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Abstract. Fire emissions are a critical component of carbon

and nutrient cycles and strongly affect climate and air qual-

ity. Dynamic global vegetation models (DGVMs) with inter-

active fire modeling provide important estimates for long-

term and large-scale changes in fire emissions. Here we

present the first multi-model estimates of global gridded his-

torical fire emissions for 1700–2012, including carbon and

33 species of trace gases and aerosols. The dataset is based

on simulations of nine DGVMs with different state-of-the-

art global fire models that participated in the Fire Model-

ing Intercomparison Project (FireMIP), using the same and

standardized protocols and forcing data, and the most up-

to-date fire emission factor table based on field and labo-

ratory studies in various land cover types. We evaluate the

simulations of present-day fire emissions by comparing them

with satellite-based products. The evaluation results show

that most DGVMs simulate present-day global fire emission

totals within the range of satellite-based products. They can

capture the high emissions over the tropical savannas and low

emissions over the arid and sparsely vegetated regions, and

the main features of seasonality. However, most models fail

to simulate the interannual variability, partly due to a lack of

modeling peat fires and tropical deforestation fires. Before

the 1850s, all models show only a weak trend in global fire

emissions, which is consistent with the multi-source merged

historical reconstructions used as input data for CMIP6. On

the other hand, the trends are quite different among DGVMs

for the 20th century, with some models showing an increase

and others a decrease in fire emissions, mainly as a result of

the discrepancy in their simulated responses to human pop-

ulation density change and land use and land cover change

(LULCC). Our study provides an important dataset for fur-

ther development of regional and global multi-source merged

historical reconstructions, analyses of the historical changes

in fire emissions and their uncertainties, and quantification

of the role of fire emissions in the Earth system. It also high-

lights the importance of accurately modeling the responses

of fire emissions to LULCC and population density change

in reducing uncertainties in historical reconstructions of fire

emissions and providing more reliable future projections.

1 Introduction

Fire is an intrinsic feature of terrestrial ecosystem ecology,

occurring in all major biomes of the world soon after the

appearance of terrestrial plants over 400 million years ago

(Scott and Glasspool, 2006; Bowman et al., 2009). Fire emis-

sions affect the Earth system in several important ways. First,

chemical species emitted from fires are a key component of

the global and regional carbon budgets (Bond-Lamberty et

al., 2007; Ciais et al., 2013; Kondo et al., 2018), a major

source of greenhouse gases (Tian et al., 2016), and the largest

contributor of primary carbonaceous aerosols globally (An-

dreae and Rosenfeld, 2008; Jiang et al., 2016). Second, by

changing the atmospheric composition, fire emissions affect

the global and regional radiation balance and climate (Ward

et al., 2012; Tosca et al., 2013; Jiang et al., 2016; Grandey

et al., 2016; McKendry et al., 2019; Hamilton et al., 2018;

Thornhill et al., 2018). Third, fire emissions change the ter-

restrial nutrient and carbon cycles by altering the deposition

of nutrients (e.g., nitrogen, phosphorus), surface ozone con-

centration, and meteorological conditions (Mahowald et al.,

2008; Chen et al., 2010; McKendry et al., 2019; Yue and

Unger, 2018). In addition, they degrade the air quality (Val

Martin et al., 2015; Knorr et al., 2017), which poses a signif-

icant risk to human health and has been estimated to result

in at least ∼ 165000, and more likely ∼ 339000, premature

deaths per year globally (Johnston et al., 2012; Marlier et al.,

2013; Lelieveld et al., 2015).

To date, only emissions from individual fires or small-

scale fire complexes can be directly measured from field

campaigns and laboratory experiments (Andreae and Mer-

let, 2001; Yokelson et al., 2013; Stockwell et al., 2016; An-

dreae, 2019). Regionally and globally, fire emissions are

often estimated based on satellite observations, fire proxy

records, and numerical models, even though some attempts

have been made to bridge the gap between local observa-

tions and regional estimations using combinations of aircraft-

and ground-based measurements from field campaigns (e.g.,

SAMBBA, ARCTAS), satellite-based inventories, and chem-

ical transport models (e.g., Fisher et al., 2010; Reddington et

al., 2019; Konovalov et al., 2018). Satellite-based fire emis-

sion estimates are primarily derived from satellite observa-

tions of burned area, active fire counts, and/or fire radiative

power, and are sometimes constrained by satellite observa-

tions of aerosol optical depth (AOD), CO, or CO2 (Wied-

inmyer et al., 2011; Kaiser et al., 2012; Krol et al., 2013;

Konovalov et al., 2014; Ichoku and Ellison, 2014; Darmenov

and da Silva, 2015; van der Werf et al., 2017; Heymann et

al., 2017). Satellite-based fire emission estimates are avail-

able globally but cover only the present-day period, i.e., since

1997 for the Global Fire Emissions Dataset (GFED) and

shorter periods for others.

Historical change in fire emissions has been inferred from

a variety of proxies, such as ice-core records of CH4 (iso-

tope δ13CH4 from a pyrogenic or biomass burning source),

black carbon, levoglucosan, vanillic acid, ammonium, and

CO (Ferretti et al., 2005; McCornnell et al., 2007; Coned-

era et al., 2009; Wang et al., 2012; Zennaro et al., 2014),

site-level sedimentary charcoal records (Marlon et al., 2008,

2016), visibility records (van Marle et al., 2017a), and fire-

scar records (Falk et al., 2011). Fire proxies can be used to

reconstruct fire emissions on a local to global scale and for

time periods of decades to millennia and beyond. However,

they are of limited spatial extent and cannot be directly con-

verted into emission amounts. Moreover, large uncertainties

and discrepancies were shown in their inferred regional or

global long-term trends due to limited sample size and often
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Table 1. Summary description of the dynamic global vegetation models (DGVMs) that participated in FireMIP.

DGVMs tem. res. spatial res. period natural fire scheme ref. DGVM ref.

of model of model veg.

outputs outputs distrib.

CLM4.5 but CLM5 fire monthly ∼ 1.9◦ (lat) 1700–2012 P Li et al. (2012, 2013) Oleson et al. (2013)

model (CLM4.5) ×2.5◦ (lon) Li and Lawrence (2017)

CTEM monthly 2.8125◦ 1861– 2012 P Arora and Boer (2005) Melton and Arora (2016)

Melton and Arora (2016)

JSBACH-SPITFIRE monthly 1.875◦ 1700–2012 P Lasslop et al. (2014) Brovkin et al. (2013)

(JSBACH) Thonicke et al. (2010)

JULES-INFERNO monthly ∼ 1.2◦ (lat) 1700–2012 M Mangeon et al. (2016) Best et al. (2011)

(JULES) ×1.9◦ (lon) Clark et al. (2011)

LPJ-GUESS-GlobFIRM annual 0.5◦ 1700–2012 M Thonicke et al. (2001) Smith et al. (2014)

(LGG) Lindeskog et al. (2013)

LPJ-GUESS-SPITFIRE monthly 0.5◦ 1700–2012 M Lehsten et al. (2009) Smith et al. (2001)

(LGS) Rabin et al. (2017) Ahlström et al. (2012)

LPJ-GUESS-SIMFIRE monthly 0.5◦ 1700–2012 M Knorr et al. (2016) Smith et al. (2014)

-BLAZE (LGSB) Lindeskog et al. (2013)

MC2 annual 0.5◦ 1901–2008 M Bachelet et al. (2015) Bachelet et al. (2015)

Sheehan et al. (2015) Sheehan et al. (2015)

ORCHIDEE-SPITFIRE monthly 0.5◦ 1700–2012 P Yue et al. (2014, 2015) Krinner et al. (2005)

(ORCHIDEE) Thonicke et al. (2010)

Abbreviations: CLM4.5 and CLM5: Community Land Model version 4.5 and 5; CTEM: Canadian Terrestrial Ecosystem Model; JSBACH: Jena Scheme for Biosphere-
Atmosphere Coupling in Hamburg; SPITFIRE: Spread and InTensity fire model; JULES: Joint UK Land Environment Simulator; INFERNO: Interactive Fire And Emission
Algorithm For Natural Environments; GlobFIRM: fire module Global FIRe Model; SMIFIRE: SIMple FIRE model; BLAZE: Blaze-Induced Land-Atmosphere Flux Estimator;
ORCHIDEE: Organizing Carbon Hydrology In Dynamic Ecosystems; PFT: plant functional type; P: prescribed; M: modeled.

unclear representative areas and time periods of fire emis-

sions (Pechony and Shindell, 2010; van der Werf et al., 2013;

Legrand et al., 2016).

