
HISTORICAL AND IMPACT ANALYSIS OF API

BREAKING CHANGES

JOSÉ LAERTE PIRES XAVIER JÚNIOR

HISTORICAL AND IMPACT ANALYSIS OF API

BREAKING CHANGES

Dissertação apresentada ao Programa de

Pós-Graduação em Ciência da Computação

do Instituto de Ciências Exatas da Univer-

sidade Federal de Minas Gerais como re-

quisito parcial para a obtenção do grau de

Mestre em Ciência da Computação.

Orientador: Marco Tulio de Oliveira Valente

Coorientador: André Cavalcante Hora

Belo Horizonte

Maio de 2017

JOSÉ LAERTE PIRES XAVIER JÚNIOR

HISTORICAL AND IMPACT ANALYSIS OF API

BREAKING CHANGES

Dissertation presented to the Graduate

Program in Computer Science of the Fede-

ral University of Minas Gerais in partial ful-

fillment of the requirements for the degree

of Master in Computer Science.

Advisor: Marco Tulio de Oliveira Valente

Co-Advisor: André Cavalcante Hora

Belo Horizonte

May 2017

© 2017, José Laerte Pires Xavier Júnior.

 Todos os direitos reservados

Ficha catalográfica elaborada pela Biblioteca do ICEx - UFMG

 Xavier Júnior, José Laerte Pires.

X3h Historical and impact analysis of API breaking changes

 / José Laerte Pires Xavier Júnior – Belo Horizonte, 2017.

 xxiv, 66 f.: il.; 29 cm.

 Dissertação (mestrado) - Universidade Federal de

 Minas Gerais – Departamento de Ciência da Computação.

 Orientador: Marco Túlio de Oliveira Valente

 Coorientador: André Cavalcanti Hora

 1. Computação – Teses. 2. Redes de computadores.

 3.Software – manutenção. I. Orientador. II. Coorientador.

 III. Título.

CDU 519.6*32(043)

To all those who inspired me to go further.

ix

Acknowledgments

Na vida, nenhuma conquista vale a pena se não for dividida com aqueles que deram

algo de si para sua realização. Por isso, agradeço a cada um dos familiares, amigos e

colegas que generosamente contribuíram nessa jornada. Agradeço, em especial:

A Deus, que planeja cuidadosamente cada um dos meus passos e me ensina, pelo

exemplo de sua mãe Maria, a confiar cada vez mais nos Seus propósitos.

Aos meus pais e ao meu irmão, que foram os suportes necessários nos momentos

de indecisão, as palavras de incentivo nas horas das batalhas e as vozes acolhedoras

nos momentos de saudade.

Aos meus avós e demais familiares, que sempre me inspiraram a ir além.

Aos amigos Derek e Jordana, que nunca permitiram que eu me perdesse de mim

mesmo, recordando sempre o valor da minha essência. Pelas boas risadas e infinitas

ligações nos momentos de descanso.

Aos amigos do EJC São Judas Tadeu e do Projeto Jovem Fanuel, que con-

tribuíram para que eu nunca deixasse de sentir o amor e o cuidado de Deus.

Aos colegas do ASERG, pelas boas risadas e momentos de crescimento intelectual.

Ao meu orientador Marco Túlio, pela acolhida, atenção e paciência em conduzir

este trabalho. Pelas revisões, sugestões e suporte durante todo esse ano.

Ao meu co-orientador André Hora, com quem sempre tive a abertura para pedir

ajuda, sugestões e conselhos. Pelo apoio também indispensável em todos os momentos.

Aos membros da banca, Kecia Ferreira e Mariza Bigonha, pela disponibilidade em

participar deste trabalho.

Ao DCC/UFMG e a CAPES, pelo suporte financeiro, logístico e profissional.

xi

“It is our choices, Harry, that show what we truly are, far more than our abilities.”

(J.K. Rowling)

xiii

Resumo

Mudança é uma constante em desenvolvimento de software. Assim como em qual-

quer sistema, bibliotecas também estão sujeitas a diversas mudanças, compelindo seus

clientes a atualizarem-se e, então, aproveitarem as melhorias providas por suas APIs.

Entretanto, algumas dessas mudanças não preservam compatibilidade, quebrando con-

tratos previamente estabelecidos. Este tipo de mudança é referenciado como breaking

change. Assim, clientes podem enfrentar erros de compilação ou mudanças comporta-

mentais ao atualizarem bibliotecas que possuem breaking changes. Diversas soluções

têm sido propostas a fim de mitigar o impacto dessas mudanças em aplicações clientes;

poucos estudos focam nas motivações reais que as ocasionam. Dessa forma, pouco

se sabe a respeito do tamanho real desse problema, dos seus possíveis efeitos, e das

razões específicas que motivam tais mudanças. Nesta dissertação, propõe-se a fer-

ramenta APIDiff, cujo objetivo é comparar duas versões de uma biblioteca Java e

identificar breaking e non-breaking changes entre elas. Essa ferramente é utilizada para

realização de dois estudos empíricos sobre breaking changes em APIs. No primeiro

estudo, objetiva-se analisar, quantitativamente, (i) a frequência dessas mudanças, (ii)

sua evolução ao longo do tempo, (iii) o impacto nos clientes, e (iv) as características de

bibliotecas com alta frequência de mudanças desse tipo. No segundo estudo, objetiva-se

entender, qualitativamente, (v) as razões que levam desenvolvedores a introduzirem es-

sas mudanças, e (vi) a consciência dos mesmos sobre os seus efeitos. Foram analisadas

317 bibliotecas Java, 9K versões e 260K clientes. Assim, observou-se que (i) 14.78%

das mudanças em API quebram compatibilidade, (ii) tal frequência cresce ao longo

dos seus ciclos de vida, (iii) 2.54% dos clientes são afetados, (iv) sistemas com alta

frequência de breaking changes são maiores, mais populares e mais ativos, (v) desen-

volvedores de APIs normalmente introduzem tais mudanças com objetivos específicos,

e (vi) a maioria deles são conscientes dos seus efeitos. Por fim, são providas sugestões

de ferramentas e estudos para auxiliar desenvolvedores de bibliotecas e seus clientes.

Palavras-chave: Compatibilidade, Evolução de software, Manutenção de software.

xv

Abstract

Change is a routine in software development. As any other system, libraries also

evolve over time. As a consequence, clients are compelled to update and, thus, benefit

from the available API improvements. However, some of these changes are backward

incompatible, breaking contracts previously established with client applications. As

a result, they may face compilation errors and behavioral changes when updating to

library versions enclosing breaking changes in their API elements (types, fields, and

methods). Several solutions have been proposed to mitigate the impact on clients; few

other studies focus on the real motivations driving these changes. However, we are still

unaware about the real size of this problem, the impact of these changes on clients, and

the specific reasons driving API developers to break such contracts. In this dissertation,

we propose an APIDiff tool, whose purpose is to compare two versions of a Java

library and identify breaking and non-breaking changes between them. Additionally,

we use this tool to perform two empirical studies on API breaking changes. In the first

study, our goal is to quantitatively assess (i) the frequency of breaking changes, (ii) their

behavior over time, (iii) the impact on clients, and (iv) the characteristics of libraries

with high frequency of breaking changes. In the second one, we aim to qualitatively

understand (v) the specific reasons why developers introduce breaking changes, and (vi)

their awareness about the risks associated to these changes. Our large-scale analysis on

317 real-world Java libraries, 9K releases, and 260K client applications shows that (i)

14.78% of the API changes break compatibility, (ii) their frequency increases over time,

(iii) 2.54% of API clients are impacted, (iv) systems with higher frequency of breaking

changes are larger, more popular, and more active, (v) library developers usually break

contracts with specific motivations, and (vi) most developers are aware of the risks of

breaking changes and, in some cases, adopt strategies to mitigate them. Therefore, we

provide insights for the development of tools and studies to support library and client

developers in their maintenance activities.

