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Abstract—As the mutation strategy and algorithmic
parameters in differential evolution (DE) are sensitive to
the problems being solved, a hot research topic is to adaptively
control the strategy and parameters according to the require-
ments of the problem. In the literature, most adaptive DE
use either historical experiences of the population or heuristic
information of the individuals to promote adaptation. In this
paper, we develop a novel variant of adaptive DE, utilizing
both the historical experience and heuristic information for the
adaptation. In this novel historical and heuristic DE (HHDE),
each individual dynamically adjusts its mutation strategy
and associated parameters not only by learning from previous
successful experience of the whole population, but also according
to heuristic information related with its own current state. These
help the algorithm select a more suitable mutation strategy and
determinate better parameters for each individual in different
evolutionary stages. The performance of the proposed HHDE is
extensively evaluated on 30 benchmark functions with different
dimensions. Experimental results confirm the competitiveness of
the proposed algorithm to a number of DE variants.

Index Terms—Differential evolution (DE), heuristic informa-
tion, historical experience, mutation strategy selection, parameter
adaptation.

I. INTRODUCTION

D
IFFERENTIAL evolution (DE) is a simple and efficient
global optimizer developed by Storn and Price [1]. DE
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has been successfully applied to many real-world optimization
problems [2]–[8]. DE utilizes differences between individuals
to drive the evolution iteratively via the mutation, crossover,
and selection operators. Among these operators, mutation
strategy is the most sensitive because different mutation strate-
gies present different characteristics and are suitable for differ-
ent evolutionary stages on different problems [9]. Moreover,
DE uses parameters scale factor (F) and crossover rate (CR) to
control the evolutionary process. Researches have shown that
different parameter settings are required when dealing with dif-
ferent problems or being in different evolutionary stages [10].
Therefore, during recent years, researches on mutation strate-
gies and parameter settings of DE have attracted an increasing
interest, with a number of adaptive/self-adaptive DE variants
being proposed.

In the literature, two types of mechanisms are often used
for mutation strategy and parameter adaptation.

1) Historical experience-based mechanism (HEM), where
the mutation strategy and parameters are set according
to the historical successful experience of the pop-
ulation. In the evolutionary process, individuals are
assigned with different mutation strategies and param-
eters, attempting to produce diverse offspring. The
successful attempts indicate “Good” mutation strate-
gies and parameters that can produce better individual
survival in the next generation. So these Good histor-
ical experiences are regarded as learning sources to
guide the selection of mutation strategies and param-
eters. In the literatures, many adaptation methods use
HEM for parameter control [11]–[16]. In these DEs,
the successful parameters in the previous generation
are directly propagated to next generation [11] or used
as learning exemplars to generate new parameters [17].
The HEM is also adopted widely for mutation strat-
egy selection. The main idea is to adaptively update the
selection probability of strategies according to their suc-
cess history [18]–[20]. The strategy with higher success
rate (SR) is regarded as more suitable for the problem
and is assigned more computational resource [21] or
selected with higher probability [22].

2) Heuristic information-based mechanism (HIM), where
the mutation strategy and parameters are set for each
individual according to the heuristic information based
on its current state, such as the current position, the cor-
responding fitness value, and/or the ranking information.
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For example, Ghosh et al. [23] proposed an improved
DE which assigns control parameters for each individ-
ual based on the fitness value. Tang et al. [24] proposed
an individual-dependent DE (IDE), taking the difference
of different individuals into consideration when generate
the parameters and determine the strategy.

Note that some other similar classification terms, such as
success-based/observation-based [27], are also used to classify
adaptive DEs from the perspectives of population success and
population distribution. However, the HEM/HIM terms used in
this paper focus more on whether the adaptation is controlled
by macro-level historical experiences from the population or
micro-level heuristic information from the individual.

Both the HEM and HIM for mutation strategy and parameter
adaptation show good performance when compared to the clas-
sical DE. In the HEM, individuals are regarded as equal, and
their strategies and parameters are assigned according to the
same “distribution” learning from the same historical experi-
ences. Alternatively, in the HIM, the differences of individuals
are used as heuristic information for adaptation. In the liter-
ature, the HEM and HIM are often utilized in simple and
separate ways. However, it may be efficient to make com-
prehensive utilization of them both. On the one hand, the
population historical experiences are useful to describe the
“shape” of search space that can provide an experienced guid-
ance. On the other hand, the individual heuristic information
can yield the difference between individuals and reflect their
various search requirements for strategy and parameters. The
combination of them can help the individual itself find promis-
ing strategy and parameters that are suitable for the problem
as well as for the individual. This has attracted researchers’
attentions. Efforts have already been seen in combining HEM
and HIM for parameter adaptation [25], [26]. Zhou et al. [25]
proposed to generate CR values in a two-step process. Multiple
CR values are generated by a distribution according to the
population’s historical experience first and then are assigned
to the individuals according to their fitness values. However,
the historical experience and heuristic information are utilized
separately. Jia et al. [26] proposed to generate parameters
for each individual according to its own past parameters and
fitness value. However, it does not consider the cooperation
among individuals’ experiences. For strategy adaption, to our
best knowledge, there is still few even no works that adopt both
of HEM and HIM. Therefore, how to utilize both the popu-
lation’s historical experience and individual’s current heuristic
information in a more direct and effective way to select
promising mutation strategy and parameters is an important
and challenging research issue.

How to represent the information of HEM and HIM, and
how to combine them together to generate parameter/strategy
are two crucial issues. For parameters, they are real values
in continuous domain. Therefore, it is natural to calculate
the HEM and HIM as continuous values and adopt weight
sum method to combine them to generate new parameters.
However, for strategy, it is in discrete domain to select one
strategy. Therefore, special design is required to determine the
values of HEM and HIM and then combine them together to
construct a probabilistic model for strategy selection.