Dynamic global vegetation models (DGVMs) that include

fire modeling are indispensable for estimating fire carbon

emissions at local to global scales for past, present, and fu-

ture periods (Hantson et al., 2016). These models represent

interactions among fire dynamics, biogeochemistry, biogeo-

physics, and vegetation dynamics at the land surface within

a physically and chemically consistent modeling framework.

DGVMs are often used as the terrestrial ecosystem compo-

nent of Earth system models (ESMs) and have been widely

applied in global change research (Levis et al., 2004; Li et

al., 2013; Kloster and Lasslop, 2017). Fire emissions of trace

gases and aerosols can be derived from the product of fire

carbon emissions simulated by DGVMs and fire emission

factors (Li et al., 2012; Knorr et al., 2016).

Modeling fire and fire emissions within DGVMs started in

the early 2000s (Thonicke et al., 2001) and has rapidly pro-

gressed during the past decade (Hantson et al., 2016). The

Fire Model Intercomparison Project (FireMIP) initiated in

2014 was the first international collaborative effort to better

understand the behavior of global fire models (Hantson et al.,

2016). A set of common fire modeling experiments driven by

the same forcing data were performed (Rabin et al., 2017).

Nine DGVMs with different state-of-the-art global fire mod-

els participated in FireMIP. All global fire models used in

the upcoming 6th Coupled Model Intercomparison Project

(CMIP6) and IPCC AR6 are included in FireMIP, except for

the fire scheme in GFDL-ESM (Rabin et al., 2018; Ward et

al., 2018), which is similar to that of CLM4.5 (Li et al., 2012)

in FireMIP. Note that GlobFIRM (Thonicke et al., 2001) in

FireMIP is the most commonly used fire scheme in CMIP5

(Kloster and Lasslop, 2017) and is still used by some models

in CMIP6.

Earlier studies provided only one single time series of fire

emissions for global grids or regions (Schultz et al., 2008;

Mieville et al., 2010; Lamarque et al., 2010; Marlon et al.,

2016; van Marle et al., 2017b; and references therein). This

limits their utility for quantifying the uncertainties in global

and regional reconstructions of fire emissions and the corre-

sponding impacts on estimated historical changes in carbon

cycle, climate, and air pollution. A small number of studies

also investigated the drivers of fire carbon emission trends

(Kloster et al., 2010; Yang et al., 2014; Li et al., 2018; Ward

et al., 2018). However, these studies could not identify the

uncertainty source in recent model-based reconstructions or

help understand the inter-model discrepancy in projections of

future fire emissions because only a single DGVM was used

in each.

This study provides a new dataset of global gridded fire

emissions, including carbon and 33 species of trace gases

and aerosols, over the 1700–2012 time period, based on nine

DGVMs with different state-of-the-art global fire models that

participated in FireMIP. The dataset provides a basis for de-

veloping multi-source (e.g., satellite-based products, model
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12548 F. Li et al.: Historical global multi-model estimates of fire emissions

simulations, and/or fire proxy records) merged fire emission

reconstructions and methods. It also, for the first time, allows

end users to select all or a subset of model-based reconstruc-

tions that best suit their regional or global research needs.

Importantly, it enables the quantification of the uncertainty

range of past fire emissions and their impacts. In addition, the

model-based estimates of fire emissions are comprehensively

evaluated through comparison with satellite-based products,

including amounts, spatial distribution, seasonality, and in-

terannual variability, thus providing information on the lim-

itations of recent model-based reconstructions. We also ana-

lyze the simulated long-term changes and the drivers for each

DGVM and inter-model differences.

2 Methods and datasets

2.1 Models in FireMIP

Nine DGVMs with different fire modules participated in

FireMIP: CLM4.5 with the CLM5 fire module, CTEM,

JSBACH-SPITFIRE, JULES-INFERNO, LPJ-GUESS-

GlobFIRM, LPJ-GUESS-SIMFIRE-BLAZE, LPJ-GUESS-

SPITFIRE, MC2, and ORCHIDEE-SPITFIRE (Table 1; see

Rabin et al., 2017, for a detailed description of each model).

JSBACH, ORCHIDEE, and LPJ-GUESS used the variants

of SPITFIRE (Thonicke et al., 2010) with updated repre-

sentation of human ignition and suppression, fuel moisture,

combustion completeness, and the relationship between

spread rate and wind speed for JSBACH (Lasslop et al.,

2014), combustion completeness for ORCHIDEE (Yue et al.,

2014, 2015), and human ignition, post-fire mortality factors,

and modifications for matching tree age/size structure for

LPJ-GUESS (Lehsten et al., 2009; Rabin et al., 2017).

The global fire models in the nine DGVMs have diverse

levels of complexity (Rabin et al., 2017). SIMFIRE is a sta-

tistical model based on present-day satellite-based fire prod-

ucts (Knorr et al., 2016). In CLM4.5, crop, peat, and trop-

ical deforestation fires are empirically/statistically modeled

(Li et al., 2013). The scheme for fires outside the tropical

closed forests and croplands in CLM4.5 (Li et al., 2012;

Li and Lawrence, 2017), fire modules in CTEM (Arora and

Boer, 2005; Melton and Arora, 2016), GlobFIRM (Thonicke,

2001), and INFERNO (Mangeon et al., 2016) are process-

based and of intermediate complexity. That is, area burned is

determined by two processes: fire occurrence and fire spread,

but with simple empirical/statistical equations for each pro-

cess. Fire modules in MC2 (Bachelet et al., 2015; Sheehan et

al., 2015) and SPITFIRE variants are more complex, which

use the Rothermel equations (Rothermel, 1972) to model fire

spread and consider the impact of fuel composition on fire

behavior.

How humans affect fires differs among these global fire

models (Table 2), which influences their estimates of fire

emissions. GlobFIRM does not consider any direct human

effect on fires and the MC2 fire model only considers hu-

man suppression on fire. CLM4.5 models fires in croplands,

human deforestation and degradation fires in tropical closed

forests, and human ignition and suppression for both occur-

rence and spread of fires outside of tropical closed forests

and croplands. Burned area in SIMFIRE and human in-

fluence on fire occurrence in other models are a nonlin-

ear function of population density. CTEM and JSBACH-

SPITFIRE also consider human suppression on fire duration.

JULES-INFERNO treats croplands and crop fires as natu-

ral grasslands and grassland fires. All models, except for

CLM4.5 and INFERNO, set burned area to zero in crop-

lands. FireMIP models treat pasture fires as natural grass-

land fires by using the same parameter values if they have

pasture plant functional types (PFTs) or lumping pastures

with natural grasslands otherwise. Biomass harvest is con-

sidered in pastures in LPJ-GUESS-GlobFIRM and LPJ-

GUESS-SIMFIRE-BLAZE, which decreases fuel availabil-

ity for fires, and that JSBACH-SPITFIRE sets high fuel bulk

density for pasture PFTs.

Only CLM4.5 simulates peat fires, although only emis-

sions from burning of vegetation tissues and litter are in-

cluded in outputs for FireMIP; i.e., burning of soil organic

matter is not included (Table 2).

In the FireMIP models, fire carbon emissions are calcu-

lated as the product of burned area, fuel load, and combus-

tion completeness. Combustion completeness is the fraction

of live plant tissues and ground litter burned (0 %–100 %). It

depends on PFT and plant tissue type in GlobFIRM and in

the fire modules of CLM4.5 and CTEM, and is also a func-

tion of soil moisture in INFERNO. Combustion complete-

ness depends on plant tissue type and surface fire intensity

in SIMFIRE, fuel type and wetness in the SPITFIRE fam-

ily models, and fuel type, load, and moisture in the MC2 fire

module.