Palavras-chave: API breaking changes, Software evolution, Software maintenance.

xvii

List of Figures

1.1 Issue opened on hibernate/hibernate-orm library to restore compati-

bility. 3

2.1 API acting as interface for client applications [Montandon, 2013]. 9

3.1 APIDiff tool approach overview. 21

3.2 APIDiff tool output for Listings 3.1 and 3.2. 22

3.3 UML class diagram of our APIDiff tool. 22

3.4 Repositories distributions by releases, age, stars, and files. 24

3.5 diff approach to answer RQ1. 25

3.6 diff approach to answer RQ2. 26

3.7 Breaking changes distribution in top-25% and bottom-25% libraries. 29

3.8 Distribution of API changes for all elements, types, fields, and methods. (a)

Absolute number of all changes, (b) absolute number of breaking changes,

and (c) relative number of breaking changes. 30

3.9 Commit message in the library ManuelPeinado/FadingActionBar re-

porting the breaking changes observed. 31

3.10 Pull request message in the library neo4j/neo4j exemplifying the breaking

changes observed. 32

3.11 Distribution of API breaking changes per year. The distribution values are

the mean rate of changes in a year, considering the releases produced in this

year. 33

3.12 Breaking changes evolution for three libraries: googlemaps/android-

maps-utils, dropwizard/metrics and roboguice/roboguice. . . . 34

3.13 Impact of API breaking changes in client applications: (a) number of clients

of APIs with breaking changes, (b) number of clients impacted by each type

with a breaking change, and (c) relative number of clients impacted by each

type with a breaking change. 35

xix

4.1 Major contributor of junit-team/junit4. 44

4.2 Email sent to the major contributors of the studied libraries 45

4.3 Fragment of the breaking change list sent to oblac/jodd developer. . . . 45

xx

List of Tables

2.1 Top-10 most popular Java APIs. 11

3.1 Catalog of changes for types (classes, interfaces, and enums). 18

3.2 Catalog of changes for fields. 19

3.3 Catalog of changes for methods. 19

3.4 Metrics likely to impact breaking changes, divided in five dimensions. . . . 28

3.5 Example of Top and Bottom libraries ordered by number of breaking changes. 29

3.6 Number of API breaking and non-breaking changes. 30

3.7 Top-10 breaking changes with the highest impact on clients. 36

3.8 Metrics and their respective p-values and d on top and bottom libraries.

Bold means p-value < 0.05 (statistically significant different) and d > 0.147

(at least a small effect size). Direction: “↑” = top libraries have significantly

higher value on this metric. “↓” = bottom libraries have significantly higher

value on this metric. 37

3.9 Comparison between a top and bottom library, respectively: daimajia/An-

imationEasingFunctions and zeromq/jeromq. 38

4.1 Libraries with valid answers . 46

4.2 Reasons why developers break API contracts 47

xxi

Contents

Acknowledgments xi

Resumo xv

Abstract xvii

List of Figures xix

List of Tables xxi

1 Introduction 1

1.1 Proposed Tool and Studies . 4

1.2 Publications . 6

1.3 Outline of the Dissertation . 6

2 Background 9

2.1 Application Programming Interfaces . 9

2.2 Library Change and Compatibility . 11

2.2.1 Breaking Changes . 13

2.2.2 Non-breaking Changes . 13

2.2.3 Change Catalog . 14

2.3 Final Remarks . 15

3 Historical and Impact Analysis 17

3.1 Research Questions . 17

3.2 API Change Catalog . 18

3.3 APIDiff Tool . 20

3.3.1 Overview . 20

3.3.2 Architecture . 22

3.4 Study Design . 23

xxiii

3.4.1 Selecting Java Libraries . 23

3.4.2 Extracting API Breaking Changes (RQ1 and RQ2) 25

3.4.3 Measuring API Breaking Changes Impact (RQ3) 26

3.4.4 Comparing Libraries with High and Low Frequency of Breaking

Changes (RQ4) . 27

3.5 Results . 29

3.6 Summary and Findings . 39

3.7 Threats to Validity . 40

3.7.1 Construct Validity . 40

3.7.2 Internal Validity . 41

3.7.3 External Validity . 41

3.8 Final Remarks . 41

4 API Breaking Changes Motivations 43

4.1 Research Questions . 43

4.2 Study Design . 44

4.2.1 Selecting Surveyed Developers 44

4.2.2 Contacting Developers . 45

4.2.3 Filtering Responses . 46

4.2.4 Analyzing Data . 47

4.3 Results . 47

4.4 Summary and Findings . 51

4.5 Threats to Validity . 51

4.6 Final Remarks . 52

5 Related Work 53

5.1 Library Evolution . 53

5.2 Breaking Changes Impact . 55

5.3 Final Remarks . 57

6 Conclusion 59

6.1 Summary and Contributions . 59

6.2 Future Work . 60

Bibliography 63

xxiv

Chapter 1

Introduction

Software libraries promote the reuse of common functionalities by providing Appli-

cation Programming Interfaces (APIs) to client applications [Reddy, 2011; Robil-

lard et al., 2013]. In this context, APIs have become extremely popular (e.g., the

java.utils.ArrayList library has more than 140K clients1 [Dyer et al., 2013,

2015]), with a huge number of systems developed on the top of them [Tourwé and

Mens, 2003]. Such phenomenon may be explained by the benefits that APIs provide

to their clients [Konstantopoulos et al., 2009; Moser and Nierstrasz, 1996], such as:

• Increase of software quality by providing well-adopted and tested components;

• Reduction of development time and budget by avoiding the effort of re-

implementing source code already available;

• Increase of software reliability by providing constant updates to improve non-

functional requirements, such as safety and performance.

As any other system, libraries are usually changing. While evolving, they are

subject of a variety of modifications, such as addition, removal, or modification of their

API elements (types, fields, and methods) [Raemaekers et al., 2012]. In theory, these

changes should be backward compatible, preserving contracts with client applications.

However, previous studies indicate that this is not a common practice [Wu et al., 2010;

Robbes et al., 2012; Hora et al., 2015; Brito et al., 2016]. In this context, API changes

are classified into breaking changes and non-breaking changes [Dig and Johnson, 2006].

Breaking changes are those modifications that break backward compatibility with client

applications, possibly causing them to face compilation errors or behavioral changes

1According to JAVALI, a tool to measure popularity of Java libraries in Boa infrastructure, avail-

able at: http://java.labsoft.dcc.ufmg.br/javali

1

http://java.labsoft.dcc.ufmg.br/javali

2 Chapter 1. Introduction

after updating. On the other hand, non-breaking changes preserve compatibility and

do not cause negative effects when clients migrate between versions.

Listings 1.1 and 1.2 illustrate a real case of API breaking changes observed in

the version 5.2.0 of the hibernate/hibernate-orm library (all modifications are

highlighted in red). First, we observe that the type Query<R> changed its super-

type from org.hibernate.BasicQueryContract to CommonQueryContract

and, thus, updated the implemented contracts of their methods. Additionally, a pack-

age refactoring was also performed in this library version. As a consequence, the

methods of the type Query<R> had their return types updated to the new package

signatures. For example, the method setBoolean modified its return type from

org.hibernate.query.Query<R> to Query<R>, breaking a contract previously

established with its clients. Therefore, a major issue was open on the library’s bug

tracker, and the library released a fix version (5.2.1), restoring compatibility with

legacy code, as follows (see more details in Figure 1.1):

“The clients of the org.hibernate.Query can no longer use the API in “DSL

Style” as the builder methods no longer return the org.hibernate.Query contract,

but force updating to the new contract. We can restore the previous backwards

compatibility, which was lost during the refactoring work of version 5.2.0.”

