changed, in order to improve
the runtime performance.
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Artificial view points are defined for top, bottom and four sides. The hidden point
removal method for the six points of view provides output points, which cover the object
from outside where these points are stored as a single point cloud.

k =
√
(XMax − XMin)2 + (YMax −YMin)2 + (ZMax − ZMin)2 (2)

V1 = (XCenter, YCenter, ZMax + k)

V2 = (XCenter, YCenter, ZMin − k)

V3 = (XMax + k, YCenter, ZCenter)

V4 = (XMin − k, YCenter, ZCenter)

V5 = (XCenter, YMax + k, ZCenter)

V6 = (XCenter, YMin − k, ZCenter)

(3)

In Equation (3), V1...6 are the selected view positions, k value in Equation (2) is the
maximum distance between bounding box vertices, (X, Y, Z)Center is middle point of the
bounding box of the input point cloud, (X, Y, Z)Min and (X, Y, Z)Max are the limits of the
input point cloud.

Although the combination of all the results from hidden point removal applied with
V1...6 point clouds represents the exterior surface of the entire point cloud, it still does not
have the same density as the original input point cloud. For a reliable comparison of two
point clouds, surface reference point cloud needs to be up-sampled as similar as the input
point cloud. For this reason, Moving Least-Squares (MLS) [34] method is applied to the
point cloud to up-sample it to a higher density value (e.g., 0.01 m).

Point Cloud Split into Roof and Interior

The next step is to compute signed distances between the cutting reference surface
point cloud and the input point cloud. At the beginning, normal vectors of the cutting
reference surface point cloud are oriented from center to the outer side of the point cloud.
Then, the signed distances between the input point cloud and cutting reference surface are
computed with the Equation (4).

dsigned = −→nB ·
(−−−−−→

PA − PB

)
(4)

In regards to Equation (4), PA is the point from input point cloud, PB is the closest
point to PA from cutting reference surface point cloud and −→nB is the normal vector of the
point PB.

While the negative dsigned values mostly represent the roof structure interior, positive
values mean that the points are outside of the cutting reference surface point cloud. With the
signed distance information, a threshold value tdistance can be specified taking the roof
cover material thickness into account to separate the interior part. Usage of the threshold
value may exclude some of the beam side face points that are close to the roof cover. This
can be avoided by additionally considering the angles between the normal vectors.

As visualized in the Figure 5, the light-blue colored regions are assumed as exterior
regions because of the tdistance value. To achieve this, α, angle between normal vectors of
cutting reference point cloud and input point cloud (Equation (5)), is used for an additional
thresholding in Equation (6). The α is visually shown in Figure 5 (right) for both green and
blue regions. The points fulfilling Equation (6) are the interior roof point cloud.

α = arccos(−→nref · −−−→ninput) (5)

dsigned < tdistance ∨ (dsigned ≥ tdistance ∧ α > tangle) (6)

In Figure 5, blue and green arrows are normal vectors of beam side faces, while yellow
arrow is the normal vector of the cutting reference surface. The blue side faces are physically
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connected and almost perpendicular to the cutting reference surface, whereas the green
face has no connection. The specified tdistance (e.g., 5 cm) and tangle (e.g., 85◦) values inside
Equation (6) can separate interior points including light blue regions shown in Figure 5.

Figure 5. Side beam faces cut by reference surface (light-blue), interior side face regions (gray) and
equivalent orthogonal face (green).

2.3.4. Segmentation

Segmentation is used to detect planar side faces of beams in the point cloud. These
side faces will be used in a later stage for fitting cuboids to the point clouds of adjacent
beam sides. The interior roof point cloud (previous section) is the input for segmentation.
Segmentation consist of following steps;

• Region- growing-based segmentation.
• Planar sub-segmenting.

The angle between normal vectors within a local neighborhood (e.g., rmax = 0.05 m) is
used as homogeneity rule for a region-growing-based segmentation.

arccos(−→np · −→nn) < αmax (7)

In Equation (7),−→np and−→nn are unit normal vectors of a point and its candidate neighbor
while αmax is a threshold value for local angular homogeneity (e.g., 5◦).

Related to the specified alphamax value, segmentation result may contain not only
planar segments but also non-planar ones. The least squares fitting plane [35] is calculated
for all segment points. The root mean square error (RMSE) of plane fitting is the reference
value for decision of searching for planar sub-segments. If the plane is not fitting well to
all segment points (e.g., RMSE > 0.04 m), the RANSAC algorithm [36] is used to detect
multiple planar sub-segments as explained in [19,20].