2.2 FireMIP experimental protocol and input datasets

The nine DGVMs in FireMIP are driven with the same forc-

ing data (Rabin et al., 2017). The atmospheric forcing is

from CRU-NCEP v5.3.2 with a spatial resolution of 0.5◦

and a 6-hourly temporal resolution (Wei et al., 2014). The

1750–2012 annual global atmospheric CO2 concentration is

derived from ice-core and NOAA monitoring station data

(Le Quéré et al., 2014). Annual land use and land cover

change (LULCC) and population density at a 0.5◦ resolu-

tion for 1700–2012 are from Hurtt et al. (2011) and Klein

Goldewijk et al. (2010, HYDE v3.1), respectively. Monthly

cloud-to-ground lightning frequency for 1901–2012, at 0.5◦

resolution, is derived from the observed relationship between

present-day lightning and convective available potential en-

ergy (CAPE) anomalies (Pfeiffer et al., 2013; Jed O. Kaplan,

personal communication, 2015). Fire emissions in this study

are estimated using the model outputs of PFT-level fire car-

bon emissions and vegetation characteristics (PFTs and their

Atmos. Chem. Phys., 19, 12545–12567, 2019 www.atmos-chem-phys.net/19/12545/2019/
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Table 2. Summary description of global fire modules in FireMIP DGVMs.

DGVMs crop tropical human human fire peat pasture combust.

fire human ignition suppression fire complete. range

defor. fire of woody tissue

CLM4.5 yes yes increase occurrence & yese as natural 27 %–35 % (stem)

with PDa spread areab grassland 40 % (CWDf)

CTEM no no increase occurrence & no as natural 6 % (stem)

with PD durationc grassland 15 %–18 % (CWD)

JSBACH as grass no increase occurrence & no high fuel 0 %–45 %

fire with PD durationc bulk den.

JULES no no increase occurrencec no as natural 0 %–40 %

with PD grassland

LGG no no no no no harvest 70 %–90 %

LGS no no increase occurrencec no as natural 0 %–98 % (100 hg)

with PD grassland 0 %–80 % (1000 hg)

LGSB no no increase burned areac no harvest 0 %–50 %

with PD

MC2 no no no occurrenced no as natural 0 %–87 % (100 h)

grassland 0 %–43 % (1000 h)

ORCHIDEE no no increase occurrencec no as natural 0 %–73 % (100 h)

with PD grassland 0 %–41 % (1000 h)

a PD: population density. b Fire suppression increases with PD and GDP, different between tree PFTs and grass/shrub PFTs. c Fire suppression
increases with PD. d Assume no fire in grid cell when pre-calculated rate of spread, fireline intensity, and energy release component are lower than
thresholds. e CLM4.5 outputs in FireMIP include biomass and litter burning due to peat fires, but do not include burning of soil organic matter.
f Coarse woody debris. g 100 h fuels and 1000 h fuel classes.

Figure 1. FireMIP experiment design. Note that CTEM and MC2 start at 1861 and 1901 and spin-up using 1861 and 1901 CO2, population

density, and prescribed/modeled vegetation distribution, respectively.

fractional area coverages) from the FireMIP historical tran-

sient control run (SF1) (Rabin et al., 2017). SF1 includes

three phases (Fig. 1): the 1700 spin-up phase, the 1701–1900

transient phase, and the 1901–2012 transient phase. In the

1700 spin-up phase, all models are spun up to equilibrium,

forced by population density and prescribed LULCC at their

1700 values, 1750 atmospheric CO2 concentration, and the

repeatedly cycled 1901–1920 atmospheric forcing (precipi-

tation, temperature, specific humidity, surface pressure, wind

speed, and solar radiation) and lightning data. The 1701–

1900 transient phase is forced by 1701–1900 time-varying

population and LULCC, with constant CO2 concentration at

1750 level until 1750 and time-varying CO2 concentration

for 1750–1900, and the cycled 1901–1920 atmospheric forc-

ing and lightning data. In the 1901–2012 transient phase,

models are driven by 1901–2012 time-varying population

density, LULCC, CO2 concentration, atmospheric forcing,

and lightning data. Unlike all other models, MC2 and CTEM

run from 1901 and 1861, respectively, rather than 1700.

Six FireMIP models (CLM4.5, JSBACH-SPITFIRE,

JULES-INFERNO, LPJ-GUESS-SPITFIRE, LPJ-GUESS-

SIMFIRE-BLAZE, and ORCHIDEE-SPITFIRE) also pro-

vide outputs of five sensitivity simulations: constant cli-

mate, constant atmospheric CO2 concentration, constant land

cover, constant population density, and constant lightning

frequency throughout the whole simulation period. The sen-

www.atmos-chem-phys.net/19/12545/2019/ Atmos. Chem. Phys., 19, 12545–12567, 2019



12550 F. Li et al.: Historical global multi-model estimates of fire emissions

sitivity simulations are helpful for understanding the drivers

of changes in reconstructed fire emissions.

2.3 Estimates of fire trace gas and aerosol emissions

Based on fire carbon emissions and vegetation characteris-

tics from DGVMs and fire emission factors, fire emissions

of trace gas and aerosol species i and the PFT j , Ei,j (g

species m−2 s−1) are estimated according to Andreae and

Merlet (2001):

Ei,j = EFi,j × CEj/[C], (1)

where EFi,j (g species (kg dry matter (DM))−1) is a PFT-

specific emission factor (EF), CEj denotes the fire carbon

emissions of PFT j (g C m−2 s−1), and [C] = 0.5 × 103 g C

(kg DM)−1 is a unit conversion factor from carbon to dry

matter.

The EFs used in this study (Table 3) are based on Andreae

and Merlet (2001), with updates from field and laboratory

studies over various land cover types published during 2001–

2018 (Andreae, 2019). All FireMIP model simulations used

the same EFs from Table 3.

DGVMs generally simulate vegetation as a mixture of

PFTs in a given grid location to represent plant function at

global scale, instead of land cover types. In Table 4, we asso-

ciate the PFTs from each DGVM with the land cover types

shown in Table 3. Grass, shrub, savannas, woodland, pas-

ture, and tundra PFTs are classified as grassland/savannas.

Tree PFTs and crop PFTs are classified as forests and crop-

lands, respectively, similarly to Li et al. (2012), Mangeon et

al. (2016), and Melton and Arora (2016). PFTs of evergreen

and other broadleaf deciduous tree in CTEM, extra-tropical

evergreen and deciduous tree in JSBACH, and broadleaf de-

ciduous tree and needleleaf evergreen tree in JULES are di-

vided into tropical, temperate, and boreal groups following

Nemani and Running (1996).

We provide two versions of fire emission products with

different spatial resolutions: the original spatial resolution for

each FireMIP DGVM output (Table 1) and a 1 × 1◦ horizon-

tal resolution. For the latter, fire emissions are unified to 1◦

resolution using bilinear interpolation for CLM4.5, CTEM,

JSBACH, and JULES, which have coarser resolution, and

area-weighted averaging-up for other models whose original

resolution is 0.5◦. The 1×1◦ product is used for present-day

evaluation and historical trend analyses in Sects. 3 and 4.

2.4 Benchmarks

Satellite-based products are commonly used as benchmarks

to evaluate present-day fire emission simulations (Rabin et

al., 2017, and references therein). In the present study, six

satellite-based products are used (Table 5). Fire emissions

in GFED4/GFED4s (small fires included in GFED4s) (van

der Werf et al., 2017), GFAS1.2 (Kaiser et al., 2012) and

FINN1.5 (Wiedinmyer et al., 2011) are based on emission

factor (EF) and fire carbon emission (CE) (Eq. 1). CE is esti-

mated from MODIS burned area and VIRS/ATSR active fire

products in the GFED family, MODIS active fire detection in

FINN1.5, and MODIS fire radiative power (FRP) in GFAS1.

Fire emissions from FEER1 (Ichoku and Ellison, 2014) and

QFEDv2.5 (Darmenov and da Silva, 2015) are derived us-

ing FRP and constrained with satellite AOD observations.