1 public interface Query<R> extends TypedQuery<R>, org.hibernate.BasicQueryContract

{

2 default org.hibernate.query.Query<R> setBoolean(int position, boolean val) {

3 setParameter(position, val, determineProperBooleanType(position, val,

BooleanType.INSTANCE));

4 return (org.hibernate.query.Query) this;

5 }

6 }

Listing 1.1. Fragment of type org.hibernate.Query on its version 5.0

1 public interface Query<R> extends TypedQuery<R>, CommonQueryContract {

2 default Query<R> setBoolean(int position, boolean val) {

3 setParameter(position, val, determineProperBooleanType(position, val,

BooleanType.INSTANCE));

4 return this;

5 }

6 }

Listing 1.2. Fragment of type org.hibernate.Query on its version 5.2.0

There are several solutions proposed in the literature to mitigate the impact of

API breaking changes on client applications (e.g., [Henkel and Diwan, 2005; Kingsum

and Notkin, 1996; Meng et al., 2012; Hora et al., 2014; Hora and Valente, 2015]). For

3

Figure 1.1. Issue opened on hibernate/hibernate-orm library to restore compatibility.

example, by mining version history, some studies suggest how client applications should

be updated due to broken API elements (e.g., a public method removed from an old

library version). However, even though there are solutions to alleviate the impact of

library evolution, we are still unaware about the real number of clients affected by

API breaking changes, and unsure whether backward-incompatibility tends

to get better (or worse) over time . Additionally, few studies investigate the

real motivations driving such changes. For instance, Bogart et al. [2016] performed

a general-purpose case study with 28 developers to study how they plan, manage,

and negotiate breaking changes. However, they report developers general views and

conceptions on such changes, leaving a gap on the specific reasons that motivate

breaking changes in the wild . Therefore, there are still open questions, such as:

• To what extent are clients affected by backward-incompatibility?

• Is backward-incompatibility a problem only faced by newer (and possibly “unsta-

ble”) libraries or older (and “stable”) ones should also take special care?

• Why API developers, who are supposed to be careful about compatibility, break

API contracts?

• When developers break API contracts, are they aware of the risks to client ap-

plications?

In this dissertation, we aim to investigate these questions, advancing the knowl-

edge on API breaking changes. We provide insights for the development of tools as

4 Chapter 1. Introduction

well as studies to support library and client developers in their maintenance activities.

For that, we propose an API change catalog and implement a tool to compare versions

of Java libraries, assessing the cataloged changes. Additionally, we use this tool to per-

form two empirical studies in the context of 317 real-world Java libraries, 9K releases,

and 260K client applications. In the next section, we detail these studies, as well as

their main results and contributions.

1.1 Proposed Tool and Studies

In order to support our investigations on API breaking changes, we propose an API

change catalog based on the previous work of Dig and Johnson [2006]. Besides, we use

this proposed catalog to implement an APIDiff tool, whose purpose is to identify both

breaking and non-breaking changes between two versions of a Java library (Chapter 3).

We use this tool to perform two empirical studies with the purpose of assessing (i) the

frequency and the impact of API breaking changes, and (ii) the reasons why developers

introduce such changes in their libraries. In both studies, Java was chosen to be

investigated due to the popularity of the language and their libraries. In this section,

we describe each of these studies, as follows:

Historical and Impact Analysis. In our first study, we investigate a set of questions

regarding API breaking changes. Our goal is twofold: to measure the amount of

breaking changes on real-world libraries and its impact on clients at a large-scale level.

Therefore, we propose the following research questions to support this study:

• RQ1. What is the frequency of API breaking changes? In this research

question, we analyze the frequency of API breaking changes in the two latest

releases of popular Java libraries. We observe that 28.99% of all API changes

break backward compatibility. On the median, this percentage hits 14.78% of

changes per library.

• RQ2. How do API breaking changes evolve over time? In this research

question, we investigate the behavior of API breaking changes along libraries life

cycle by analyzing the frequency of such changes during their first five years. We

conclude that the percentage of breaking changes tends to increase over time by

a rate of 20% when comparing their first and fifth years.

• RQ3. What is the impact of API breaking changes in client applica-

tions? In this research question, we analyze the impact of API breaking changes

1.1. Proposed Tool and Studies 5

on client applications by estimating the number of possible clients of each modi-

fied API element. We observe that, on the median, only 2.54% of API clients are

potentially impacted by breaking changes.

• RQ4. What are the characteristics of libraries with high and low fre-

quency of breaking changes? In this research question, we analyze the charac-

teristics of libraries with high frequency of breaking changes. Finally, we conclude

that libraries with higher frequency of such changes are larger, more popular, and

more active.

In this first study, we analyze 317 real-world Java libraries, 9K releases, and 260K

client applications. Based on its results, we provide a set of lessons to better support

library and client developers in their maintenance tasks. Therefore, the contributions

of our historical and impact analysis are summarized as follows:

• We provide a large-scale study to better understand the extension and the impact

of API breaking changes;

• We provide lessons learned from our API analysis to support library/client de-

velopers in maintenance activities.

API Breaking Changes Motivations. Next, in our second study we perform a

qualitative investigation with library developers and real instances of API breaking

changes. Specifically, we aim to elicit from library developers a list of motivations

for API breaking changes, as well as verify their awareness on the impact on client

applications. To support this study, we investigate the following research questions:

• RQ5. Why do developers break API contracts? In this research ques-

tion, we analyze the reasons why developers introduce breaking changes in their

libraries. For this purpose, we survey the top contributors of these libraries.

We elicit a list of five main motivations, that are: Library Simplification,

Refactoring, Bug Fix, Dependency Changes, and Project Policy.

• RQ6. Are developers aware of the impact of breaking changes on client

applications? In this research question, we investigate whether API developers

are aware about the risks of breaking changes for client applications. We observe

that most of them are conscious of such risks, and, in some cases, they also adopt

strategies to alleviate them (e.g., deprecation annotations).

6 Chapter 1. Introduction

To answer these questions, we conducted a survey with the developers of popular

Java libraries with the higher frequency of breaking changes observed in our first anal-

ysis. Based on its results, we suggest a future study to strengthen our current findings

and also to support the development of tools to better assess the risks and impacts of

API breaking changes. Thus, the contributions of this second study are summarized

as follows:

• We provide a qualitative study to elicit the motivations of API breaking changes

and to understand developers concerns with their impact on client applications.

• We prospect a study based on firehouse interviews [Murphy-Hill et al., 2015] to

strengthen our current findings.

1.2 Publications

This dissertation generated the following publications and therefore contains material

from them:

• Xavier, L., Brito, A., Hora, A., and Valente, M. T. (2017). Historical and Im-

pact Analysis of API Breaking Changes: A Large Scale Study. In 24th Interna-

tional Conference on Software Analysis, Evolution and Reengineering (SANER),

p. 138–147. (Qualis A2)

• Xavier, L., Hora, A., and Valente, M. T. (2017). Why do We Break APIs?

First Answers from Developers. In 24th International Conference on Software

Analysis, Evolution and Reengineering (SANER), ERA Track, p. 392–396.

• Xavier, L., Brito, A., Hora, A., and Valente, M. T. (2016). Um Estudo em

Larga Escala sobre Estabilidade de APIs. In 4th Brazilian Workshop on Software

Visualization, Evolution and Maintenance (VEM), p. 1–8.

1.3 Outline of the Dissertation

The remainder of this dissertation is organized as follows:

• Chapter 2 covers the main subjects related to this dissertation. We begin by

explaining the concepts of Application Programming Interfaces (APIs). Next,

we discuss library changes and backward compatibility. Finally, we conclude by

1.3. Outline of the Dissertation 7

presenting the API change catalog proposed by Dig and Johnson [2006] that

motivated our own catalog.

• Chapter 3 describes in details our first empirical study: a quantitative historical

and impact analysis of API breaking changes. For that, we begin by detailing our

API change change and the APIDiff tool implemented to support our analysis.

Next, we present the methodology of this study, followed by the results obtained

for each proposed research question. Then we conclude the chapter by discussing

our findings and presenting threats to validity.

• Chapter 4 details our second empirical study: a survey with the major con-

tributors of libraries with highest frequency of breaking changes found in the

study described in Chapter 3. We begin by detailing the design of this study.

Next, we provide answers to each research question, summarizing our results and

presenting threats to validity in the conclusion.

• Chapter 5 discusses the state of the art by presenting related work in the sub-

jects of library evolution and breaking changes impact. We separate this chapter

into these two subjects, highlighting the limitations of such works and discussing

the contributions of our empirical studies.

• Chapter 6 presents final considerations, including a summary of our contribu-

tions. Additionally, we provide a discussion on the prospected future work.

Chapter 2

Background

In this chapter, we discuss background subjects required to understand the work car-

ried out in this dissertation. We start by detailing API concepts (Section 2.1), and

their increasing usage nowadays. Next, we discuss library change and compatibility

(Section 2.2), detailing the notion of breaking change and non-breaking change, and

presenting an API change catalog previously proposed in the literature. Finally, we

conclude the chapter by presenting final remarks in Section 2.3.