2.3.5. Shape Classification

The results of the segmentation comprise planar point sets, which do not only contain
single beam side faces, but also other objects such as walls or wooden walking ways.
To define the segments that belong to the beam side faces, main input for the cuboid fitting,
the segmentation result needs to be classified. The aim of this step is to classify segments
into following three types (Figure 6) using shape factors computed with Equation (8):

• Type-1: Linear shaped segments.
• Type-2: Non-linear segments with separable sub-segments.
• Type-3: Non-linear compact segments.
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Figure 6. Type-1 (left), Type-2 (center) and Type-3 (right) segments visualization.

f elong =

√
λl
λw

f area =
Aα

AMBR

(8)

Regarding to Equation (8), λl and λw, “length” and “width” of a segment, are the
largest and second-largest eigenvalues, which are computed for all segment points with
principle component analysis [37], Aα and AMBR are the area of the alpha-shape [38] and
its minimum bounding rectangle (MBR) for a segment. In conclusion, for a segment,
if f elong > 5 and f area > 0.5 then it refers to type-1, if f elong < 4.5 and f area > 0.8 then it
corresponds to type-3, while all other cases considered type-2 [20].

Figure 7 shows that Segments 3, 4 and 6 are linear segments named as type-1, which
are candidates to be a side face of a timber beam. Segment 1 needs to be separated to planar
sub-segments while Segment 2, classified as type-2, has separable linear sub-segments (2a
and 2b) and Segment 7 is a compact segment that is ignored in the further process.

Figure 7. Region growing segmentation result (in the middle), planar sub-segmentation with
RANSAC (left) and non-linear segment with separable sub-segments (right).

2.3.6. Linear Shaped Segment Splitting

The segments classified as type-2 need to be split into linear sub-segments (2a and 2b)
as shown in Figure 7, in order to be involved in cuboid fitting. Cuboid modeling results of
Pöchtrager et al. [20] show that the number of modeled beams are directly related to the
number of detected beam side faces (type-1). Murtiyoso and Grussenmeyer [21] applied a
Hough transform analysis after projection of Y or L shaped of type-2 segment points to a
binary image to find more beam faces.
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A new method is suggested (Figure 8) which aims at both, increasing of automation
and simplifying manual operations during type-2 segment splitting.

Figure 8. Automation flowchart of linear (straight) part splitting for type-2 segments.

Type-2 segment points (3D) are the input of the processing chain. The methods inside
the processing chain are then applied on alpha-shape of 2D projection of input 3D points to
the best fitting plane that was already computed in previous stage. A 2D region growing
segmentation method is applied on the alpha-shape border points at the beginning because
complexity and number of sub-segments differs for individual input segments.

linearity =

√
1− λl

λw
(9)

The 2D segmentation reduces the complexity by separating parts as large as possible.
For this reason the segmentation is applied on 2D alpha-shape vertices that have high
linearity value, computed as Equation (9), (e.g., linearity > 0.95). The defined search radius
in the segmentation considers the maximum thickness of the beams (e.g., 25 cm) in order to
detect as large as possible straight line segments.

The result of 2D segmentation may contain both type-1 and type-2 shaped segments.
After checking the types using shape factors 8, while type-1 labeled parts are candidates to
be a side face, type-2 labeled ones need further processing. An iterative line fitting (using
RANSAC algorithm) is performed on type-2 labeled segments in the second stage.

In Equations (10), the resulting lines defined with mi, bi are compared to each other
and αi,j is computed as an angle between the two lines. If the angle between line i and line j
is less than specified in the threshold (e.g., 5◦), then line j is a candidate to be a match with
line i.

y = mix + bi

αi,j = arctan (
mi −mj

1−mi ·mj
)

(10)

Euclidean distances are computed from the center point of reference line segment
to all candidate lines. If there are more than two candidates within the expected beam
width (e.g., 15–30 cm), one out of the two closest candidates is the correct match. The
reference line is paired with both candidates for checking and then computing convex-hull
geometry (using vertices of reference and candidate lines) intersected with alpha-shape
geometry of the input segment. The correct match should have higher intersection area
ratio. If shape factors and intersection ratio supports the sub-segment, a new segment ID
is assigned to the points inside the convex-hull polygon. All other points are neglected.
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When the last sub-segment candidate is checked, an additional segmentation is applied
only on non-processed points if the number of points is larger than a threshold value (e.g.,
600 points). The last segmentation result is checked directly for type-1 segments to assign
the points to a new sub-segment. Finally, all sub-segment points and non-processed points
are stored into point cloud. While sub-segments are going to be considered as candidate to
be beam side face, non-processed points will have a chance to be partitioned manually.