Satellite-based present-day fire emissions for the same re-

gion can differ by a factor of 2–4 on an annual basis (van der

Werf et al., 2010) and up to 12 on a monthly basis (Zhang et

al., 2014). The discrepancy among satellite-based estimates

of present-day fire emissions mainly comes from the satel-

lite observations used, the methods applied for deriving fire

emissions, and the emission factors.

2.5 Multi-source merged historical reconstructions

We also compared the simulated historical changes with his-

torical reconstructions merged from multiple sources used as

forcing data for CMIPs. Fire emission estimates for CMIP5

and CMIP6 were merged from different sources (Table 5).

For CMIP5 (Lamarque et al., 2010), the decadal fire emis-

sions are available from 1850 to 2000, estimated using

GFED2 fire emissions (van der Werf et al., 2006) for 1997

onwards, RETRO (Schultz et al., 2008) for 1960–1900, and

GICC (Mieville et al., 2010) for 1900–1950, and kept con-

stant at the 1900 level for 1850–1900. RETRO combined

literature reviews with satellite-based fire products and the

GlobFIRM fire model. GICC is based on a burned area recon-

struction from literature review and sparse tree ring records

(Mouillot and Field, 2005), satellite-based fire counts, land

cover map, and representative biomass density and burning

efficiency of each land cover type.

For CMIP6, monthly fire emission estimates are available

from 1750 to 2015 (van Marle et al., 2017b). The CMIP6

estimates are merged from GFED4s fire carbon emissions

for 1997 onwards, charcoal records GCDv3 (Marlon et al.,

2016) for North America and Europe, visibility records for

equatorial Asia (Field et al., 2009) and the central Ama-

zon (van Marle et al., 2017b), and the median of simula-

tions of six FireMIP models (CLM4.5, JSBACH-SPITFIRE,

JULES-INFERNO, LPJ-GUESS-SPITFIRE, LPJ-GUESS-

SIMFIRE-BLAZE, and ORCHIDEE-SPITFIRE) for all

other regions. Then, based on the merged fire carbon emis-

sions, CMIP6 fire trace gas and aerosol emissions are de-

rived using EF from Andreae and Merlet (2001) with updates

to 2013 and Akagi et al. (2011) with updates for temperate

forests to 2014, and a present-day land cover map.

3 Evaluation of present-day fire emissions

The spatial pattern and temporal variability of different fire

emission species are similar, with some slight differences re-

sulting from the estimated fire carbon emissions from the
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Table 3. Emission factors (g species (kg DM)−1) for land cover types (LCTs).

No. Species Grassland/savanna Tropical forest Temperate forest Boreal forest Cropland

1 CO2 1647 1613 1566 1549 1421

2 CO 70 108 112 124 78

3 CH4 2.5 6.3 5.8 5.1 5.9

4 NMHC 5.5 7.1 14.6 5.3 5.8

5 H2 0.97 3.11 2.09 1.66 2.65

6 NOx 2.58 2.55 2.90 1.69 2.67

7 N2O 0.18 0.20 0.25 0.25 0.09

8 PM2.5 7.5 8.3 18.1 20.2 8.5

9 TPM 8.5 10.9 18.1 15.3 11.3

10 TPC 3.4 6.0 8.4 10.6 5.5

11 OC 3.1 4.5 8.9 10.1 5.0

12 BC 0.51 0.49 0.66 0.50 0.43

13 SO2 0.51 0.78 0.75 0.75 0.81

14 C2H6 (ethane) 0.42 0.94 0.71 0.90 0.76

15 CH3OH (methanol) 1.48 3.15 2.13 1.53 2.63

16 C3H8 (propane) 0.14 0.53 0.29 0.28 0.20

17 C2H2 (acetylene) 0.34 0.43 0.35 0.27 0.32

18 C2H4 (ethylene) 1.01 1.11 1.22 1.49 1.14

19 C3H6 (propylene) 0.49 0.86 0.67 0.66 0.48

20 C5H8 (isoprene) 0.12 0.22 0.19 0.07 0.18

21 C10H16 (terpenes) 0.10 0.15 1.07 1.53 0.03

22 C7H8 (toluene) 0.20 0.23 0.43 0.32 0.18

23 C6H6 (benzene) 0.34 0.38 0.46 0.52 0.31

24 C8H10 (xylene) 0.09 0.09 0.17 0.10 0.09

25 CH2O (formaldehyde) 1.33 2.40 2.22 1.76 1.80

26 C2H4O (acetaldehyde) 0.86 2.26 1.20 0.78 1.82

27 C3H6O (acetone) 0.47 0.63 0.70 0.61 0.61

28 C3H6O2 (hydroxyacetone) 0.52 1.13 0.85 1.48 1.74

29 C6H5OH (phenol) 0.37 0.23 0.33 2.96 0.50

30 NH3 (ammonia) 0.91 1.45 1.00 2.82 1.04

31 HCN (hydrogen cyanide) 0.42 0.38 0.62 0.81 0.43

32 MEK/2-butanone 0.13 0.50 0.23 0.15 0.60

33 CH3CN (acetonitrile) 0.17 0.51 0.23 0.30 0.25

land cover types that have different emission factors (Ta-

ble 3). Therefore, we focus on several important species as

examples to exhibit the performance of FireMIP models in

the simulations of present-day fire emissions.

3.1 Global amounts and spatial distributions

As shown in Table 6, FireMIP models, except for MC2

and LPJ-GUESS-GlobFIRM, estimate present-day fire car-

bon, CO2, CO, CH4, BC, OC, and PM2.5 annual emissions

to be within the range of satellite-based products. For ex-

ample, the estimated range of fire carbon emissions is 1.7–

3.0 Pg C yr−1, whereas it is 1.5–4.2 Pg C yr−1 for satellite-

based products. Low fire emissions in MC2 result from rela-

tively low simulated global burned area, only about 1/4 of

satellite-based observations (Andela et al., 2017). In con-

trast, high emissions in LPJ-GUESS-GlobFIRM are mainly

due to the higher combustion completeness of woody tissues

(70 %–90 % of stem and coarse woody debris burned in post-

fire regions) than those used in other FireMIP models (Ta-

ble 2) and the satellite-based GFED family (20 %–40 % for

stem and 40 %–60 % for coarse woody debris) (van der Werf

et al., 2017).

FireMIP DGVMs, except for MC2, represent the general

spatial distribution of fire emissions evident in satellite-based

products, with high fire BC emissions over tropical savan-

nas and low emissions over the arid and sparsely vegetated

regions (Fig. 2). Among the nine models, CLM4.5, JULES-

INFERNO, and LPJ-GUESS-SIMFIRE-BLAZE have higher

global spatial pattern correlation with satellite-based prod-

ucts than the other models, indicating higher skill in their

spatial-pattern simulations. It should also be noted that, on

a regional scale, CTEM, JULES-INFERNO, LPJ-GUESS-

SPITFIRE, and ORCHIDEE-SPITFIRE underestimate fire

emissions over boreal forests in Asia and North Amer-

ica. LPJ-GUESS-GlobFIRM and LPJ-GUESS-SIMFIRE-

BLAZE overestimate fire emissions over the Amazon and
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Table 4. Attribution of plant function types (PFTs) in FireMIP DGVMs to land cover types (LCTs) for emission factors described in Table 2.