In this paper, we propose a novel historical experience and
heuristic information-based adaptive DE algorithm, termed
HHDE. In HHDE, the mutation strategy and parameters for
each individual are adaptively controlled by both the his-
torical success experience of the whole population and the
heuristic information related to individual’s own current state.
Therefore, HHDE combines the advantages of both HEM and
HIM. Specially, the new HHDE includes a historical-heuristic-
based mutation (HHM) strategy and a historical-heuristic-
based parameter (HHP) setting. In the HHM, a mutation
strategy selection probabilistic model associated with histor-
ical SR of different mutation strategies (can be regarded as
an HEM) and heuristic information representing the preference
of the individual “state” to the mutation strategy characteristic
(can be regarded as an HIM) is designed for each individ-
ual to match the problem as well as the individual. The HHP
first ranks the individuals based on their fitness values and
then determines the parameters for each individual by con-
sidering its ranking information (can be regarded as an HIM)
and by learning from successful parameters of the population
(can be regarded as an HEM). In our HHDE, the HEM and
HIM are combined in a direct way to construct a distribu-
tion for strategy selection or parameter determination for each
individual. In this way, the population historical experience is
adapted to the individual itself. To our best knowledge, this
is an innovative attempt in the DE community that proposes
to use both the population historical experience and the indi-
vidual heuristic information for both strategy and parameter
adaptation. To evaluate the efficiency of the proposed algo-
rithm, the performance of HHDE on 30 benchmark functions
from CEC 2014 with 10-D, 30-D, and 50-D scales [29] is
compared with other state-of-the-art DE algorithms and some
top methods in CEC 2014 and CEC 2016 competition.

The rest of this paper is organized as follows. To set the
scene, Section II describes the basic procedure of DE and its
improved variants in strategy and parameter. Section III devel-
ops the new HHDE algorithm in detail. Experimental results
are presented in Section IV. Finally, the conclusions are drawn
in Section V.

II. DE AND ITS VARIANTS

A. DE Algorithm

DE is a population-based stochastic search algorithm for
global optimization. In a D-dimensional space, each individ-
ual i has a position vector xi,g = (x1,i,g, x2,i,g, . . . , xD,i,g),
mutation scale factor Fi, and crossover rate CRi, where
i = 1, 2, . . . , Np, Np is the population size, g is the cur-
rent generation index. In the beginning, all the individuals
are randomly initialized as a position in the searching space
xj,min ≤ xj,i,0 ≤ xj,max for j = 1, 2, . . . , D. Then DE repeat-
edly performs three operations: 1) mutation; 2) crossover; and
3) selection to generate a new population.

1) Mutation: In each generation g, each individual i gen-
erates a mutant vector vi,g. The frequently used mutation
strategies of DE can be named as “DE/-/k,” in which the “−”
indicates the base vector and k is the number of difference
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vectors used for constructing the moving direction [13]. The
common mutation strategies are listed as follows:

DE/rand/1 [1]:

vi,g = xr1,g + Fi ·
(

xr2,g − xr3,g

)

. (1)

DE/best/1 [47]:

vi,g = xbest,g + Fi ·
(

xr1,g − xr2,g

)

. (2)

DE/current-to-best/1 [48]:

vi,g = xi,g + Fi ·
(

xbest,g − xi,g

)

+ Fi ·
(

xr1,g − xr2,g

)

. (3)

DE/current-to-rand/1 [49]:

vi,g = xi,g + λ ·
(

xr1,g − xi,g

)

+ Fi ·
(

xr2,g − xr3,g

)

(4)

where r1, r2, and r3 are distinct integers randomly selected
from {1, 2, . . . , Np}, which are all different from the index i.
Fi is a positive real number of individual i for scaling the
difference vectors, λ is a random value in the range of [0,1],
and xbest,g is the best individual at generation g.

2) Crossover: Usually, a crossover operation is performed
following mutation, to form the offspring vector. The bino-
mial crossover and exponential crossover are commonly
used. In an exponential crossover, the trial vector ui,g =

(u1,i,g, u2,i,g, . . . , uD,i,g) is formed by exchanging one part
connected components of mutant vector with the target vec-
tor xi,g. The starting point and the component length of
crossover are randomly generated [30], [31]. Differently, bino-
mial crossover is performed on each dimension j if the
randomly generated number is less than or equal to CRi as

uj,i,g =

{

vj,i,g, if rand(0, 1) ≤ CRi or j = jrand
xj,i,g, otherwise

(5)

where jrand is a random integer in [1, D] to ensure that there
is at least one component that is inherited from the mutant
vector.

If the value of the trial vector violates boundary constraints,
the value will be reset as

uj,i,g =

{(

xj,i,g + xj,min
)

/2, if uj,i,g < xj,min
(

xj,i,g + xj,max
)

/2, if uj,i,g > xj,max.
(6)

3) Selection: A vector with a better fitness value is selected
from the trial vector and target vector to enter the next gen-
eration. If the objective is to find a minimum solution, the
selection operation is as follows:

xi,g+1 =

{

ui,g, if f
(

ui,g

)

≤ f
(

xi,g

)

xi,g, otherwise.
(7)

The performance of DE depends on the mutation operator
and also the F and CR parameters. Thus, many DE variants
have been proposed to improve mutation and parameters.

B. Mutation Strategy Variants

The mutation strategy mutates the corresponding parent
with difference vectors, so the selection of the parents affects
the performance of DE. Different methods are proposed
to select the parents from: neighbor list constructed by

different population topologies [12], archive with success-
ful solutions [32], probability distribution based on prox-
imity characteristics among the individuals [33] or fitness
ranking [16], [34], [35], to improve DE.

Since mutation strategies are used to produce promising
candidate solutions, other methods that do not use a scheme
of “base vector + difference vectors” can also be utilized
in DE. For example, opposition-based DE (ODE) employs
opposition-based learning method to create new offspring to
increase the chance of finding good solutions [36]. A stochas-
tic ODE is further developed by using a beta distribution
to increase the population diversity [37]. Gaussian sampling
method is also used to generate the mutation vector in
Gaussian bare-bones DE [38]. In addition, the combination
of mutate operators in different algorithms is also promising.
For example, the mutate operator of CMA-ES is combined
with that of DE to enhance the explorative power of the
algorithm [39].

As different mutation strategies have different characteris-
tics, multiple strategies method is promising. Wang et al. [28]
proposed a composite DE (CoDE), in which three strategies
with randomly selected parameters generate three mutant vec-
tors and only the best trial vector is compared with the target
vector to determine which one to enter the next generation.
Similarly, in [40], multiple strategies generate multiple solu-
tions first and then a surrogate model is used for quality
estimation to select one solution as the candidate. In [41], four
mutation strategies are used to generate trial vectors. In [24],
the individuals with different fitness values employed specific
mutation strategy in different evolutionary stages.