2.3.7. Cuboid Fitting and Modeling

The final product of the study, parametric models of the beams, is a set of cuboid objects
defined with position, dimensions (width, height, length) and orientation information.
The cuboid fitting method explained by Pöchtrager et al. [20], extracts all parameters of the
cuboid objects if at least two adjacent beam faces are known. The following methods were
applied directly as explained in [20]:

1. Identification of adjacent beam segments.
2. Fit cuboids for beams.
3. Intersect beams and analyze the structure.

To define the adjacent segments that form together a beam, between a reference and a
candidate segment, the following three conditions need to be fulfilled:

• Distance of centroid of reference to plane of candidate:

|CA − PB| < distmax (11)

• Angle between normal vectors:

arccos(−→nA · −→nB) ≈ [0, 90, 180, 270] (12)

• Angle between longitudinal axes:

arccos(
−→
lA ·
−→
lB ) ≈ [0, 180] (13)

A least squares estimation approach is applied for fitting cuboids to the adjacent
segment points. The following equations are considered in order to minimize the distance
between a side face of cuboid and the point that belongs to the side face:

f 1(p1,j) : (p1,j − p0)
T · r1 = d1,j

f 2(p2,j) : (p2,j − p0)
T · r2 = d2,j

f 3(p3,j) : (p2,j − (p0 + a · r1))
T · r1 = d3,j

f 4(p4,j) : (p4,j − (p0 + b · r2))
T · r2 = d4,j

p0 = CoG + s · r1 + t · r2

(14)

In Equations (14), pi,j is point j of side face i (i = 1, 2, 3, 4), di,j distance of point j to
its side face i, r1 and r2 are the axes of the beam coordinate system, a and b are beam
dimensions in r1 and r2 direction, CoG is center of gravity of all beam points, p0 is the base
point of the beam, s and t are shift of p0 from CoG to inner side of the beam in r1 and r2
directions [20].

A fitting cuboid can be achieved with Equations (14) if at least two adjacent beam
faces exist.

Detection and classification of woodworking joints is based on spatial proximity.
Joints are located at the intersection of cuboids and stored as a line segment that has
shortest distance between beam axes. Cuboid objects and joints can be transformed into
.dxf [39] and .step [40] data exchange formats for further investigation and processing in
3D computer-aided-design (CAD) or structural analysis software.
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3. Results

As mentioned before, the methods were applied to a case study, a late medieval timber
roof structure from the first half of the 16th century. In Section 2.1, it was pointed out
that the scanner was positioned at approximately every second rafter. This pattern was
followed for both first and second accessible floors of the roof structure. The accumulation
of the collected points from different scan positions resulted in 634,065,068 points. A part
of workflow, beginning from sub-sampling until segmentation stage, gradually decimates
the number of points for each stage.

Table 1 shows how many points exist before each process and how many of them
are transferred to the next step. While sub-sampling mainly aims to remove spatially
closed or duplicated points, roof cover filtering directly affects the points on the roof cover.
The segmentation process not only generates segments, but also reduces the number of
segmented points ignoring segments that has less points than the constraint of minimum
number of points.

The results in Figure 9 show that roof cover filtering was able to separate the most of
the roof cover points from point cloud. After the roof cover filtering, the visible small parts
belonging to the roof cover in Figure 9d were eliminated during segmentation.

Table 1. Number of processed points in context of decimation.

Process Name Number of Points Percentage (%)Before After

Laser scanning - 634,065,068 100
Sub-sampling 634,065,068 58,816,336 9.28
Roof cover filtering 58,816,336 42,351,765 6.68
Segmentation 42,351,765 22,922,973 3.62

Figure 9. Image of a roof cover part from inside (a), point cloud data of the region (b), filtered roof
cover (c), interior points after roof cover filtering (d), segmentation result of roof interior after roof
cover filtered (e) and segmentation result of the point cloud including roof cover (f).

The segmentation step resulted in 5165 segments, of which 5044 are planar and 121 of
non-planar segments. While planar segments were directly classified in the next step, non-
planar segments are split into planar sub-segments with RANSAC before their classification.