LCT Grassland/ Tropical Temperate Boreal Cropland

models savannas forest forest forest

CLM4.5 A C3/C3/C4 G Tro BE T Tem NE T Bor NE T Crop

Bor BD S Tro BD T Tem BE T Bor ND T

Tem BE/BD S Tro BD T Tem BE T Bor ND T

Tem BD T Bor BD T

CTEM C3/C4 G BE Ta NE/BE Ta NETa, C3/C4 crop

Other BD Ta Other BD Ta Cold BD T

JSBACH C3/C4 G/P Tro E/D T Ex-Tro E/D Ta Ex-Tro E/D Ta Crop

JULES C3/C4 G Tro BE T Tem BE T BD/NE Ta

E/D S BD Ta BD/NE Ta NDT

LGGb C3/C4 G Tro BE/BR T Tem NSG/BSG/BE T Bor NE T R/I S/W wheat

C3/C4 G in P Tro SI BE T Tem SI SG B T Bor SI NE T R/I maize

LGS C3/C4 G Tro BE/BR T Tem SI/&SG B T Bor NE T

Tro SI BE T Tem B/N E T Bor SI/&SG NE/N T

LGSBb C3/C4 G Tro BE/BR T Tem NSG/BSG/ BE T Bor NE T R/I S/W wheat

C3/C4 G in P Tro SI BE T Tem SI SG B T Bor SI NE T R/I maize

MC2 Tem C3 G/S Tro BE T Maritime NE F Bor NE F

Sub-Tro C4 G/S Tro D Wc Sub-Tro NE/BD/BE/M F Subalpine F

Tro S/G/Sava Tem NE/BD F Cool N F

Bor M W Tem C/W M F

Tem/Sub-Tro NE/B/M W

Tundra

Taiga-tundra

ORCHIDEE C3/C4 G Tro B E/R T Tem N/B E T Bor N E/D T C3/C4 crop

Tem BD T Bor BT T

Abbreviations: T: tree; S: shrub; W: woodland; F: forest; G: grass; P: pasture; Sava: savanna; N: needleleaf; E: evergreen; B: broadleaf; D: deciduous; R: rain-green; SI:
shaded-intolerant; SG: summer-green; M: mixed; I: irrigated; RF: rainfed; C/W: cool or warm; S/W: spring or winter, Tro: tropical; Tem: temperate; Bor: boreal; Sub-Tro:
subtropical; Ex-Tro: extratropical; A: Arctic. a Split tree PFTs into tropical, temperate, and boreal groups following the rules of Nemani and Running (1996) that were also
used to make CLM land surface data by Lawrence and Chase (2007) since CLM version 3. b LGG and LGBS did not output PFT-level fire carbon emissions, so land cover
is classified using its dominant vegetation type. c MC2 classifies tropical savannas and tropical deciduous woodland regions, and the latter mainly represents tropical
deciduous forests.

Table 5. Summary description of satellite-based products and historical constructions merged from multiple sources.

Name Method Fire data sources Peat Start year reference

burning

GFED4 Bottom-up: fuel consumption, MODIS,VIRS/ATSR Y 1997 van der Werf et al. (2017)

GFED4s burned area &active fire counts Y 1997

GFAS1.2 (GFED4&4s), FRP (GFAS1), MODIS Y 2001 Kaiser et al. (2012)

FINN1.5 active fire counts (FINN1.5), MODIS N 2003 Wiedinmyer et al. (2011)

emis. factor

FEER1 Top-down: FRP, satellite AOD MODIS, SEVIRI Y 2003 Ichoku and Ellison (2014)

QFED2.5 constrained, emis. factor MODIS N 2001 Darmenov and da Silva (2015)

CMIP5 Merged decadal fire trace GFED2, GICC, RETRO Y 1850 Lamarque et al. (2010)

and aerosol emis. (model GlobFIRM used)

CMIP6 Merged monthly fire carbon GFED4s, median of six Y 1750 van Marle et al. (2017b)

emis., present-day veg. dist., FireMIP model sims.,

emis. factor GCDv3 charcoal records,

WMO visibility obs.

Abbreviations: GFED4: Global Fire Emissions Dataset version 4; GFED4s: GFED4 with small fires; GFAS1.2: Global Fire Assimilation System version 1.2; FINN1.5: Fire
Inventory from NCAR version 1.5; FRP: fire radiative power; FEER1: fire emissions from the Fire Energetics and Emissions Research version1; QFED2.5: Quick Fire
Emissions Dataset version 2.5; AOD: aerosol optical depth; GFED2: GFED version 2; RETRO: REanalysis of the TROpospheric chemical composition; GICC: Global
Inventory for Chemistry-Climate studies; GCDv3: Global Charcoal Database version 3.
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Table 6. Global total of fire emissions from 2003 to 2008 for DGVMs in FireMIP and benchmarks. Unit: Pg (Pg = 1015g).

Source C CO2 CO CH4 BC OC PM2.5

FireMIP

CLM4.5 2.1 6.5 0.36 0.018 0.0021 0.02 0.042

CTEM 3 8.9 0.48 0.025 0.0028 0.03 0.06

JSBACH 2.1 6.5 0.32 0.013 0.002 0.016 0.036

JULES 2.1 6.9 0.44 0.024 0.0022 0.02 0.039

LGG 4.9 15.4 0.9 0.047 0.005 0.048 0.097

LGS 1.7 5.6 0.26 0.011 0.0017 0.012 0.027

LGSB 2.5 7.7 0.48 0.025 0.0025 0.024 0.047

MC2 1 3.1 0.18 0.008 0.0011 0.012 0.025

ORCHIDEE 2.8 9.2 0.44 0.018 0.0029 0.02 0.045

Benchmarks

GFED4 1.5 5.4 0.24 0.011 0.0013 0.012 0.025

GFED4s 2.2 7.3 0.35 0.015 0.0019 0.016 0.036

GFAS1.2 2.1 7 0.36 0.019 0.0021 0.019 0.03

FINN1.5 2 7 0.36 0.017 0.0021 0.022 0.039

FEER1 4.2 14 0.65 0.032 0.0042 0.032 0.054

QFED2.5 – 8.2 0.39 0.017 0.006 0.055 0.086

African rainforests. CLM4.5 and LPJ-GUESS-GlobFIRM

overestimate fire emissions over eastern China. JSBACH-

SPITFIRE underestimates fire emissions in most tropical

forests. MC2 underestimates fire emissions over most re-

gions, partly because it allows only one ignition per year per

grid cell and thus underestimates the burned area.

We further analyze the spatial distribution of inter-model

differences. As shown in Fig. 3, the main disagreement

among FireMIP models occurs in the tropics, especially over

the tropical savannas in Africa, South America, and north-

ern Australia. This is mainly driven by the MC2, CTEM,

JSBACH-SPITFIRE, and ORCHIDEE-SPITFIRE simula-

tions (Fig. 2). Differences among the satellite-based esti-

mates have a similar spatial pattern, but higher than the inter-

model spread in savannas over southern Africa and lower in

the temperate arid and semi-arid regions and north of 60◦ N

over Eurasia (Fig. S1a in the Supplement).

3.2 Seasonal cycle

The FireMIP models reproduce similar seasonality features

of fire emissions to satellite-based products; that is, peak

month is varied from the dry season in the tropics to the warm

season in the extra-tropics (Fig. 4).

For the tropics in the Southern Hemisphere, fire PM2.5

emissions of satellite-based products peak in August–

September. Most FireMIP models can reproduce this pattern,

except ORCHIDEE-SPITFIRE and LPJ-GUESS-SPITFIRE

peaking 2 months and 1 month earlier, respectively, and

JSBACH-SPITFIRE with a much lower amplitude of sea-

sonal variability likely caused by parameter setting in its fuel

moisture functions (Table S9 in Rabin et al., 2017).

For the tropics in the Northern Hemisphere, most FireMIP

models exhibit larger fire emissions in the northern winter,

consistent with the satellite-based products.

In the northern extra-tropical regions, satellite-based prod-

ucts show two periods of high values: April–May result-

ing mainly from fires in croplands and grasslands and July

mainly due to fires in the boreal evergreen forests. Most

FireMIP models can reproduce the second one, except for

LPJ-GUESS-SPITFIRE, which peaks in October. CLM4.5 is

the only model that can capture both peak periods, partly be-

cause it is the only one to consider unique seasonality of crop

fires.

3.3 Interannual variability

Global fire PM2.5 emissions from satellite-based products for

1997–2012 show a substantial interannual variability, which

peaks in 1997–1998, followed by a low around 2000 and a

decline starting in 2002–2003 (Fig. 5). The 1997–1998 high

emission values are caused by peat fires in equatorial Asia

in 1997 and widespread drought-induced fires in 1998 asso-

ciated with the most powerful El Niño event in 1997–1998

recorded in history (van der Werf et al., 2017; Kondo et al.,

2018). Most FireMIP models cannot reproduce the 1997–

1998 peak, except for CLM4.5 as the only model that simu-

lates the burning of plant tissue and litter from peat fires (al-

though burning of soil organic matter is not included) and the

drought-linked tropical deforestation and degradation fires

(Li et al., 2013; Kondo et al., 2018). CLM4.5, CTEM, and

LPJ-GUESS-SIMFIRE-BLAZE present the highest tempo-

ral correlation between models and satellite-based products

(0.55–0.79 for CLM4.5, 0.51–0.68 for CTEM, and 0.39–
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Figure 2. Spatial distribution of annual fire black carbon (BC) emissions (g BC m−2 yr−1) averaged over 2003–2008. The range of global

spatial correlation between DGVMs and satellite-based products is also given in parentheses.