Based on assembling multiple strategies, feedback from the
evolutionary search can be used to dynamically change the
strategy selection probability. Qin et al. [18] developed an
adaptive DE (SaDE), wherein the mutation strategy is deter-
mined according to a probability model calculated by previous
successful experiences. The strategy with higher SR in the last
generation has more opportunities to be adopted. All the indi-
viduals share the same probability model. Fialho et al. [20]
used fitness improvements to evaluate the effect of strat-
egy and proposed probability matching and adaptive pursuit
method to adaptive select mutation strategy. Gong et al. [19]
employed the similar strategy selection approach according
to the recent effect of the strategies. Mallipeddi et al. [9]
proposed an ensemble of strategies and control parameter
with DE (EPSDE), wherein a pool of strategies and multiple
parameter values are combined to generate the offspring. The
successful combinations are reserved and are more probable to
be selected. Despite the progress so far, room exists to improve
DE further.

C. Parameter Adaptation Variants

The jDE [11] directly propagates the successful parameter
values of F and CR into the next generation to improve the
performance of DE. DE-DPS [15] selects parameters from the
parameter combination (Np, F, and CR) pool according to
their SR in the past period. Indirect learning is another adapta-
tion method. JADE [13], MDE_pBX [16], and SHADE [14]
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generate parameters F and CR according to a distribution
with mean value learning from successful parameters in
the previous evolution process. The DE variants mentioned
above adaptively update parameters by learning from history
of successful parameters in the previous evolution process.
Differently, in IDE [24], parameters are assigned for each
individual according to its fitness ranking.

III. HHDE

In this section, we first discuss the convergence features
of DE with different mutation strategies and propose a new
HHM strategy adaptation method. Then, we discuss the influ-
ence of the control parameters in DE and design a new HHP
setting mechanism. Finally, we present the complete procedure
of HHDE.

A. HHM for Mutation Strategy Adaptation

In mutation strategy adaptation, historical experience of the
population is an important learning source. Moreover, different
individuals in different states need different mutation strategies
to improve themselves. Motivated by these considerations, we
propose an HHM strategy that uses both the population his-
torical experience and the individual heuristic information to
select a suitable mutation strategy for each individual.

Different mutation strategies have different characteristics
on exploitation and exploration abilities. The “DE/best/k”
schemes search in a small neighborhood of the best solu-
tion and have a high convergence speed. They perform
well on the unimodal functions but easily get trapped
in local optima on multimodal functions [50]. Differently,
“DE/current-to-/k” schemes move toward other individuals and
have higher diversity and stronger exploration ability than
DE/best/k [13]. “DE/rand/k” schemes select the base vector
randomly from the current population and move in the solu-
tion space aimlessly. They always have strong exploration
ability [15].

In the HHM, we maintain a strategy candidate pool includ-
ing three mutation strategies.

Strategy 1 (DE/current-to-rand/1):

vi,g = xi,g + λ ·
(

xr1,g − xi,g

)

+ Fi ·
(

xr2,g − xr3,g

)

(8)

where the value of λ is set as Fi to eliminate one additional
parameter.

Strategy 2 (DE/current-to-pbest/1):

vi,g = xi,g + Fi ·
(

xpbest,g − xi,g

)

+ Fi ·
(

xr1,g − xr2,g

)

p ∈ [0, 0.1 · Np]. (9)

Strategy 3 (DE/rand/1):

vi,g = xr1,g + Fi ·
(

xr2,g − xr3,g

)

, r1 ∈
[

0.1 · Np, 0.5 · Np
]

(10)

where xr1,g is randomly selected between the top 10% and the
top 50% individuals in the population. Note that the individ-
uals in the population are sorted based on their fitness values
before the mutation operation.

In the evolutionary process, for each individual, one strat-
egy will be chosen from the candidate pool according to HHM
that considers both HEM and HIM. First, the HEM learn-
ing in HHM means the historical SR of different strategies
learning from the population history, where a more successful
strategy has a higher chance to be selected. Second, the HIM
learning in HHM means the preference of different strategies
possessed by the individual according to its current state. The
SR in the past history reflects the suitability of the strategy to
the problem, while preference describes the matching degree
between the characteristic of strategy and the current state of
the individual. The combination of historical experience and
heuristic information is described as follows.

1) HEM Learning in HHM: The historical SR τ of different
strategies accumulates as the evolution promotes. The τj of
mutation strategy j is calculated as

τj = (1 − ε) · τj + ε · �τj (11)

�τj =
Sj,g

∑K
k=1 Sk,g

(12)

Sk,g =
nsk,g

nsk,g + nfk,g
+ δ, (k = 1, 2, . . . , K) (13)

where Sk,g is the SR of strategy k in generation g, nsk,g is the
number of successful individuals which employed strategy k

in generation g, nfk,g is the number of failed individuals which
employed strategy k in generation g, δ = 0.05 is a constant to
avoid the possible null SRs, K is the number of mutation strate-
gies, and ε is used to balance the effect of previous and current
experiences. The τj of each strategy j is initialized as 1/K. In
each generation, the τ value of the strategy with higher SR
increases more. Thus, the more suitable strategy in the current
evolutionary stage will be accumulated to a higher value.

2) HIM Design in HHM: We use the ranking of the fitness
to classify the individuals into three different states.

1) Superior State (S): The top one-third individuals with
best fitness values.

2) Medium State (M): One-third individuals with medium
fitness values.

3) Inferior State (I): The last one-third individuals with
worst fitness values.

For individuals in S, they are so close to the best solu-
tions and easy to find proximity by learning from the better
solutions. Therefore, the “DE/current-to-rand/1” strategy that
explores promising areas around is more suitable to avoid
premature convergence. For individuals in M, they have great
potential to improve by learning from better solutions and
require a strategy with adequate convergence speed and strong
exploitation capability. Thus, the “DE/current-to-pbest/1” is
more suitable. For individuals in I, they can learn from
“second” better (not the top but better than solutions in I)
individual to obtain better solutions to get closer to good
solution as well as explore new area to increase population
diversity. The “DE/rand/1” strategy has strong exploration
ability [15]. Employing this strategy, the search is able to cover
the neighborhood areas of potentially better solutions to drive
the population forward steadily and reliably.
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Thus, the heuristic information ηij of individual i for
mutation strategy j can be described as

ηij =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0.5, if
(

1 ≤ ri ≤ 1
3 Np and j = 1

)

or
(

1
3 Np < ri ≤ 2

3 Np and j = 2
)

or
(

2
3 Np < ri ≤ Np and j = 3

)

0.25, otherwise

(14)

where 1 ≤ i ≤ Np, 1 ≤ j ≤ 3, and ri is the rank of individual i

in the current population according to the fitness value (from
best to worst). That is, strategy 1 (DE/current-to-rand/1) is
more suitable for individuals in state S, strategy 2 (DE/current-
to-pbest/1) is more suitable for individuals in state M, while
strategy 3 (DE/rand/1) is more suitable for individuals in state
I. Therefore, these heuristic information values are set to 0.5,
while all the other values are set to 0.25.