Regarding Table 2, the shape classification ends with 3325 linear shaped segments
(type-1), 2021 non-linear segments with separable sub-segments (type-2) and 79 compact
segments (type-3).
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Table 2. Shape classification results for planar and non-planar segments.

Segment Class Number of Segments
Planar Non-Planar

Type-1 3208 117
Type-2 1757 264
Type-3 79 -

The 2021 type-2 segments were processed with the newly developed method ex-
plained in Section 2.3.6. The method generated 1433 type-1 and 1613 type-2 segments.
Thus, 1433 more segments were input data for cuboid fitting and modeling, while 1613 non-
linear segments cannot be input data for modeling unless manually partitioned to lin-
ear sub-segments.

In Figure 10b, 2D alpha-shape of input type-2 segment (Figure 10a) separated five
sub-segments including type-1 (top and bottom) and type-2 (in the middle, magenta, yellow
and green colored). Figure 10c shows fitted lines using RANSAC with different colors.
Yellow and green, red and turquoise and blue and magenta line pairs are detected as
explained in Section 2.3.6. The result of the workflow (Figure 8) presented in Figure 10d
shows each linear sub-segments with different colors.

Figure 10. Type-2 segment (a), 2D region growing segmentation on alpha-shape (b), multi-line fitting
with RANSAC (c) and linear split sub-segments (d).

The cuboid fitting was performed on type-1 segments which cover results of shape seg-
mentation (3325) and linear shaped segment splitting (1433). The modeling resulted in 1179
cuboid beams (Figure 11) and 975 joints retrieved by 4758 linear beam side face segments.
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Figure 11. X-ray view of entire point cloud (top) and fully automated cuboid fitted beams (bottom).

As pointed out in Section 2.2, scanning on the site and registration of scan positions
took approximately 3 working days, which comprised of 1 day on site study and 2 days of
human-interacted work on the computer. The result of the first stage is shown in Figure 11
(top). The following stages of the workflow (Figure 2) were performed fully automatically
on a computer using AMD Ryzen 7 2700X (8 × 3.70 GHz) processor and 32 GB RAM
capacity. The second stage (subsampling and normal vector computation) completed in
24′01′′. The last stage of the workflow that begins from the roof cover filtering to the end of
cuboid modeling was performed in 2h 52′52′′. The final result (cuboid model) of the main
workflow for the entire roof structure of St. Michael is presented in Figure 11 (bottom).

4. Discussion

Figure 9e,f highlights that roof cover filtering was able to remove several irrelevant
segments for the roof structure modeling. The segmentation step was experienced for both
cases (with and without roof cover filtering) with following parameters: rmax = 0.05 m,
αmax = 5◦ and 600 minimum segment points. The segmentation process resulted in 5533 seg-
ments when roof cover is included, while roof cover filtered data resulted with 5165 seg-
ments. Thus, roof cover filtering reduced the number of segments by 7%, while the number
of points was reduced by 28%. Furthermore, roof cover segments may have shapes similar
to beam faces, and thus their removal does not only reduce computation time in later stages
but also avoids building beams which are, wrongly, composed of beam faces and roof
cover segments.

Method developed by Pöchtrager et al. [20] (Method 1), method presented in this
paper (Method 2) and addition of manually split segments inside Method 2 (Method 3) are
compared in the following Table 3.

Table 3. Completeness of the models.

Region Number of Beams Method 1 Method 2 Method 3

Northern transept 199 61 129 150
Southern transept 194 53 117 146
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In Table 3 the number-of-beams column was filled manually counting beam elements
in the selected regions of the point cloud. For the method columns, fully or partly modeled
beams are counted. According to the table, Method 1 is able to extract 29% of existing
beams, Method 2, still fully automatically, can increase the ratio of completeness up to
63%. It doubles the number of modeled beams. Method 3 is comprised of Method 2 and
additional manually split segments with 1h 45′ manual work duration for both regions.
Method 3 is results with 75% of beams modeled.

As presented in Section 3, the automation of type-2 segment splitting generated 1433
of type-1 and 1613 of type-2 sub-segments retrieved from 2021 type-2 input segments. One
of the type-2 segments that cannot be split automatically is shown in Figure 12 together
with segment points (left) and the alpha-shape geometry (right). The variance of point
density and irregularity make the standardization of alpha-shape detection more difficult.
While alpha-shape of the segment in the example shown in Figure 10 enables the algorithm
to find and pair the straight border lines, because of the irregularity of the alpha-shape in
Figure 12, the algorithm is not able to find and match parallel linear sides of linear beam
side faces. An additional manual splitting was applied (Method 3) in order to involve
linear sub-segments of these type-2 segments into the modeling. The manual operation
was finalized in 5h 18′ for the entire roof structure.