0.72 for LPJ-GUESS-SIMFIRE-BLAZE), and thus are more

skillful than other models at reproducing the interannual vari-

ability observed from satellite-based products (Table 7).

We use the coefficient of variation (CV, the standard devi-

ation divided by the mean, %) to represent the amplitude of

interannual variability of fire emissions. As shown in Fig. 5,

for 1997–2012, all FireMIP models underestimate the varia-

tion as a result of (at least) partially missing the 1997–1998

fire emission peak. For 2003–2012 (the common period of all

satellite-based products and models), interannual variation of

annual fire PM2.5 emissions in CLM4.5, CTEM, and LPJ-

GUESS family models lies within the range of satellite-based

products (CV = 6 %–12 %). Other models present weaker

variation (CV = 5 %) except for MC2 (CV = 24 %), which

has a much stronger variation than all satellite-based prod-

ucts and other FireMIP models.

4 Historical changes and drivers

4.1 Historical changes

Figure 6 shows historical simulations of the FireMIP mod-

els as well as the CMIP5 and CMIP6 reconstructions for fire

carbon, CO2, CO, and PM2.5 emissions. We find similar his-

torical changes for all the species, with the maximum global

fire emissions given by LPJ-GUESS-GlobFIRM and the min-

ima by LPJ-GUESS-SPITFIRE before 1901 and MC2 after-

wards.

Long-term trends in simulated global fire emissions

for all models are weak before the 1850s (relative trend

< 0.015 % yr−1). They are similar to CMIP6 estimates

(Fig. 6) but in disagreement with earlier reconstructions

based on charcoal records (Marlon et al., 2008, 2016), ice-

core CO records (Wang et al., 2010), and ice-core δ13CH4

records (Ferretti et al., 2005), which exhibit a rapid in-

crease from 1700 to roughly the 1850s. After the 1850s,
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Figure 3. Inter-model standard deviation of 2003–2008 averaged fire BC emissions (g BC m−2 yr−1) in FireMIP models and the zonal

average.

Figure 4. Seasonal cycle of fire PM2.5 emissions normalized by the mean from FireMIP models and satellite-based products averaged over

2003–2008 in the Southern Hemisphere (SH) tropics (0–23.5◦ S), Northern Hemisphere (NH) tropics (0–23.5◦ N), and NH extra-tropics

(23.5–90◦ N). Fire emissions from LPJ-GUESS-GlobFIRM and MC2 are updated annually and are thus not included here.

disagreement in the trends among FireMIP models be-

gins to emerge. Fire emissions in LPJ-GUESS-SIMFIRE-

BLAZE decline from ∼ 1850, while fire emissions in LPJ-

GUESS-SPITFIRE, MC2, and ORCHIDEE-SPITFIRE show

upward trends from the ∼ 1900s. In CLM4.5, CTEM, and

JULES-INFERNO, fire emissions increase slightly before

∼ 1950, similar to the CMIP6 estimates, but CTEM and

JULES-INFERNO decrease thereafter, contrary to CMIP5

and CMIP6 estimates and CLM4.5. JSBACH-SPITFIRE

simulates a decrease in fire emissions before the 1940s and an

increase later, similar to the CMIP5 estimates. All the long-

term trends described above are significant at the 0.05 level

using the Mann–Kendall trend test.
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Table 7. Temporal correlation of annual global fire PM2.5 emissions between FireMIP models and satellite-based GFED4 and GFED4s

(1997–2012), GFAS1.2 and QFED2.5 (2001–2012), and FINN1.5 and FEER1 (2003–2012).

DGVMs GFED4 GFED4s GFAS1.2 FINN1.5 FEER1 QFED2.5

CLM4.5 0.73∗∗∗ 0.79∗∗∗ 0.63∗∗ 0.62∗ 0.55∗ 0.58∗∗

CTEM 0.51∗∗ 0.54∗∗ 0.63∗∗ 0.60∗ 0.52 0.68∗∗

JSBACH −0.18 −0.42 0.1 0.02 −0.04 0.32

JULES 0.33 0.31 0.31 0.56∗ 0.29 0.39

LGG 0.08 0.03 −0.15 0.01 −0.20 −0.03

LGS 0.12 0.04 −0.00 0.4 −0.01 0.08

LGSB 0.51∗∗ 0.64∗∗∗ 0.39 0.72∗∗ 0.56∗ 0.55∗

ORCHIDEE −0.13 −0.25 −0.16 0.29 −0.10 −0.10

∗, ∗∗, and ∗∗∗: Pearson correlation passed the Student’s t test at the 0.1, 0.05, and 0.01 significance levels,
respectively.

Figure 5. Temporal change in annual global fire PM2.5 emissions normalized by the mean from FireMIP models and satellite-based products.

The numbers in parentheses are coefficients of variation (CVs, the standard deviation divided by the mean, unit: %) for 1997–2012 and 2003–

2012, respectively.

Earlier reconstructions based on fire proxies also show a

big difference in long-term changes after the 1850s. The re-

construction based on the Global Charcoal Database version

3 (GCDv3, Marlon et al., 2016) exhibits a decline from the

late 19th century to the 1920s and then an upward trend until

∼ 1970, followed by a drop. The reconstructions based on the

GCDv1 (Marlon et al., 2008) and ice-core CO records (Wang

et al., 2010) show a sharp drop since roughly the 1850s, while

a steady rise is exhibited in the reconstruction based on ice-

core δ13CH4 records (Ferretti et al., 2005). The simulated

historical changes in FireMIP models (Fig. 6) fall into this

fairly broad range of long-term trends in these reconstruc-

tions.

Spatial patterns of inter-model spread of fire emissions for

1700–1850 and 1900–2000 (Fig. S1b–c) are similar to the

present-day patterns as shown in Fig. 3.

4.2 Drivers

Six FireMIP models also conducted sensitivity experiments,

which can be used to isolate the role of individual forcing fac-

tors in long-term trends of fire emissions during the 20th cen-

tury. The medians of the six models are also used for building

CMIP6 fire emission estimates (van Marle et al., 2017b). The

20th century changes in driving forces used in FireMIP are

characterized by an increase in the global land temperature,

precipitation, lightning frequency, atmospheric CO2 concen-

tration, population density, and cropland and pasture areas

and a decrease in the global forest area (Teckentrup et al.,

2019).

As shown in Figs. 6 and 7, the downward trend of global

fire emissions in LPJ-GUESS-SIMFIRE-BLAZE is mainly

caused by LULCC and increasing population density. Up-

ward trends in LPJ-GUESS-SPITFIRE and ORCHIDEE-

SPITFIRE are dominated by LULCC and rising popula-

tion density and CO2 during the 20th century. In CLM4.5

and JULES-INFERNO, upward trends before ∼ 1950 are at-

tributed to rising CO2, climate change, and LULCC, and the

subsequent drop in JULES-INFERNO mainly results from

the rising population density and climate change. Long-term

changes in global fire emissions in JSBACH-SPITFIRE are

mainly driven by LULCC and rising CO2.

As shown in Fig. 7, the inter-model spread in long-

term trends mainly arises from the simulated anthropogenic

influence (LULCC and population density change) on

fire emissions, as the standard deviation in simulated re-
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Figure 6. Long-term temporal change in fire emissions from DGVMs in FireMIP and CMIP forcing. A 21-year running mean is used.

sponses to LULCC (0.27 Pg C yr−1) and population density

(0.11 Pg C yr−1) is much larger than the other drivers.