3) Combine HEM and HIM in HHM: With respect to each
individual, one mutation strategy is selected from the candi-
date pool according to the probability learning from historical
SR and the heuristic information. The individual i selects
a mutation strategy ki by applying the rule given by

ki =

{

argmaxj=1,...,K

{

τj · ηij

}

, if q ≤ q0

T, otherwise
(15)

where q is a random number uniformly distributed in [0,1],
and q0 is used to balance the importance of experience and
heuristic versus exploration. If q ≤ q0, then the “best” strategy
with maximal τj ·ηij value is chosen, otherwise, a strategy T is
chosen according to the roulette wheel selection by probability
distribution

pij =
τj · ηij

∑

k=1,...,K τk · ηik

. (16)

This way, the individual favors the strategy with a higher SR
and a larger heuristic value that combines both HEM and HIM.

B. HHP for Parameter Adaptation

The scale factor F is the step size of movement, and the
crossover rate CR influences the variation of the new gener-
ated trial vector. The parameters are problem dependent [13].
On the one hand, the previous successful parameters tent to
generate individuals that are more likely to survive and thus
they are believed to be more suitable for this problem. On the
other hand, different individuals with different solution qual-
ity requires different parameters. For good solutions, better
offspring individuals are probable to be obtained by exploit-
ing the neighborhood with small F value and introducing less
mutant components with a small CR value. For poor solutions,
more promising offspring individuals are likely to be obtained
by exploring the new area with a large value of F and adding
more mutant elements with a large value of CR [24].

Motivated by these two influences, the HHP is shown as (17)
and (18) by the consideration of both population experience
(i.e., HEM) and individual information (i.e., HIM) to deter-
mine the parameters. For each individual i, the parameters
are generated by Gaussian distribution with standard deviation
specified to 0.1. The mean values of Gaussian distribution for

Fi and CRi are set to the weighted sum of population suc-
cess parameter experience (i.e., the HEM µF and µCR) and
individual ranking information (i.e., the HIM ri).

It should be noted that, we also record the F and CR val-
ues that individual i succeeded in the latest time as pFi and
pCRi, respectively. On the one hand, these can be regarded
as some kind of historical experiences for this individual. On
the other hand, since the current search area is near to the
recently visited areas, they may have quite similar landscape.
Therefore, these can also be regarded as some kind of heuris-
tic information related to the search state. Hence, we also let
the parameters Fi and CRi set as pFi and pCRi controlled by
probability p0 as shown in (17) and (18)

Fi =

{

Gaussian
(

(1 − α) · µF + α · ri

NP
, 0.1

)

, if rand(0, 1) ≤ p0

pFi, otherwise

(17)

CRi =

{

Gaussian
(

(1 − α) · µCR + α · ri

NP
, 0.1

)

, if rand(0, 1) ≤ p0

pCRi, otherwise

(18)

where p0 is a parameter (0 ≤ p0 ≤ 1), and the balance factor
α increases over generations as

α = 0.9 − 0.9 · 10−5·g/Gmax
(19)

where g is the generation number and Gmax is the maximum
number of generation. In the early stage, the individuals start
without obvious difference, and the guidance of population
experience helps accelerate convergence. Later, the differ-
ence of evolution ability among individuals appears. Different
parameter requirements in different individuals also emerge.
Thus, the heuristic information (i.e., the ri) plays a dominant
role and allows the algorithm to jump out of the popula-
tion experience and also adaptively for each individual. Note
that the parameter control in JADE [13] is a special case
of HHP, where α = 0 and p0 = 1. JADE uses only one
distribution constructed by population experience to gener-
ate parameters for all individuals. In contrast, HHDE further
introduces individual’s own heuristic information and creates
different distributions for different individuals. The popula-
tion’s experience is therefore effectively utilized to adapt the
individuals.

The last note of (17) and (18) is that the µF and µCR are
calculated based on the successful parameters of the popu-
lation in the last generation. The successful parameters are
stored in the set SF and SCR, and they are used for calculating
µF and µCR as (20) and (21), respectively. If the SF and SCR

are empty, the µF and µCR remain unchanged. To consider the
contribution of different parameters, the fitness improvement
is also introduced as a weight as (22) in the calculation of µF

and µCR

µF = (1 − C) · µF + C ·

∑

Fi∈SF
wiF

2
i

∑

Fi∈SF
wiFi

(20)

µCR = (1 − C) · µCR + C ·
∑

CRi∈SCR

wiCRi (21)

wi =
�fi

∑

Fk∈SF
�fk

(22)
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Fig. 1. Flowchart of HHDE.

where C is set as 0.1, µF and µCR are initialized as 0.5, and
�fi represents the fitness improvement of individual i.

C. Complete Procedure of HHDE

Combining the HHM and HHP with DE, the HHDE is
presented with the flowchart in Fig. 1. The complete procedure
is described as follow.

Step 1 (Initialization): Set the parameters population size
Np, and maximum generation number Gmax. Randomly ini-
tialize the population. Set the generation g = 1.

Step 2 (Mutation): For each individual, calculate the his-
torical SR and heuristic value of each strategy, and select
a strategy according to HHM as (15). Update the scale factor
F of each individual according to HHP as (17). Then gen-
erate mutant individuals by mutation operation. Handle the
corresponding components if the mutant individual violates
the boundary constraints.

Step 3 (Crossover): For each individual, a trial one is gen-
erated by adopting binomial crossover operation on the parent
and mutant. The CR values of each individual are generated
by HHP as (18).

Step 4 (Selection): Select a better one between the parent
and the trial individual to enter the next iteration. Record the
successful parameters and update the values of µF and µCR

defined in (20) and (21).
Step 5 (Termination Detection): When the maximum num-

ber of generations is reached, the algorithm terminates.
Otherwise, set g = g + 1 and return to step 2 for the next
generation.