2.1 Application Programming Interfaces

Libraries provide interfaces to software components created to be reused by multiple

client applications: the Application Programming Interfaces (APIs) [Reddy, 2011; Ro-

billard et al., 2013], which are illustrated in Figure 2.1. They expose services meant

to be stable by using visibility modifiers. In Java, for instance, APIs use public and

protected modifiers. As a result, API elements (i.e., types, fields, and methods)

provide contracts on which clients (either external or internal) rely, accessing services

and avoiding re-work.

Figure 2.1. API acting as interface for client applications [Montandon, 2013].

9

10 Chapter 2. Background

As an example, Listing 2.1 shows a fragment of a widely used Java API,

ArrayList. The class belongs to the java.utils package and provides services

for a data structure known as list. In this example, the methods size, contains,

get, and add have a public modifier, being available for clients as API elements.

By contrast, the method rangeCheck and the fields elementData and size are

private, thus they are not API elements. Finally, the class ArrayList itself is

considered an API element once that it is public for external clients.

1 public class ArrayList<E> extends AbstractList<E> implements List<E>,

RandomAccess, Cloneable, Serializable {

2

3 private transient Object[] elementData;

4 private int size;

5

6 public int size() {

7 return size;

8 }

9 public boolean isEmpty() {

10 return size == 0;

11 }

12 public boolean contains(Object o) {

13 return indexOf(o) >= 0;

14 }

15 public E get(int index) {

16 rangeCheck(index);

17 return elementData(index);

18 }

19 public boolean add(E e) {

20 ensureCapacity(size + 1);

21 elementData[size++] = e;

22 return true;

23 }

24 private void rangeCheck(int index) {

25 if (index > size || index < 0)

26 throw new IndexOutOfBoundsException(outOfBoundsMsg(index));

27 }

28 }

Listing 2.1. Example of API elements in class java.util.ArrayList

In this context, the use of APIs in software development is increasing significantly

due to the advantages they bring in terms of quality and productivity [Konstantopoulos

et al., 2009; Moser and Nierstrasz, 1996]. By reusing API services, clients may benefit

from the quality of components developed by experts and tested by a number of other

applications. They may also save time and budget by avoiding the effort of developing

services already available. Furthermore, applications may take advantage from the

constant updates, when non-functional requirements are improved, such as safety and

performance.

2.2. Library Change and Compatibility 11

There are several examples of successful APIs, such as Java API, Android

API, and .NET Framework Class Library. Some of them are used by thousands of

clients worldwide. For example, Table 2.1 shows the top-10 most used Java APIs,

with their corresponding number of clients, in the context of a large-scale software

dataset1 [Dyer et al., 2013, 2015]. In this case, the number of clients ranges from 60K

(java.util.Iterator) to 143K (java.util.ArrayList).

Table 2.1. Top-10 most popular Java APIs.

Position Name
Number of

Clients

1 java.util.ArrayList 143,454
2 java.io.IOException 136,058
3 java.util.List 134,053
4 java.util.HashMap 94,220
5 java.io.File 88,703
6 java.util.Map 87,417
7 java.io.InputStream 68,000
8 java.util.Date 64,460
9 android.os.Bundle 63,434
10 java.util.Iterator 60,172

2.2 Library Change and Compatibility

As any other software system, during their life cycle, libraries are subjected to evo-

lutionary changes, such as addition, removal, or modification of their API elements.

Changes are usually necessary to fix critical bugs, improve performance, decrease tech-

nical debt, and release new features [Bogart et al., 2016]. Ideally, they should keep

backward compatibility, i.e., do not break contracts with client applications.

However, breaking contracts is a common practice: previous studies indicate

that APIs are usually backward incompatible [Wu et al., 2010; Robbes et al., 2012;

Hora et al., 2015; Brito et al., 2016]. Thus, migrating between versions requires extra

effort, once that clients will be forced to update their code and accommodate the

novelties. Actually, in most cases, clients remain hesitant to evolve and tend to delay

API migration, keeping obsolete, and sometimes, faulty code [McDonnell et al., 2013].

In this context, API changes are classified into breaking changes and non-breaking

changes [Dig and Johnson, 2006], as follows:

1According to JAVALI, a tool to measure popularity of Java libraries in Boa, available at: http:

//java.labsoft.dcc.ufmg.br/javali

http://java.labsoft.dcc.ufmg.br/javali
http://java.labsoft.dcc.ufmg.br/javali

12 Chapter 2. Background

• Breaking changes. Changes that break backward compatibility through removal

or modification of API elements. As a consequence, clients may face compilation

errors or behavioral changes after updating.

• Non-breaking changes. Changes that preserve compatibility and usually involve

addition of new functionalities to the library. Thus, migrating between API

versions including only non-breaking changes does not cause side effects on clients.

Listing 2.2 shows a hypothetical evolution of the ArrayList class previously

presented in Listing 2.1. In this example, breaking changes are highlighted in red,

while non-breaking changes are in green. With the purpose of broadening the discussion

about API changes, we separately analyze the example in Sections 2.2.1 and 2.2.2.

1 public class ArrayList<E> extends AbstractList<E> implements List<E>,

RandomAccess, Cloneable, Serializable {

2

3 private transient Object[] elementData;

4 private int size;

5

6 public int size() {

7 return size;

8 }

9 public boolean isEmpty() {

10 return size == 1;

11 }

12 public int contains(Object o) {

13 if indexOf(o) >= 0

14 return 1;

15 return 0;

16 }

17 public E get(int index) {

18 rangeCheck(index);

19 return elementData(index);

20 }

21 public boolean add(E e) {

22 ensureCapacity(size + 1);

23 elementData[size++] = e;

24 return true;

25 }

26 public void rangeCheck(int index) {

27 if (index > size || index < 0)

28 throw new IndexOutOfBoundsException(outOfBoundsMsg(index));

29 }

30 public E getLast(){

31 return get(size - 1);

32 }

33 }

Listing 2.2. Evolution of the ArrayList class presented in Listing 2.1

2.2. Library Change and Compatibility 13

2.2.1 Breaking Changes

By definition, breaking changes are all API modifications that break backward compat-

ibility, changing or modifying services previously available for clients. In Listing 2.2, we

observe two of them. The first one is the modification of the signature of the method

contains (Lines 12–16). In this case, the return type was modified from boolean

to int. Therefore, clients of this method will face compilation errors when updating

the version of this API; then, they will be forced to re-work on their code, handling

with the modification of the return type.

Most of the breaking changes are detected in compilation or linking time (i.e., af-

ter updating and re-compiling, the change will cause an error). However, some changes

are harder to identify and their possible effects may be more disturbing to clients,

once they may cause the application to behave differently at runtime. Therefore, the

functional behavior (i.e., the output for a set of inputs) will change and, unless the

client application has a good set of tests, the effects may be felt by its end-users. As

an example, the second breaking change observed in Listing 2.2 is the modification of

a conditional expression of the method isEmpty (Line 10). In this case, the value

of the field size is compared to be equal to 1, rather than 0 in the previous version.

After migrating, clients of this method will not face any compilation error to build

their applications; instead, due to the modification of its behavior, some bugs may

arise afterwards, compromising both system quality and reliability. However, in this

dissertation we do not focus on this kind of breaking change (i.e., we focus only on

those that cause compilation errors after clients migration).

2.2.2 Non-breaking Changes

Non-breaking changes are defined to be all API modifications whose purpose is to add

new services for clients, without compromising those previously available. Listing 2.2

presents two examples of non-breaking changes. The first one is the addition of the

method getLast (Lines 30–32). As a new service added to the API, after migrating

between versions, clients may take advantage of this new method to improve their code

or to add new features. Therefore, in this case they do not face neither compilation

nor behavioral issues.

The second non-breaking change is the modification of the visibility modifier of

the method rangeCheck (from private to public). In this case, the visibility

gain represents an additional service, since the method becomes available for external

use. Thus, clients of this new version will also be able to access and reuse this new

API element in their applications.

14 Chapter 2. Background

Moreover, changes in deprecated elements are also classified as non-breaking

changes, once that clients have been previously alerted about the risks of using them.