LULCC decreases global fire emissions sharply in LPJ-

GUESS-SIMFIRE-BLAZE during the 20th century but in-

creases global fire emissions for the other models except

for JSBACH-SPITFIRE. The response to LULCC in LPJ-

GUESS-SIMFIRE-BLAZE is because it assumes no fire in

croplands and accounts for biomass harvest (thus reducing

fuel availability) in pastures (Table 2), the area of which ex-

panded over the 20th century. The LULCC-induced increases

in fire emissions for ORCHIDEE-SPITFIRE, LPJ-GUESS-

SPITFIRE, and JULES-INFERNO are partly caused by in-

creased burned area due to the expansion of grasslands (pas-

tures are lumped in natural grasslands in these models) where

fuels are easier to burn than woody vegetation in the model

setups (Rabin et al., 2017). CLM4.5 models crop fires and

tropical deforestation and degradation fires. Crop fire emis-

sions in CLM4.5 are estimated to increase during the 20th

century due to expansion of croplands and increased fuel

loads over time (Fig. S2). Emissions of tropical deforesta-

tion and degradation fires in CLM4.5 are increased before

∼ 1950, responding to increased human deforestation rate

in tropical closed forests based on prescribed land use and

land cover changes (Li et al., 2018). In JSBACH-SPITFIRE,

as croplands and pastures expand over time, the assumption

of no fire over croplands tends to decrease fire emissions,

while the setting of high fuel bulk density for pastures tends

to increase fire emissions due to increased fuel combusted

per burned area, which together partly result in the shifted

sign of response to LULCC around the 1940s.

Rising population density throughout the 20th century

decreases fire emissions in CLM4.5 and LPJ-GUESS-

SIMFIRE-BLAZE because they include human suppression

on both fire occurrence and fire spread. Fire suppression in-

creases with rising population density and is simulated ex-

plicitly in CLM4.5 and implicitly in LPJ-GUESS-SIMFIRE-

BLAZE. In contrast, rising population density increases

fire emissions in LPJ-GUESS-SPITFIRE and ORCHIDEE-

SPITFIRE because observed human suppression on fire

spread found in Li et al. (2013), Hantson et al. (2015), and

Andela et al. (2017) is not taken into account in the two

models. The response to population density change for the

other models is small, reflecting the compensating effects of

human ignition and human suppression on fire occurrence

(strongest in JULES-INFERNO in FireMIP models) and also

human suppression on fire duration (JSBACH-SPITFIRE).

All models simulate increased fire emissions with in-

creased atmospheric CO2 concentration since elevated CO2

increases the fuel load. Elevated CO2 increases both the pho-

tosynthetic uptake of CO2 (Mao et al., 2009) and plant water-

use efficiency (i.e., less water stress on plant growth and suc-

cession, Keenan et al., 2013), that is, CO2 fertilization effect,

which can stimulate carbon uptake and storage by the terres-

trial biosphere. Such a CO2-driven increase in fuel load is

consistent with a recent analysis of satellite-derived vegeta-

tion indices (Zhu et al., 2016). FireMIP models also agree

that impacts of changes in lightning frequency on long-term

trends of fire emissions are small. Moreover, most FireMIP

models agree that climate change tends to increase fire car-

bon emissions during the first several decades and then falls,

reflecting co-impacts of climate on both fuel load and fuel

moisture.

4.3 Regional long-term changes

We divided the global map into 14 regions following the def-

inition of the GFED family (Fig. 8a). As shown in Fig. 8b,

inter-model discrepancies in long-term changes are largest
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Figure 7. Change in global annual fire carbon emissions (Pg C yr−1) in the 20th century due to changes in (a) climate, (b) lightning frequency,

(c) atmospheric CO2 concentration, (d) land use and land cover change (LULCC), and (e) population density (control run–sensitivity run).

A 21-year running mean is used. The standard deviations (SDs) of multi-model simulated long-term changes averaged over the 20th century

are also given in parentheses. The control run is a normal transient run, and the five sensitivity runs are similar to the control run but without

change in climate, lightning frequency, atmospheric CO2 concentration, land cover, and population density, respectively. The 20th century

changes in driving forces used in FireMIP are characterized by an increase in the global land temperature, precipitation, lightning frequency,

atmospheric CO2 concentration, and population density, expansion of croplands and pastures, and a decrease in the global forest area.

in Southern Hemisphere South America (SHSA), southern

and northern Africa (NHAF and SHAF), and central Asia

(CEAS).

Most FireMIP models reproduce the upward trends of fire

CO emissions found also in the CMIP5 or CMIP6 estimates

since the 1950s in SHSA and till ∼ 1950 in Africa (Fig. 9e, h,

and i). Long-term trends in regional fire emissions in SHSA,

Africa, and central Asia can broadly explain the upward

trends in global fire emissions in LPJ-GUESS-SPITFIRE,

MC2, and ORCHIDEE-SPITFIRE, the downward trends in

LPJ-GUESS-SIMFIRE-BLAZE, and the rise followed by a

drop in CTEM, whose global fire emissions exhibit most ob-

vious long-term trends in FireMIP models (Fig. 6).

In other regions, the difference in long-term changes

among models is smaller (Fig. 8b). Emissions of most mod-

els and CMIP5 estimates exhibit a significant decline in

temperate North America (TENA) from ∼ 1850 to ∼ 1970,

while historical changes in CMIP6 estimates are compara-

tively small (Fig. 9b). LPJ-GUESS-SIMFIRE-BLAZE has a

more obvious long-term change than the other FireMIP mod-

els and CMIPs in boreal North America (BONA) and north-

ern South America (NHSA) (Fig. 9a and d). MC2 and LPJ-

GUESS-GlobFIRM emissions increase after ∼ 1900 in Eu-

rope (EURO), while emissions of other models and CMIPs

are overall constant (Fig. 9f). In boreal Asia (BOAS), emis-

sions of most models and CMIP6 are relatively constant,

while LPJ-GUESS-GlobFIRM and CMIP5 emissions de-

cline from 1850 to the 1950s and from 1900 to the 1970s,

respectively, and then rise (Fig. 9j). JULES, LPJ-GUESS-

SIMFIRE-BLAZE, CLM4.5, CTEM, and CMIP6 emissions

significantly decline since the 1950s in Southeast Asia

(SEAS), while CMIP5 emissions increase (Fig. 9l). In equa-

torial Asia (EQAS), CMIPs emissions increase after ∼ 1950,

which is partly reproduced by only CLM4.5 in FireMIP

(Fig. 9m).

As shown in Figs. S3–S5, long-term changes in regional

fire emissions for other species are similar to those of fire

CO emissions.

The long-term changes in regional fire emissions and inter-

model disagreement are mainly caused by simulated re-

sponses to LULCC and/or population density change for the

20th century (Figs. S6–S19). Besides, climate change also

plays an important role in North America, northern South

America, Europe, northern Africa, boreal and central Asia,
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Figure 8. (a) GFED region definition (http://www.globalfiredata.org/data.html, last access: 2 October 2018) and (b) inter-model discrepancy

(quantified using inter-model standard deviation) in long-term changes (a 21-year running mean is used, relative to the present day) of sim-

ulated regional fire CO emissions (Tg CO yr−1) averaged over 1700–2012 (calculate long-term changes relative to the present day for each

FireMIP model first, then the inter-model standard deviation, and lastly the time average). The abbreviations are BONA: boreal North Amer-

ica; TENA: temperate North America; CEAM: central America; NHSA: Northern Hemisphere South America; SHSA: Southern Hemisphere

South America; EURO: Europe; MIDE: Middle East; NHAF: Northern Hemisphere Africa; SHAF: Southern Hemisphere Africa; BOAS:

boreal Asia; CEAS: central Asia; SEAS: Southeast Asia; EQAS: equatorial Asia; AUST: Australia.

and Australia. FireMIP models generally simulate increased

regional fire emissions with increased CO2 concentration and

negligible impacts due to changes in lightning frequency,

similar to the responses of global fire emissions.