TABLE I
COMPARISON ALGORITHMS

IV. EXPERIMENTS AND COMPARISONS

In this section, experiments are carried out to evaluate
the HHDE performance. We employ the widely used bench-
mark suite in CEC 2014 competition [29]. These minimization
optimization problems own different characteristics. F1–F3
are nonseparable unimodal functions, F4–F16 are simple
multimodal functions, F17–F22 are hybrid functions in which
different subcomponents of the variables have different prop-
erties, and F23–F30 are composition functions which merge
the properties of the subfunctions.

The performance of the algorithm is evaluated by the fit-
ness error value between the obtained best solution and the
optimum. The results are reported based on 30 independent
runs. The Wilcoxon signed rank test with a significance level
of 5% is also performed to obtain a meaningful statisti-
cal comparison [42]. Three symbols “+, −, =” indicate that
HHDE displays significantly better, worse than, or equal to
the competitor, respectively. Due to space limitation, only the
statistical results are presented in this paper, while the detailed
results are presented in the supplementary file.

The dimensions of the problems are 10, 30, and 50, and
hence the corresponding population sizes for HHDE are set
increasingly to 50, 75, and 100, respectively. In this paper,
the fixed parameters are set as q0 = 0.2, p0 = 0.7, ε = 0.4,
and C = 0.1 and are also investigated in this section. To be
fair and reliable, the compared algorithms adopt the parameter
configurations in their original papers. The maximum function
evaluations (FEs) is set as D × 10 000 (D is the dimension of
the problem).

A. Comparison With State-of-the-Art DE Algorithms

In this section, we compare the proposed HHDE with eight
state-of-the-art DE variants in Table I. These algorithms adopt
different strategy and parameter selection mechanisms and are
commonly used for comparison.

The detailed results of these DE variants on 10-D, 30-D, and
50-D problems are reported in Table S.I–S.III, in the supple-
mentary material. The comparisons are summarized in Table II



LIU et al.: HISTORICAL AND HEURISTIC-BASED ADAPTIVE DE 2629

TABLE II
COMPARISON RESULTS OF HHDE WITH STATE-OF-THE-ART

DE VARIANTS ON CEC 2014

Fig. 2. Number of best cases obtained by each algorithm on 10-D, 30-D,
and 50-D problems in the comparison with state-of-the-art DE algorithms.

and the number of best cases obtained by each algorithm is
depicted in Fig. 2. It can be observed that on 10-D prob-
lems, HHDE performs the best for 17 out of the 30 functions,
obtaining significantly better solutions than jDE, SaDE, JADE,
CoDE, EPSDE, SHADE, DPS_DE, and IDE on 20, 21, 19,
10, 17, 12, 16, and 15 cases, while significantly worse results
on only 3, 1, 1, 7, 3, 2, 4, and 2 cases, respectively. HHDE
performs the best among all the competitors. On the 30-D and
50-D problems, the superiority of HHDE to the other variants
is more significant. The proposed algorithm performs the best
on 18 and 15 cases for 30-D and 50-D problems, respectively,
while these numbers for other competitors are smaller than
five functions. Moreover, the number of significantly better
results is much larger than that of significantly worse results,
when comparing HHDE with other variants. For convenience
of illustration, we plot the curves of the convergence of HHDE
and DE variants on 30-D problems F5, F6, F17, F22, F29, and
F30 in Fig. S.1, in the supplementary material. The curves
suggest that the HHDE converges faster compared with other
algorithms.

To further test the performance of HHDE, we compare
HHDE with four recent algorithms with multiple strategies and
parameter adaptation control, CSM-JADE [40], SaJADE [22],
MPEDE [21], and JADE_sort [25], on 30-D problems. Among
them, CSM-JADE ensembles multiple strategies, SaJADE uses
historical information for strategy adaptation, MPEDE auto-
matically adjusts the computation assignment for different
strategies, and JADE_sort uses population historical informa-
tion and individual heuristic information in a stepwise manner
for parameter adaptation. The detailed results are presented in
Table S.IV, in the supplementary material. From Table S.IV,
in the supplementary material, we can see that HHDE obtains
the best values on 13 functions, which is much larger than the
number of best cases that the other four algorithms can obtain.
That is, CSM-JADE, SaJADE, MPEDE, and JADE_sort can

achieve the best values on only 2, 7, 4, and 8 functions, respec-
tively. According to the significance test, HHDE performs
better than CSM-JADE, SaJADE, MPEDE, and JADE_sort
on 23, 19, 15, and 17 cases, while worse on only 7, 6, 6,
and 9 cases, respectively. Thus, HHDE generally outperforms
the compared algorithms.

B. Comparison With Top Methods in CEC Competition

Top methods in CEC 2014 competition described in Table I
are compared with HHDE in this section. The codes are down-
loaded from http://www.ntu.edu.sg/home/epnsugan/. The win-
ner, L-SHADE [43], is an improved version of SHADE [14]
with linear population size reduction. UMOEAs is a united
multioperation algorithm using genetic algorithm, DE, and
evolution strategy [44]. MVMO-SH evolves each particle
according to its own search experience and implements
mutation by mapping function [45]. The detailed results are
reported in Table S.V, in the supplementary material, where
the best and second best results of each function are marked
in boldface and italic, respectively. The results show that L-
SHADE and HHDE can obtain the best or second best results
on not less than 20 out of 30 functions, while UMOEAs and
MVMO-SH can only obtain on 12 and 7 functions, respec-
tively. Therefore, HHDE and L-SHADE outperform UMOEAs
and MVMO-SH. Specially, on unimodal functions, UMOEAs
performs the best and HHDE performs well on F2 and F3
except F1. On simple multimodal functions, L-SHADE per-
forms the best on seven functions while HHDE performs the
best on three functions. It is interesting to observe that the best
results obtained by HHDE on these three functions are all the
global optima (i.e., 0) of F6, F7, and F8. More significantly,
only HHDE can find the global optima on F6 and F8, while all
the other three algorithms fail. On hybrid functions, L-SHADE
gets the best values except F19. HHDE achieves the best value
on F19 and slightly worse results on other functions. However,
HHDE shows comparable performance with L-SHADE on
composition functions and even outperforms L-SHADE on
the very complex composition functions F28, F29, and F30.
Therefore, HHDE presents competitive performance with L-
SHADE, UMOEAs, and MVMO-SH, even though they may
have different advantages on different problems.