Deprecation annotation is one of the recommended mechanisms to mitigate the impact

of breaking changes in client applications [Dig and Johnson, 2006]. In theory, before

performing such changes, developers should annotate their API elements as deprecated

and guide their clients through replacement messages. Therefore, deprecated elements

are kept in the API while clients migrate and adapt their code to remove references to

such elements.

Listing 2.3 exemplifies the use of deprecation in the method contains. Instead

of simply changing its return type, a recommended approach is to keep the old method

with both deprecated annotation and replacement messages containing guidelines to

the adoption of the new method version (Lines 2–8). In the future, when the deprecated

method is definitely removed, clients will be warned, but theoretically most of them

will have already migrated to the new version. Therefore, both the addition of the

method includes (Lines 9–13), and the removal of contains (in a future version)

will be considered non-breaking changes.

1 public class ArrayList<E> extends AbstractList<E> implements List<E>,

RandomAccess, Cloneable, Serializable {

2 /**

3 * @deprecated Use {@link #includes(Object)} instead.

4 */

5 @Deprecated

6 public boolean contains(Object o) {

7 return indexOf(o) >= 0;

8 }

9 public int includes(Object o) {

10 if indexOf(o) >= 0

11 return 1;

12 return 0;

13 }

14 }

Listing 2.3. Deprecation to mitigate the impact of the changes in method contains

2.2.3 Change Catalog

In a previous work, Dig and Johnson [2006] elicited a catalog of API modifica-

tions, based on refactoring operations. They manually investigated the release notes

and change logs of five known Java libraries, and elicited a catalog of 20 break-

ing changes and 4 non-breaking changes. The proposed breaking operations are:

Moved Method, Moved Field, Deleted Method, Changed Argument

Type, Changed Return Type, Replaced Method Call, Renamed Method,

2.3. Final Remarks 15

New Hook Method, Extra Argument, Deleted Class, Extracted In-

terface, Renamed Field, Renamed Class, Method Object, Push Down

Method, Moved Class, Pulled up Method, Renamed Package, Split Pack-

age, Split Class. The non-breaking changes are: New Method Contract, Im-

plement New Interface, Changed Event Order, New Enum Constant.

In this dissertation, we define and implement an API change catalog based on the

one previously proposed by Dig and Johnson. However, since refactoring is not in the

scope of this work, we used the Java Specification Language to analyze possible mod-

ifications on the syntax of the studied API elements (types, fields, and methods). As

result, we propose a catalog of 12 breaking changes, focused on modifications that may

cause compilation errors to client applications (i.e., behavioral breaking changes are

not included), and 9 non-breaking changes. This catalog, as well as the corresponding

tool implemented to analyze it, are described in Section 3.2.

2.3 Final Remarks

In this chapter, we presented the central topics related to this dissertation, detailing the

concepts of Application Programing Interfaces (APIs), discussing its usage, and going

deeper through their evolutionary changes. More specifically, we discussed breaking

changes and non-breaking changes, detailing their effects to client applications. Finally,

we presented the API change catalog proposed by Dig and Johnson [2006], detailing

their operations and briefly discussing the catalog proposed in this dissertation.

In the next chapters, we will adopt these definitions with the purpose of analyzing

(i) the frequency of API breaking changes; (ii) the behavior ot these changes over time;

(iii) the impact on client applications; (iv) the characteristics of libraries with high and

low frequency of breaking changes ; (v) the reasons why developers break API contracts;

and (vi) whether developers are aware of the risks of such changes.

Chapter 3

Historical and Impact Analysis

In this chapter, we present the first study of this dissertation: a historical and impact

analysis of API breaking changes. The purpose is to investigate the real impact of

such changes and its behavior along libraries life cycle. For that, in Sections 3.1, 3.2,

and 3.3, we present the research questions that guide this study, the proposed API

change catalog, and the APIDiff tool implemented to support their investigation,

respectively. The design of our experiments is detailed in Section 3.4, and the results

are presented in Section 3.5. Moreover, we discuss our results and present a summary

of this study in Section 3.6. Threats to validity are discussed in Section 3.7. Finally,

we conclude with final remarks in Section 3.8.

3.1 Research Questions

With the purpose of quantitatively investigating the frequency and impact of backward

incompatibility, we perform a historical and impact analysis of API breaking changes.

We analyze (i) the frequency of API breaking changes, (ii) the behavior of these changes

over time, (iii) the impact on client applications, and (iv) the characteristics of libraries

with high frequency of such changes. Therefore, our main goal is to investigate the

following research questions:

• RQ1. What is the frequency of API breaking changes?

• RQ2. How do API breaking changes evolve over time?

• RQ3. What is the impact of API breaking changes in client applications?

• RQ4. What are the characteristics of libraries with high and low frequency of

breaking changes?

17

18 Chapter 3. Historical and Impact Analysis

3.2 API Change Catalog

In this dissertation, we use the definitions of breaking changes and non-breaking changes

presented in Section 2.2 to define a catalog of API modifications. For this catalog, we

consider only breaking changes that may cause compilation errors to client applications

(i.e., behavioral changes are not included). In the total, 21 modifications are cataloged

(12 breaking, and 9 non-breaking changes). In this section, we present these changes in

context of the studied API elements (i.e., types, fields, and methods).

Table 3.1. Catalog of changes for types (classes, interfaces, and enums).

Change Classification Description

Removal Breaking Removal of public or protected types that
were not previously deprecated

Visibility Loss Breaking Visibility change (from public or protected
to private) of types that were not previously
deprecated

Supertype
Change

Breaking Inheritance change of public or protected
types that were not previously deprecated

Addition Non-Breaking Addition of new public or protected types
in a new version

Visibility
Gain

Non-Breaking Visibility change from private to public or
protected

Deprecated
Operations

Non-Breaking Modifications (e.g., removal or visibility loss) in
public or protected deprecated types

Table 3.1 presents the catalog of changes for types (i.e., classes, interfaces, and

enums). In this case, breaking changes include removal of a type, change on its visi-

bility modifier (e.g., from public or protected to private), and change in the

type’s supertype. By contrast, non-breaking changes include addition of new elements

and change on visibility modifiers (e.g., from private to public or protected).

Finally, changes in deprecated elements (e.g., removal of deprecated methods) are also

classified as non-breaking changes.

For fields, Table 3.2 details the breaking changes and non-breaking changes cat-

aloged. Besides the trivial ones, also listed for types in Table 3.1 (i.e., Removal and

Visibility Loss), breaking changes in fields include, for example, modifications in

the field’s type or default value. Additionally, all non-breaking changes cataloged for

fields are similar to the ones listed for types, involving operations in deprecated fields,

visibility gain, and addition of new ones.

3.2. API Change Catalog 19

Table 3.2. Catalog of changes for fields.

Change Classification Description

Removal Breaking Removal of public or protected fields that
were not previously deprecated

Visibility Loss Breaking Visibility change (from public or protected
to private) of fields that were not previously
deprecated

Type Change Breaking Change of the type of public or protected
fields that were not deprecated

Default Value
Change

Breaking Addition, removal, and modification of
the default initializer value of public or
protected fields that were not deprecated

Addition Non-Breaking Addition of new public or protected fields
in a new version

Visibility
Gain

Non-Breaking Visibility change from private to public or
protected

Deprecated
Operations

Non-Breaking Changes (e.g., type or default value change) in
public or protected deprecated fields

Table 3.3. Catalog of changes for methods.

Change Classification Description

Removal Breaking Removal of public or protected methods
that were not previously deprecated

Visibility Loss Breaking Visibility change (from public or protected
to private) of methods that were not previ-
ously deprecated

Return Type
Change

Breaking Modification of the type returned by public or
protected methods that were not deprecated

Parameter
List Change

Breaking Parameters addition, removal, and type mod-
ifications of public or protected methods
that were not deprecated

Exceptions
Change

Breaking Addition, removal, and type change of excep-
tions thrown by public or protected meth-
ods that were not previously deprecated

Addition Non-Breaking Addition of new public or protected meth-
ods in a new version

Visibility
Gain

Non-Breaking Visibility change from private to public or
protected

Deprecated
Operations

Non-Breaking Modifications (e.g., removal or visibility loss) in
public or protected deprecated methods

20 Chapter 3. Historical and Impact Analysis

Finally, Table 3.3 details the catalog of changes for methods. Breaking changes in

methods include some of the changes listed before, such as Removal and Visibility

Loss; but also embrace other related to their formal signature, such as modification

of the method’s return type, changes in the parameters list (i.e., addition, removal,

and type change), and modifications on thrown exceptions (i.e., addition, removal, and

type change). Non-breaking changes, by contrast, include all modifications previously

discussed for types and fields (i.e., Addition, Visibility Gain, and Deprecated

Operations).