5 Summary and outlook

Our study provides the first multi-model reconstructions of

global historical fire emissions for 1700–2012, including car-

bon and 33 species of trace gases and aerosols. Two versions

of the fire emission product are available, at the original spa-

tial resolution for outputs of each FireMIP model and on a

unified 1×1◦. The dataset is based on simulations of fire car-

bon emissions and vegetation distribution from nine DGVMs

with state-of-the-art global fire models that participated in

FireMIP and the most up-to-date emission factors over var-

ious land cover types. It will be available to the public at

https://doi.org/10.5281/zenodo.3386620.

Our study provides an important dataset with wide-

ranging applications for the Earth science research commu-

nity. First, it is the first multi-model-based reconstruction of

fire emissions and can serve as a basis for further develop-

ment of multi-source merged products of global and regional

fire emissions and of the merging methodology itself. van

Marle et al. (2017b) presented an example of using part of

the dataset to develop a multi-source merged fire emission

product as a forcing dataset for CMIP6. In van Marle et

al. (2017b), the median of fire carbon emissions from six

FireMIP models was used to determine historical changes

over most regions of the world. The merging method and

merged product in van Marle et al. (2017b) are still prelimi-

nary and need to be improved in the future, e.g., by weight-

ing the different models depending on their global or regional

simulation skills. Secondly, our dataset includes global grid-

ded reconstructions for 300 years. It can thus be used for

analyzing global and regional historical changes in fire emis-

sions on interannual to multi-decadal timescales and their in-
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Figure 9. Long-term changes in annual regional fire CO emissions (Tg CO yr−1) from FireMIP models and CMIPs. A 21-year running mean

is used.

terplay with climate variability and human activities. Third,

the fire emission reconstructions based on multiple models

provide, for the first time, a chance to quantify and under-

stand the uncertainties in historical changes in fire emissions

and their subsequent impacts on carbon cycle, radiative bal-

ance, air quality, and climate. Hamilton et al. (2018), for ex-

ample, used fire emission simulations from two global fire

models and the CMIP6 estimates to drive an aerosol model.

This allowed for quantification of the impact of uncertainties

in pre-industrial fire emissions on estimated pre-industrial

aerosol concentrations and historical radiative forcing.

This study also provides significant information on the

recent state of fire model performance by evaluating the

present-day estimates based on FireMIP fire models (also

those used in the upcoming CMIP6). Our results show that

most FireMIP models can overall reproduce the amount,

spatial pattern, and seasonality of fire emissions shown by

satellite-based fire products. Yet they fail to simulate the in-

terannual variability partly due to a lack of modeling peat

and tropical deforestation fires. In addition, Teckentrup et

al. (2019) found that climate was the main driver of inter-

annual variability for the FireMIP models. A good represen-

tation of fire duration may be important to get the response of

fire emissions to climate right. However, all FireMIP models

limit the fire duration of individual fire events no more than

1 day in natural vegetation regions, so they cannot skillfully

model the drought-induced large fires that last multiple days

(Le Page et al., 2015; Ward et al., 2018). Recently, Andela

et al. (2019) derived a dataset of fire duration from MODIS

satellite observations, which provides a valuable dataset for

developing parameterization of fire duration in global fire

models.

This study also identifies population density and LULCC

as the primary uncertainty sources in fire emission estimates.

Therefore, accurately modeling the responses to these re-

mains a top priority for reducing uncertainty in historical

reconstructions and future projections of fire emissions, es-

pecially given that modeling is the only way for future pro-

jections. For the response to changes in population density,

many FireMIP models have not included the observed re-

lationship between population density and fire spread (Ta-

ble 2). Moreover, Bistinas et al. (2014) and Parisien et

al. (2016) reported obvious spatial heterogeneity of the pop-
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ulation density–burned area relationship that is poorly repre-

sented in FireMIP models.

For the response to LULCC, improving the modeling of

crop fires, pasture fires, deforestation and degradation fires,

and human indirect effect on fires (e.g., fragmentation of the

landscape) and reducing the uncertainty in the interpretation

of land use datasets in models are critical. Fire has been

widely used in agricultural management during the harvest-

ing, post-harvesting, or pre-planting periods (Korontzi et al.,

2006; Magi et al., 2012). Crop fire emissions are an impor-

tant source of greenhouse gases and air pollutants (Tian et

al., 2016; Wu et al., 2017; Andreae, 2019). GFED4s reported

that fires in croplands can contribute 5 % of burned area and

6 % of fire carbon emissions globally in the present day (Ran-

derson et al., 2012; van der Werf et al., 2017). In FireMIP,

only CLM4.5 simulates crop fires, whereas the other mod-

els assume no fire in croplands or treat croplands as natu-

ral grasslands. In CLM4.5, crop fires contribute 5 % of the

global burned area in 2001–2010, similar to GFED4s esti-

mates. However, CLM4.5 estimates a total of 260 Tg C yr−1

carbon emissions (contribution rate: 13 %), which is higher

than the GFED4s estimate (138 Tg C yr−1) because CLM4.5

simulates higher fuel loads in croplands than the CASA

model used by GFED4s. In CLM4.5, both the carbon emis-

sions from crop fires and the contribution of crop fire emis-

sions to the total fire emissions increase throughout the 20th

century (Fig. S2), which is consistent with earlier estimates

based on a different crop fire scheme (Ward et al., 2018). In

JULES-INFERNO, an increase in cropland area also leads to

an increase in burned area and fire carbon emissions because

this model treats croplands as natural grasslands. Grasses dry

out faster than woody vegetation and are easier to burn, so an

increasing cropland area leads to increasing burned area and

fire carbon emissions. On the other hand, for FireMIP models

that exclude croplands from burning, expansion of croplands

leads to a decrease in burned area and fire carbon emissions.

Therefore, different treatment of crop fires can contribute to

the uncertainty in simulated fire emissions. Since four out

of six FireMIP models used for generating CMIP6 estimates

exclude croplands from burning (van Marle et al., 2017b),

CMIP6 estimates may underestimate the impact of histor-

ical changes in crop fire emissions in some regions (e.g.,

China, Russia, India). Given the small extent of crop fires,

high-resolution remote sensing may help improve the detec-

tion of crop fires (Randerson et al., 2012; Zhang et al., 2018),

which can benefit the driver analyses and modeling of histor-

ical crop fires and their emissions in DGVMs.

Le Page et al. (2017) and Li et al. (2018) highlighted the

importance of tropical deforestation and degradation fires in

the long-term changes in reconstructed and projected global

fire emissions, but in FireMIP only CLM4.5 estimates the

tropical deforestation and degradation fires. For pasture fires,

all FireMIP models assume that they behave like natural

grassland fires, which needs to be verified by, for example,

satellite-based products. If fires over pastures and natural

grasslands are significantly different, adding the gridded cov-

erage of pasture as a new input field in DGVMs without pas-

ture PFTs and developing a parameterization of pasture fires

will be necessary. Furthermore, Archibald (2016) and An-

dela et al. (2017) found that expansion of croplands and pas-

tures decreased fuel continuity and thus reduced burned area

and fire emissions. However, no FireMIP model parameter-

izes this indirect human effect on fires. In addition, DGVMs

generalize the global vegetation using different sets of PFTs

(Table 4) and represent land use data in a different way. This

may lead to different responses of fire emissions to LULCC

and thus different long-term changes in fire emissions among

model simulations, given that many parameters and functions

in global fire models are PFT-dependent. LUH2 used in LU-

MIP and ongoing CMIP6 provide information on forest/non-

forest coverage changes (Lawrence et al., 2016), which can

reduce the misinterpretation of the land use data in models

and thus the inter-model spread of fire emission changes.

As discussed above, most FireMIP models do not con-

sider the human suppression of fire spread, decreased fuel

continuity from expanding croplands and pastures, human

deforestation and degradation fires, and crop fires. There-

fore, these models, and hence the CMIP6 estimates that are

mainly based on them, may have some uncertainties in es-

timating historical fire emissions and long-term trends. This

may further affect the estimates of the radiative forcing of fire

emissions and the historical response of trace gas and aerosol

concentrations, temperature, precipitation, and energy, wa-

ter, and biogeochemical cycles to fire emissions based on

Earth/climate system models that include these fire models

or are driven by such fire emissions. It may also influence

future projections of climate and Earth system responses to

various population density and land use scenarios.
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