As an improved version of L-SHADE with ensemble sinu-
soidal parameter adaptation (EpSin), LSHADE-EpSin [46],
takes the joint-winner in the CEC 2016 competition. Except
parameter control, LSHADE-EpSin also integrates with lin-
ear population size reduction and a local search. To further
test the performance of the strategy and parameter con-
trol mechanisms, we compare LHHDE with L-SHADE and
LSHADE-EpSin, where LHHDE is a variant of HHDE embed-
ded the linear population size reduction and local search in
LSHADE-EpSin. Herein, we do not directly compare HHDE
with LSHADE-EpSin, so as to avoid the influences of the
population size setting and local search. The detailed results
are reported in Table S.VI, in the supplementary material. We
can see that on the first 16 unimodal and simple multimodal
functions, LSHADE-EpSin and L-SHADE performs better
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TABLE III
COMPARISON RESULTS OF STATISTICALLY SIGNIFICANT DIFFERENCES OF HHDE WITH ITS VARIANTS ON 30-D CEC 2014 BENCHMARK SET

than LHHDE. However, on the last 14 hybrid and composi-
tion functions, LHHDE shows competitive performance with
LSHADE-EpSin and L-SHADE. Both LHHDE and LSHADE-
EpSin obtain the best or second best results on 11 out of
these 14 functions while L-SHADE gets on only five func-
tions. Moreover, according to the significance test, LHHDE
performs better than L-SHADE and LSHADE-EpSin on 8 and
2 out of these complex functions, while worse on only 1 and
2 functions, respectively.

C. Evaluation on Different Components of HHDE

The mutation strategy selection and parameter setting are
two important components of HHDE. In this section, we iden-
tify the benefit of the two components by comparing the
performance of HHDE with its variants. The variants are
named as noa-b (noa is “noHIM” or “noHEM,” and b is “P” or
“M”), where P and M mean variants for parameter or mutation
strategy selection, while noHIM and noHEM mean that there
is no heuristic information mechanism or historical experience
mechanism in the selection of b, respectively.

Due to space limit, the detailed results are reported in
Table S.VII, in the supplementary material and the statistical
significance results are summarized in Table III.

1) Effect of Parameter Setting HHP: We consider two vari-
ants of HHDE, i.e., noHIM-P and noHEM-P to denote the
HHDE variants which generate the parameters only accord-
ing to the HEM (set the value α = 0) learning from historical
experience or the HIM (set the value p0 = 1.0 and α = 1) with
heuristic information HHP.

From Table S.VII, in the supplementary material and
Table III, we can see that HHDE yields significantly better
results on 21 and 17 functions than noHIM-P and noHEM-P,
respectively, which are much larger than the number of signifi-
cantly worse results (three functions). The convergence curves
on F2, F5, F17, and F30 are plotted in Fig. S.2, in the supple-
mentary material. We can see that noHIM-P always converges
faster than noHEM-P. It is interesting to find that noHIM-
P always performs well on simple unimodal and multimodal
functions (F1 to F16), e.g., significantly outperforms HHDE
on unimodal F1, and multimodal F10 and F11. The noHEM-
P always performs well on complex hybrid and composition
functions (F17 to F30), e.g., significantly outperforms HHDE
on hybrid F19 and composition F23 and F25. This phenomenon
may be due to that HEM implies the characteristic of the
problem and is suitable for simple functions which need cer-
tain parameters for the whole population. However, complex
problems F17 to F30 have different properties in different sub-
components. The individuals in different states require quite

different parameters for the evolution of different subcom-
ponents. Exactly, the heuristic information helps adaptively
match the individual’s state. Overall, HHDE outperforms both
noHIM-P and noHEM-P on the four kinds of problems, which
verifies the benefit of the combination of the learning of the
success history (i.e., HEM) and current state of each individual
(e.g., HIM).

2) Effect of Mutation Strategy Selection HHM: To verify
the effect of the HHM strategy, we denote the HHDE variants
without HIM design (ηij = 1) in HHM, without HEM learning
(τj = 1) in HHM, and without HHM strategy (ηij = 1, τj =

1) as noHIM-M, noHEM-M, and noHHM, respectively.
From Table III, HHDE performs significantly better on 7,

13, and 23 cases but only significantly worse on 2, 3, and
3 cases than noHEM-M, noHIM-M, and noHHM, respec-
tively. The noHHM performs the worst, which shows that the
proposed HHM mutation strategy selection plays a very sig-
nificant role in HHDE. For the unimodal functions F1–F3,
noHIM-M, and noHEM-M obtain results without significant
difference between HHDE, while noHHM obtains significantly
worse results. For the multimodal functions F4–F16, it is
clear that HHDE outperforms the other variants with signif-
icant difference in 4, 5, and 11 cases, respectively. HHDE
achieves similar performance to noHEM-M and noHIM-M in
most cases. On the hybrid functions F17–F22, HHDE performs
significantly better than noHEM-M, noHIM-M, and noHHM
on 2, 3, and 5 functions, respectively. On the composition
functions F23–F30, these figures are 1, 5, and 4, respectively.
Overall, noHEM-M performs better in two cases on the com-
plex problem F17–F30 but none on simple functions, while the
noHIM-M gets better results on two simple multimodal func-
tions. It can be seen that the heuristic information is crucial
for solving the hybrid and composition problems. It may be
the reason that the heuristic information makes the population
evolve in a more directional and ordered way and maintains
the population diversity. The historical experience and heuris-
tic information in HHM strategy are both essential to improve
the performance of HHDE.

3) Effect of Heuristic Information Design in HHM: For
a further study of HHM, the variants with different heuris-
tic information design are performed for comparison. To
abbreviate the name of variants, we denote the variants as
HHDE-n1n2n3 (n1n2n3 are a permutation of number 1, 2, 3),
which means that the individuals in state S prefer mutation
strategy n1 and its corresponding heuristic information is set
as 0.5 for n1 but 0.25 for n2 and n3; the individuals in states
M and I set the heuristic information as 0.5 for mutation strat-
egy n2 and n3, respectively, and 0.25 for the other strategies.
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The five variants are termed as: 1) HHDE-231; 2) HHDE-213;
3) HHDE-321; 4) HHDE-312; and 5) HHDE-132.