3.3 APIDiff Tool

In order to support our investigation on the frequency of API breaking changes, we

define and implement an APIDiff tool whose purpose is to identify breaking and non-

breaking changes between two versions of a Java library. In this section, we present

this tool by providing an overview of its approach (Section 3.3.1), and detailing its

architecture (Section 3.3.2).

3.3.1 Overview

To identify and classify API changes between two versions of a Java library, our APID-

iff tool evaluates each of the changes detailed in our API change catalog (see Sec-

tion 3.2). For example, breaking changes in types include removal of a type, change on

its visibility modifier (e.g., from public to protected), and change in the type’s

supertype. Breaking changes in fields include, for example, changes in the field’s type

or default value. Breaking changes in methods include, for example, changes in their

signatures. By contrast, non-breaking changes include addition of new elements and

change on visibility modifiers (e.g., from private to public or protected). Fur-

thermore, changes in deprecated elements (e.g., deprecated method removal) are clas-

sified as non-breaking changes by our APIDiff tool, because developers in this case

have been previously alerted about the risks of using deprecated entities.

To accomplish that, our tool implements a parser based on the Eclipse JDT

library. We focus on public and protected API elements (types, fields, and methods)

once that they represent the external contract between libraries and clients. It takes as

input the path of both versions (named version 1 and 2), via the following command :

java -jar APIDiff.jar [path_version_1] [path_version_2]

3.3. APIDiff Tool 21

Next, to compute the frequency of changes, the tool acts as illustrated in Fig-

ure 3.1. First, it parses both library versions to find all .java files to be analyzed by

the JDT Library (Steps 1 and 2). The library constructs the Abstract Syntax Trees

(ASTs) for each version (Step 3). Then, with both ASTs, the tool starts the analysis

by checking all API elements on version 1, verifying whether any of the cataloged API

changes occurs in version 2 (Step 4). Next, it analyzes the API elements on version 2

with the purpose of verifying additions and new deprecations to report as non-breaking

changes (Step 5). Finally, the tool reports all detected changes in a .xls file (Step 6)

containing each modified element, its enclosing type, and the change description as

presented in Section 3.2.

Figure 3.1. APIDiff tool approach overview.

To illustrate the usage of the tool, Listings 3.1 and 3.2 present a hypothet-

ical scenario of evolution of a famous Java library for the map data structure:

java.utils.HashMap. Suppose that between versions 1 and 2 the class has its

supertype changed (from AbstractMap to AbstractHashMap), a new argument

added to the paramenter list of the method clear, and a deprecated annotation

added to the same method. In this example, breaking changes are highlighted in red,

and non-breaking changes in green. As a result, the analysis of our APIDiff tool

would detect two breaking changes (Supertype Change and Paramenter List

Change), and one non-breaking change (Deprecated Operations). Figure 3.2

presents the output of the tool.

22 Chapter 3. Historical and Impact Analysis

1 public class HashMap<k, V> extends

AbstractMap<K, V>{

2

3 public void clear() {

4 //...

5 }

6 }

Listing 3.1. Version 1 of HashMap.

1 public class HashMap<k, V> extends

AbstractHashMap<K, V>{

2 @Deprecated

3 public void clear(boolean flag) {

4 //...

5 }

6 }

Listing 3.2. Version 2 of HashMap.

Figure 3.2. APIDiff tool output for Listings 3.1 and 3.2.

3.3.2 Architecture

Our tool is mainly implemented over the JDT Eclipse Library, which is responsible for

parsing all .java files and creating the ASTs of both analyzed versions. Besides that,

each modification in our API change catalog is analyzed by comparing the ASTs in the

corresponding element diff (e.g., type modifications are investigated in the TypeDiff

class). The results are stored in a HashMap structure at the class Finder and, at

the end, saved in a .xls file by the class APIDiff. Figure 3.3 presents the UML class

diagram of the tool. The responsibility of each class is also briefly described as follows:

Figure 3.3. UML class diagram of our APIDiff tool.

3.4. Study Design 23

• APIDiff: Main class, responsible for receiving the input, storing the ASTs

(APIVersions), and interacting with the Finder class;

• APIVersion: Abstraction of the AST for an API Version;

• Finder: Stores the changes observed in each API element finder;

• TypeDiff: Analyzes the changes in all public and protected types;

• FieldDiff: Analyzes the modifications in all public and protected fields;

• MethodDiff: Analyzes the changes in all public and protected methods;

• Utils: Provides auxiliary utility functions;

• BindingException: Deals with exceptions caused by binding issues during

the AST construction.

3.4 Study Design

To answer the proposed research questions, we conducted a large-scale experiment with

the most relevant libraries hosted on GitHub. In this section, we present the design of

this study, detailing our dataset in Section 3.4.1, and discussing the methodologies we

adopted for each research question (Sections 3.4.2, 3.4.3, and 3.4.4).

3.4.1 Selecting Java Libraries

We analyzed the most popular Java libraries hosted on GitHub (collected in August,

2016). First, we selected the top 1,000 repositories ordered by number of stars. Then,

we manually classified them into library (554 repositories, 55.40%) and non-library

(446 repositories, 44.60%). Finally, from the library group, we discarded the ones

in the first quartile of number of releases and age, in order to filter out irrelevant

projects [Kalliamvakou et al., 2014], as follows:

• Number of releases. We selected libraries with two or more releases (i.e., first

quartile equals to 1). We applied this criteria to focus on active libraries and to

ensure at least one pair of releases to be compared in each library.

• Age. We selected systems with more than 515 days from the first commit (i.e.,

first quartile equals to 515 days). We use this criteria to assess libraries with a

relevant evolution and to ensure historical data to our analysis.

24 Chapter 3. Historical and Impact Analysis

6 6

15

10

100

1000

40000

All Library Studied

#
 R

e
le

a
s
e

s
 (

lo
g

 s
c
a

le
)

Releases

2.3 2.32
3.4

0.1

1.0

10.0

All Library Studied
#

 Y
e

a
rs

 (
lo

g
 s

c
a

le
)

Age

1459.5 1522
1792

1000

2500

10000

40000

All Library Studied

#
 S

ta
rs

 (
lo

g
 s

c
a

le
)

Stars

6678.5
4185

6676

1e+01

1e+03

1e+05

1e+07

All Library Studied

#
 F

ile
s
 (

lo
g

 s
c
a

le
)

Number of Files

Figure 3.4. Repositories distributions by releases, age, stars, and files.

Based on this filtering criteria, the final selection has 317 libraries, including

well-known ones such as facebook/reactnative, google/guava, and junit-

team/junit4. To better characterize these libraries, Figure 3.4 presents the dis-

tribution of number of releases and age (in years) as well as number of stars and files.

We provide violin plots for all 1,000 initial repositories, for the 554 repositories catego-

rized as library, and for the 317 studied libraries. Violin plots are useful for presenting

the distribution of data because besides embedding a box plot, they also show the

probability density of the data at different values.

Considering the studied libraries, we have the following results. For number of

releases, the first quartile, median, and third quartile are 6, 15, and 29 releases. The

top-3 repositories with more releases are: processing/processing (453 releases),

3.4. Study Design 25

druid-io/druid (387), and h2oai/h2o-2 (324). For age, the quartiles are 2.2, 3.4,

and 5.2 years. The top-3 older repositories are: java-native-access/jna (18 years),

junit-team/junit4 (15.8), and processing/processing (15.2). For number of

stars, the first quartile, median, and third quartile are 1,216, 1,792 and 3,215 stars.

The top-3 systems with more stars are: facebook/react-native (36,856 stars), Re-

activeX/RxJava (16,493), and square/okhttp (13,910). For number of files, the

quartiles are 1,298, 6,676, and 25,335 files. The top-3 larger repositories are: process-

ing/processing (1,625,224 files), apereo/cas (1,277,502), and libgdx/libgdx

(964,580). Finally, we observe that the studied libraries are statistically significant

different for number of releases, age, and number of stars (p-value < 0.05 for Mann-

Whitney test), when compared to all repositories and also to the libraries repository.