Figure 12. An example of type-2 segment points that cannot be split automatically (left), the alpha-
shape (turquoise) and minimum bounding box (black) of the segment (right).

Very large point clouds, as the one processed in this example, can be viewed under the
aspect of intelligently filtering big data [41]. In this sense the point clouds have large volume
(6.3× 108 points, see Section 3), high velocity of data acquisition (Section 2.2), while veracity
may be considered high from the acquisition principle (reliable and precise measurements)
but limited for the object to be modeled (relevant and irrelevant points after processing
steps in Table 1). A strategy to handle this data, which was also employed in this paper, is
the “intelligent filtering” to reduce the number of points (presented in Table 1), to reduce
the complexity of the content (roof cover filtering, minimum segment size, removal of
type-3 segments), and to reduce computation time as well as to enable manual processing.
For the latter it is important that relevant data, i.e., sufficiently generalized data (outlines of
alpha-shapes of segments instead of raw points) is generated for the interactive processing.

Figure 13 presents both an image of the roof interior and the 3D model of the roof
structure from the same view point. As clearly seen in the 3D model, non-beam faces that
were found during segmentation (e.g., the hand rail or the floor) were not considered during
modeling thanks to the applied valid beam width threshold before cuboid fitting (15–30 cm).
As seen in the right side of the model, there are some beams, which were modeled partly,
which causes insufficient data to form connections between beams. The condition inside
the roof structure does not allow the scanning of every single detail with a high point
density. Further, the closeness of the rafters causes shadow effects on scanning result.
A perfect point cloud without shadows would, of course, increase automation; however,
both restrictions in scanning time, and in the possibilities to place the scanner and consider
the safety of survey personnel, will not allow us—according to our experiences—to obtain
a shadow free point cloud. This causes beam side face segments, thereby the cuboid models
not to be extracted properly as a full sized beam. Automatic completion of beams and
missing joints and uniform modeling of entire structure is a continuing research topic. It
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has to be noted that historic roof structures are only semi-regular, and thus a completion
based on regularity assumptions should be avoided. Further, for structural modeling,
failures are likely to arise where the regularity and continuity are broken. Displacements
due to external loading, creep or damage over time make the job of reconstruction of the
originally straight beam axis without bending and therefore more perfect structure much
more complicated. Pöchtrager et al. [20] suggest manual extension of the beams. For the
final model, even if a distinct improvement on automation was achieved, approximately
37% of the beams inside the roof structure cannot be modeled fully automatically. On the
other hand, in the final model, there are still several incompletely modeled beams that need
further processing. Nevertheless, a significant part of the roof structure could be modeled
within a few days after scanning on site.

Figure 13. Roof interior image (left) and cuboid modeling result of Method 2 (right).

5. Conclusions

The main workflow has been applied on an entire historic roof structure using TLS
point cloud. Previous section shows that just 3.62% of collected points is sufficient for
3D model generation of the roof structure. The reduced point cloud not only decreased
the processing time for the further steps but also influenced positively additional manual
modeling or refinements. Newly applied method that are explained in Section 2.3.6 doubled
the number of modeled beams in the final model (Table 3) in comparison with the method
presented by Pöchtrager et al. [20]. In the final product, 3D parametric model, a higher
degree of automation was reached. A key factor for the completeness is the coverage with
points to overcome the occlusions, which are likely to occur in complex roof structures.
Furthermore, the factors such as unsuitable conditions on scanning, irregular beam surfaces,
deformations or damages on the beams, rigid obstacles in front of the structure elements,
etc., bring limitations to the automation. Overcoming these limitations, exploiting the
fuzzy or semi-regular structure and bringing in artificial assumption of the missing parts
should be considered for an increased automation, but with a clear indication for each
model element, if it is based on data or on assumptions, and how strong these assumptions
are. The final result is primarily geometry linked to architectural analysis, but will have to
be forwarded to engineering aspects such as structural modeling. During the upcoming
improvements, the tradeoff between scanning time and completeness of the automatic
reconstruction needs to be optimally balanced. As a future aim of this study, efficiency of
creating the complete model should be increased, which may include more sophisticated
algorithms but also smarter human–computer interaction. Finally, the types of joints
between beams should be detected, which requires, however, more input than only the
point cloud.
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