Table III shows that the design of the heuristic informa-
tion in HHDE does make the search more effective. HHDE
performs significantly better than HHDE-231, HHDE-213,
HHDE-321, HHDE-312, and HHDE-132 on 12, 7, 12, 10, and
7 functions while worse on only 1, 1, 2, 3, 2 functions, respec-
tively. On the unimodal functions, all the algorithms perform
similarly. However, HHDE performs significantly better than
the variants on simple multimodal, hybrid, and composition
functions. This should be the reason that the design of heuris-
tic information “123” can increase the population diversity.
The current-to-pbest/1 and rand/1 learn from different “bet-
ter” individuals in the population; so the adoption of these
two strategies in states M and I drive the whole population
forwards to avoid big difference between superior and inferior
individuals. As illustrated in Fig. S.2, in the supplementary
material, different heuristic information design methods have
different convergence features on different kinds of problems.
HHDE-213 performs better than HHDE-312 on F5 and F30
but worse on F17. HHDE-321 yields the worst solutions on
F5 and F30 while HHDE-231 performs the worst on F17. It
can be observed that HHDE-n1n22 and HHDE-n1n23 vari-
ants often achieve better solutions than HHDE-n1n21 on most
cases, which shows that the adoption of strategy with good
convergence for inferior individuals is benefit to the evolution
of HHDE.

D. Discussion on HHDE

In this section, we discuss the evolution behavior of the
HHDE. We take four 30-D functions from four types of prob-
lems as examples: 1) a unimodal function F2; 2) a multimodal
function F5; 3) a hybrid function F17; and 4) a composition
function F30. It should be noted that the curves are plotted
according to the same run that is randomly selected from
the 30 runs unless otherwise specified. We do not use error
curves based on 30 runs in order to present an entire evolution
behavior of HHDE with internal logic, since curves of 30 runs
are messy.

1) Evolution of µF and µCR in HHDE: For each individ-
ual, the HHP setting assigns parameters for each individual by
“shifting” the historical successful parameters to adapt to the
current state of the individual, such that each individual tends
to be assigned parameters matching the problem as well as the
state of itself. To observe the changing trends of the suitable
parameters, the curves of µF and µCR defined as (20) and (21)
in HHDE, JADE, and IDE are plotted in Fig. 3. In Fig. 3(a) for
F2, µF and µCR of JADE kept constant after obvious initial
changes due to the stagnation of the whole population, and
IDE was almost constant after 150 000 FEs while the value
of HHDE moved slowly toward the increasing direction after
the early drastic change. Similar situation can be observed on
F5. The CR value of JADE decreased to 0.2 and maintained
steady later; the F and CR values of IDE appeared a similar
changing trend that they both decreased early but increased
in the later stage; while µF and µCR of HHDE waved in the
decreasing direction to small values. For hybrid function F17,

(a) (b)

(c) (d)

Fig. 3. Evolutions of µF and µCR in HHDE, JADE, and IDE in the
optimization. (a) F2, (b) F5, (c) F17, and (d) F30 (D = 30).

µF , and µCR of HHDE evolved to different values for dif-
ferent subcomponents from range [0.5, 0.9] to [0.1, 0.3] and
stayed in range [0.3, 0.7] at last. For F30 composed by three
hybrid functions, the µF and µCR of HHDE and IDE were
in a similar changing trend, which was consistent with their
nonsignificantly difference results.

For simple problems F2 and F5, the suitable parameters
increase or decrease in one direction. Differently, on complex
problems F17 and F30, parameters require various changing
directions during the evolution process. The historical expe-
rience indicates the possible successful parameter direction
while the introduction of individual characteristic increases
the diversity of the parameters. The combination of these two
learning mechanisms makes the HHDE able to jump out of
the historical experience when it is not suitable for the current
evolution stage, and converge to better solutions faster.

2) Parameter and Population Diversity in HHDE: The
diversity is defined as the standard deviations of the ele-
ments in the population. The diversity of parameters (DP),
individuals (DI), and fitness (DF) are calculated as
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The curves of DP, DI, and DF are plotted in Fig. 4. It can
be observed that the DP value increases as evolution process
promotes because heuristic information contributes more to the
parameter setting in the later stages. The DI value decreased
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(a) (b)

(c) (d)

Fig. 4. Curves of the DP, DI, DF in HHDE on four 30-D problems. (a) F2.
(b) F5. (c) F17. (d) F30.

(a) (b)

(c) (d)

Fig. 5. Self-adaptation behavior of mutation strategy in HHDE in the
optimization of (a) F2, (b) F5, (c) F17, and (d) F30 (D = 30).

in early stage but reached stable value in the late stage on F5,
F17, and F30 except for F2 due to its convergence to optimal
solution on F2 (Fig. S.1, in the supplementary material). For
F5, the DF increased along with the evolution. For F17, the DF
decreased before 60 000 FEs but increased in the middle stages
and decreased at last. In contrast, the DF dropped sharply
early but reduced slowly later to about 1.0 on F30, which
was consistent with the variety of DI. This phenomenon is
mainly caused by the effect of HHM strategy. The heuristic
information considers the population distribution and current
state of individuals, resulting in the diversity of the population.
More discussion will be presented in the next section.

3) Self-Adaptation Behavior of Mutation Strategy in

HHDE: To investigate the self-adaptation characteristic of
mutation strategies, we plot their relative historical SR curves
[τj defined in (11)] in Fig. 5. In Fig. 5(a) of F2, the “current-
to-pbest” scheme occupied more proportion in the early stage
because of its rapid convergence for unimodal functions while

(a) (b)

(c) (d)

Fig. 6. SR of individuals in different states S, M, and I in HHDE on four
30-D problems. (a) F2. (b) F5. (c) F17. (d) F30.

the τ value of strategy “rand/1” is smaller than 0.33 because
of its bad performance. On the contrary, for F5, the strategy
rand/1 demonstrated a good performance at the beginning so
as to achieve a high probability in 60 000 FEs but decreased
under 0.33 in the later stage. After 60 000 FEs, the proportion
of strategy “current-to-rand” slightly increased and occupied
a higher probability because it found good solutions. For F17,
the strategies current-to-pbest and current-to-rand performed
better at the early stage of 60 000 FEs, and the current-
to-rand represented a high proportion after 60 000 FEs. For
F30, the strategy current-to-pbest occupied high proportion
while the relative value of strategies current-to-rand and rand/1
were smaller than 0.33 at the beginning 90 000 FEs. After
90 000 FEs, the strategy current-to-rand occupied a higher pro-
portion. The probability of different strategies is self-adaptive
in different evolutionary stages for different problems.