However, they are not statistically different for number of files.

3.4.2 Extracting API Breaking Changes (RQ1 and RQ2)

To measure the frequency of API breaking changes, we use the APIDiff tool presented

in Section 3.3. Let Rn be the last release and R1 the first one of a given library. To

answer RQ1 (What is the frequency of API breaking changes?), we computed the diff

between releases Rn and Rn−1, i.e., diff(Rn,Rn−1). Figure 3.5 illustrates this approach.

In this case, we use the two latest versions to estimate the current state of each studied

library, despite of the evolution of their release history.

...
RnRn-1R3

First
Commit

August
2016

DIFF

Rn-2R2R1

Figure 3.5. diff approach to answer RQ1.

Moreover, to answer RQ2 (How do API breaking changes evolve over time?), we

compared all subsequent releases (from R1 to Rn) of a library, i.e., diff(Ri,Ri−1) for

i = 2, . . . , n. To better understand this data, we summarized the breaking changes

over time by calculating the mean of the amount of their occurrences per year. For

26 Chapter 3. Historical and Impact Analysis

that, we grouped the changes observed in the libraries first five years, and compared

results on each period. Figure 3.6 details this methodology.

DIFFDIFFDIFFDIFFDIFFDIFF

...

First
Commit

August
2016

DIFF

RnRn-1R3 Rn-2R2R1

1st Year 2nd Year 5th Year

Figure 3.6. diff approach to answer RQ2.

3.4.3 Measuring API Breaking Changes Impact (RQ3)

To support answering RQ3 (What is the impact of API breaking changes in client

applications?), we calculated the impact of the breaking changes identified in RQ1

on client systems. Using an ultra-large dataset of Java systems [Dyer et al., 2013,

2015], we counted the ones that feature an import statement to the detected breaking

changes. For types, we perform a direct analysis by looking for their qualified names.

For methods and fields, on the other hand, we assess the imports of their enclosing

type. In other words, if a breaking change is detected in a method m of a class C, we

count as potentially impacted all clients that import C. This approach at least retrieves

the worst case scenario of the potential impact measure.

Listings 3.3 and 3.4 illustrate this decision. Consider the hypothetical change

scenario between versions 1 and 2 of the class ArrayList: the return type of the

method contains was modified from boolean to int. In this case, to calculate the

possible impact of this change, we would consider the total of clients that import the

class ArrayList in their projects. Thus, we would estimate that 143,454 clients (see

Table 2.1 in Chapter 2) are possibly impacted by this change. A similar result would

happen if class ArrayList were removed or renamed.

3.4. Study Design 27

7 public class ArrayList{

8

9 public boolean contains(Object o){

10 return indexOf(o) >= 0;

11 }

12

13 }

Listing 3.3. Version 1 of ArrayList.

7 public class ArrayList {

8 public int contains(Object o) {

9 if indexOf(o) >= 0

10 return 1;

11 return 0;

12 }

13 }

Listing 3.4. Version 2 of ArrayList.

We used the JAVALI (Java Libraries and Interfaces)1 tool with the purpose of

calculating the number of imports of a given API and, as a result, collecting client

systems information. The tool aims to measure the popularity of Java libraries by

processing a dataset with more than 260K Java systems, 16M files, and 131M APIs. To

collect this data, JAVALI uses a Domain-Specific Language (DSL) and infrastructure

that aims to ease mining software at a ultra-scale level: the Boa language [Dyer et al.,

2013, 2015]. This DSL leverages distributed computing techniques to execute queries

about open-source projects mined from software repositories. In the JAVALI case, the

Boa language was used to query projects hosted on GitHub, analyzing information

about import statements. We use this information to measure the possible impact of

breaking changes in types with at least one import statement.

3.4.4 Comparing Libraries with High and Low Frequency of

Breaking Changes (RQ4)

In order to distinguish libraries with low and high rates of API breaking changes, we

classified the studied libraries in two groups (top and bottom) to answer RQ4 (What

are the characteristics of libraries with high and low frequency of breaking changes?).

We then collected a set of project metrics (such as activity, size, etc) to compare both

groups. The goal is to verify whether these metrics have an impact on the number of

API breaking changes. This process is summarized in the following three steps:

1. Defining metrics likely to impact breaking changes. To analyze libraries with

high and low rate of breaking changes, we define five dimensions related to open-source

development and social coding: popularity, size, community, activity, and maturity.

For each, we define specific metrics to measure and characterize the studied libraries.

These metrics were also used in a previous study about the adoption of replacement

messages in API deprecation [Brito et al., 2016]. Each dimension and the corresponding

metrics are described in Table 3.4.

1http://java.labsoft.dcc.ufmg.br/javali

http://java.labsoft.dcc.ufmg.br/javali

28 Chapter 3. Historical and Impact Analysis

Table 3.4. Metrics likely to impact breaking changes, divided in five dimensions.

Dimension Description Metrics

number of stars
number of watchersPopularity

Represents how popular a
library is on GitHub

number of forks
number of files

Size
Characterizes the library
volume of artifacts number of API elements

number of contributors
average files per contributorCommunity

Represents the library
community size

average API elements per contributor

Activity
Characterizes the activity
level of a library
development team

number of commits
number of releases
average days per release

Maturity Represents the age of a li-
brary

number of years

2. Selecting Top and Bottom libraries. We consider two groups of libraries: the

ones with low rate of breaking changes, labeled as top libraries, and a second group,

labeled as bottom libraries, with higher rates of breaking changes.

We first identified the active libraries, i.e., the ones with at least one API change

(either breaking or non-breaking), resulting in 235 libraries. Then, we sorted these

235 libraries, in ascending order, by the percentage of API breaking changes. Finally,

we ended up with two groups: top-25% (i.e., libraries with the lowest percentage of

breaking changes) and bottom-25% (i.e., libraries with the highest percentage); each

group with 58 libraries. Figure 3.7 shows the distribution of breaking changes in both

groups. As expected, the median percentage of changes is low (0%) for top libraries

and very high (73.75%) for bottom ones. Table 3.5 shows the name of five top and five

bottom libraries. All top libraries in this table have no breaking changes; by contrast,

in the bottom libraries, all detected API changes are classified as breaking changes.

3. Extracting metrics and comparing libraries. We extracted the metrics in Ta-

ble 3.4 for both top and bottom libraries and then compared the obtained values. First,

we analyze the statistical significance of the difference between both groups by applying

the Mann-Whitney test at p-value = 0.05. To show the effect size of the difference be-

tween them, we compute Cliff’s Delta (or d). Following guidelines previously adopted

in the literature [Grissom and Kim, 2005; Tian et al., 2015; Linares-Vásquez et al.,

2013], we interpret the effect size values as small for 0.147 < d < 0.33, medium for

0.33 < d < 0.474, and large for d > 0.474.

3.5. Results 29

0

73.75

0

25

50

75

100

Top Bottom

%
 B

re
a

k
in

g
 C

h
a

n
g

e
s

Figure 3.7. Breaking changes distribution in top-25% and bottom-25% libraries.

Table 3.5. Example of Top and Bottom libraries ordered by number of breaking changes.

Group Library
Breaking

Changes

chrisbanes/ActionBar-PullToRefresh 0 (0%)
googlemaps/android-maps-utils 0 (0%)
facebook/conceal 0 (0%)
chrisjenx/Calligraphy 0 (0%)

Top

mikepenz/AboutLibraries 0 (0%)
kymjs/KJFrameForAndroid 4 (100%)
grails/grails-core 5 (100%)
mongodb/mongo-hadoop 5 (100%)
liaohuqiu/cube-sdk 19 (100%)

Bottom

zeromq/jeromq 23 (100%)

3.5 Results

In this section, we answer and analyze the results of the proposed research questions.

RQ1: What is the frequency of API breaking changes?

We analyze the frequency of changes for types, fields, and methods between the two

latest releases, i.e., diff(Rn,Rn−1), of the 317 studied libraries. We identified at least

one change in 235 libraries (74.13%). From this total, 198 libraries (62.46%) have at

least one breaking change, while 218 (92.77%) have at least one non-breaking change.