The heuristic information redistributes the selection proba-
bility of different strategies for individuals in different states.
To further observe the effect of the heuristic information, we
plot the SR curves of individuals in states S, M, and I in Fig. 6.
Note that, to simplify the description, we employ the state
name to refer to the individuals in this state in the following.
In Fig. 6(a) for F2, each state had a similar SR, resulting in the
advance of the entire population. The high SR value of state
M in the early stage corresponds to the highest proportion of
strategy current-to-pbest that is preferred by the individuals in
state M. For F5 in Fig. 6(b), the SR of states M and I decreased
to nearly zero from 0.42 and 0.66 in 6000 FEs, respectively,
and remained as nearly zero after 30 000 FEs. The SR value of
state S was small but large than zero in some stages responding
to the highest proportion of strategy current-to-rand. The supe-
rior solutions improved but the inferior solutions almost stayed
unchanged, so the population fitness diversity increased with
the iteration continues as shown in Fig. 4(b). For hybrid func-
tion F17, the SR of each state decreased to less than 0.1 after
30 000 FEs. The SR values of states M and I were larger than
S in the 60 000 FEs due to the high proportion of strategies
“current-to-pbest/1” and “rand/1,” so that the fitness diversity
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(a) (b)

(c) (d)

Fig. 7. Influence of the parameters on HHDE. (a) C. (b) p0. (c) ε. (d) q0.

value decreased as shown in Fig. 4(c). During about 60 000–
240 000 FEs, the SR of S was larger than that of M and I, and
agreed with the high proportion of strategy current-to-rand in
Fig. 5(c), resulting in the increasing of the fitness diversity in
Fig. 4(c). After 240 000 FEs, the SR of I and M was larger
than S, and thus the DF decreased. The situation of F30 is
similar. The SR values of M and I were larger than that of S

in 60 000 FEs but reversed in the later stage. The diversity of
fitness decreased as evolution proceeded. Even though the SR
values of individuals in each state are small and not equal, it
is the difference of the SR values that makes HHDE maintain
population distribution and the diversity.

4) Parameter Investigation of HHDE: HHDE introduces its
own parameters C, p0, ε, and q0. It is believed that these
parameters are problem insensitive. To investigate the effect
of parameters, the four parameters are set from 0 to 1.0 with
a step length 0.1. In each parameter configuration, only one
parameter is reset while all the other parameters values remain
the same as in Section IV-A. The results of HHDE on F2, F5,
F17, and F30 are plotted in Fig. 7.

The investigation begins with C. From Fig. 7(a), we can
see that HHDE with C = 0.1 performs well on four problems
while C = 0 leads to a worse solution because of µF and µCR

remain 0.5 and do not evolve with the process. For F5 and
F17, HHDE has a similar performance when C is in range of
[0.1, 1.0]. A smaller C performs better on F30. Therefore, we
set C as 0.1 in this paper.

The second parameter p0 controls the probability of regener-
ating a new parameter. In Fig. 7(b), p0 should not be too large,
e.g., up to 0.7. For F5 and F17, the obtained results increase
with the growth of p0 from 0.7 to 1.0 while decreases in range
of [0.1, 0.4] and achieves the best result at value of 0.7 for
F30. Moreover, the poor performance of HHDE when p0 is
0 indicates that the HHP plays an important role in HHDE.

The next parameter tested is ε. The ε controls the updating
ratio of newly SR of each mutation strategy in the historical
experience evaluation as shown in (11). In Fig. 7(c), HHDE
performs better when ε is in range of [0, 0.7] on F2, [0.2,
0.4] on F5, [0.3, 0.5] on F17, and [0, 0.4] on F30. A relatively

small value is suitable. This indicates that a slow change of
historical experience information τj is beneficial to mutation
strategy selection. This avoids the misguidance of occasional
success.

Finally, the parameter q0 balances the greedy selection or
probability selection of mutation strategy. The tendency of the
curves in Fig. 7(d) indicates that it is better to use some mod-
erate value around 0.2 for q0 for better performance. Although
the performance of HHDE decreases with the increase of q0
on F5, the obtained result is still good when q0 = 0.2. Thus,
we set q0 as 0.2 in this paper.

V. CONCLUSION

As mutation strategy and parameter selection are influen-
tial to improving the performance of DE, many variants have
been developed to adaptively update the mutation strategy and
parameters using either historical experience from the popula-
tion or heuristic information from the individuals. However,
using both historical experience and heuristic information
should provide a more effective improvement. This has moti-
vated our development of the HHDE, a historical and heuristic
adaptive DE algorithm. A mutation strategy is assigned to
each individual according to a probability model learning from
the population’s historical experience and heuristic informa-
tion related to the current state of the individual. The SRs
of the strategies in the proceeding evolution process offer
a guideline. The heuristic information redistributes the strategy
selection probability in the population, so as to match the indi-
vidual’s current state. For the parameters adaptation in HHDE,
the historical successful parameters and differences between
individuals are both used to set parameters for each individ-
ual. Through learning from past successes, good parameters
are propagated to the next generation. The introduction of the
current state of individuals shifts the population experience to
adapt to itself. In addition, it increases the DP in the whole
population and allows the parameters to “jump” out of the
past when the experience is not applicable. Through adjust-
ing strategy and setting parameters from two perspectives,
i.e., population experience at a macroscopic level (suitable
assignments for the population according to the problem char-
acteristic) and a current state of each individual at a micro
level (a preferred choice of individuals for the evolution of
the population), HHDE assigns suitable strategy and parame-
ters to each individual in different evolution stages and thus
promotes the evolution of population in a collaborative way.

The HHDE has been tested on the CEC 2014 benchmark
suite. Experimental results show that the HHDE algorithm
can evolve suitable strategies and parameter values during the
evolutionary process. It is seen that the proposed algorithm
achieves better performance compared with other classic and
adaptive DE algorithms. The HHDE also exhibits competi-
tive performance with top methods in CEC 2014 and CEC
2016 competition.
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