Table 3.6 presents the number of changes per API element (i.e., types, fields, and meth-

30 Chapter 3. Historical and Impact Analysis

ods). Considering all elements, 501,645 changes were identified, from which 27.99% are

breaking changes and 72.01% are non-breaking changes. Methods are the API elements

with more changes, including breaking changes. Considering the 140,460 breaking

changes, 27.81% are in methods.

Table 3.6. Number of API breaking and non-breaking changes.

Element Total Breaking Change Non-Breaking Change

Types 61,897 11,712 (18.92%) 50,185 (81.08%)
Fields 66,953 25,044 (37.41%) 41,909 (62.59%)
Methods 372,795 103,704 (27.81%) 269,091 (72.19%)

All 501,645 140,460 (27.99%) 361,185 (72.01%)

To understand the stability of the studied libraries, Figure 3.8 presents the dis-

tribution of absolute and relative breaking changes (i.e., the percentage of breaking

change per API modification). A logarithmic scale is applied to absolute plots so we

can better visualize outlier libraries.

22

2 2

17

10

1000

100000

All Types Fields Methods

(a)

#
 A

P
I
C

h
a
n
g
e
s
 (

lo
g
 s

c
a
le

)

4

0 0

2

10

100

1000

30000

All Types Fields Methods

(b)

#
 B

re
a
k
in

g
 C

h
a
n
g
e
s
 (

lo
g
 s

c
a
le

)

14.78

0 0

14

0

25

50

75

100

All Types Fields Methods

(c)

%
 B

re
a
k
in

g
 C

h
a
n
g
e
s

Figure 3.8. Distribution of API changes for all elements, types, fields, and methods. (a)
Absolute number of all changes, (b) absolute number of breaking changes, and (c) relative
number of breaking changes.

Absolute analysis. Figure 3.8(a) shows the absolute distribution of the number of

changes (breaking and non-breaking) per library. Considering all API elements, the

first quartile is 0, the median is 22, and the third quartile is 285 changes. On the

median, types and fields have two changes while methods have 17. The third quartile

for types, fields, and methods is 29, 27, and 206 changes, respectively.

Figure 3.8(b) details the previous analysis by exploring the absolute distribution

of breaking changes per library. Considering all API elements, the first quartile is 0,

3.5. Results 31

the median is 4, and the third quartile is 75. In absolute terms, we note that types

and fields present similar distributions (median equal to 0). However, outlier values are

very different: we observe a library with 11,816 breaking changes for fields, and another

one with 1,392 breaking changes for types. We manually analyzed both cases. The first

one happened in the Android library ManuelPeinado/FadingActionBar, when

the project structure faced a major change, as described in the commit message:

“Changed project structure so that all subprojects are in the same root.”

The second one happened in the graph library neo4j/neo4j, when several

changes were inserted to improve its design. One example is found in the pull request

(PR) that removed the type SchemaRuleContent:

“This PR makes sure that all types of schema rules are properly checked and

simplifies duplicates checking by removal of SchemaRuleContent.”

Figures 3.9, and 3.10 present the screenshot of these repositories, detailing both

commit message and pull request, respectively.

Figure 3.9. Commit message in the library ManuelPeinado/FadingActionBar report-
ing the breaking changes observed.

Relative analysis. Figure 3.8(c) presents the distribution of the relative number of

breaking changes per library. For all API elements, the first quartile is 0%, the median

is 14.78%, and the third quartile is 43.35%. Moreover, we found 17 libraries (5.35%)

with 100% of breaking changes, such as Netflix/astyanax, nathanmarz/storm,

and grails/grails-core. But in all these cases, the absolute number of changes is

also small (at most 23 changes in Netflix/astyanax).

32 Chapter 3. Historical and Impact Analysis

Figure 3.10. Pull request message in the library neo4j/neo4j exemplifying the breaking
changes observed.

Summary: From the 501,645 analyzed API changes, we observe a relevant rate of

breaking changes (27.99%). On the median, 14.78% of the API changes in a library

break contracts with clients; the higher ratio of breaking changes occurs on methods.

RQ2: How do API breaking changes evolve over time?

To answer this second research question, we verify all releases (from R1 to Rn) of the

317 studied libraries. The goal is to analyze the frequency of breaking changes over

time and, thus, to investigate the impact of software evolution on library stability. To

accomplish that, we verify 9,329 releases and summarize the frequency of breaking

changes per year. Because the third quartile of the studied libraries age is 5.2 years,

we decided to analyze at most five years of their evolution. In addition, due to our

selection criteria discussed in Section 3.4.1, the studied libraries have at least one year.

Figure 3.11 presents the relative distribution of the means of breaking changes per

library and per year. Those with no versions released in a given year were discarded.

For each library, we calculate the mean number of breaking changes in each year, by

considering only the releases in the year. In this way, we generate distributions per

library and per year. In the first year of existence, 232 libraries released public versions.

The first quartile of the means is 16.65%; the median, 29.02%; and the third quartile,

42.74%.

For breaking changes in releases during the second year, the first quartile is

15.32%, the median is 31.46%, and the third quartile is 47.72%. From the total, 212

libraries registered at least one release during their second year. From the first to the

3.5. Results 33

●●

●
●
●

●
●

●

29.02

0

25

50

75

100

1st Year

%
 B

re
a
k
in

g
 C

h
a
n
g
e
s

●

31.46

2nd Year

37.12

3rd Year

45.16

4th Year

49.14

5th Year

Figure 3.11. Distribution of API breaking changes per year. The distribution values are the
mean rate of changes in a year, considering the releases produced in this year.

second year, we observe a light increase of 2.44% in the median value. However, the

Mann-Whitney test reveals no statistical significant difference between both groups.

In the third year, 149 libraries were analyzed. The first quartile, the median, and

the third quartile are, respectively: 14.73%, 37.12%, and 50.75%. Comparing to the

previous years, the median is slightly higher, increasing 5.66% and 8.10% when com-

pared to the second and first years, respectively. Despite of that, the Mann-Whitney

test does not show a statistical significant difference between the three years.

In our dataset, 106 libraries have version released during their fourth year. The

quartile values are 25.33%, 45.16%, and 59.76%, respectively. The frequency of break-

ing changes increases by 8.04%, 13.70%, and 16.14% when compared to the third,

second, and first years, respectively. In this case, the Mann-Whitney test reveals that

this group is statistically significant different from the three previous ones.

Finally, in the fifth year, 83 libraries have released versions. The first quartile is

30.53%, the median is 49.14%, and the third quartile is 62.80%. From the fifth to the

fourth years, we do not observe statistical significant difference.

Therefore, the historical analysis of the breaking changes frequency reveal that

34 Chapter 3. Historical and Impact Analysis

they increase by 20% in five years (median values). This may be explained by the fact

that as time passes, libraries tend to provide API elements that are harder to manage

and more likely to change.

As an illustrative example, Figure 3.12 plots the curve of breaking changes fre-

quency for three of the studied libraries: googlemaps/android-maps-utils, drop-

wizard/metrics, and roboguice/roboguice. For the first, we plot the evolution

along its four years of existence, once that the library has less than five years. Dur-

ing this time, we observe a small increase of breaking changes (from 3.91% to 8.70%),

against the tendency observed in the dataset. For the others, we register values for

their first five years: in the first case, the curve for roboguice/roboguice grows

in a variation of more than 60% of breaking changes (from 37.88% to 99.30%); in the

second (dropwizard/metrics), we observe that the frequency ranges from an initial

growth (from 21.02% to 42.10%), to a subsequent decrease to 38.51%, increasing again

in the fourth and fifth years. In both cases, the percentage of increase comparing the

first and fifth years represents a variation higher than the median of 20%.

● ●

●

●

●

●

●

●

● ●

● ●

●

●

0

25

50

75

100

1st Year 2nd Year 3rd Year 4th Year 5th Year

%
 B

re
a

k
in

g
 C

h
a

n
g

e
s

android−maps−utils metrics roboguice

Figure 3.12. Breaking changes evolution for three libraries: googlemaps/android-maps-
utils, dropwizard/metrics and roboguice/roboguice.

Summary: The frequency of breaking changes increases over time. Comparing the

first to the fifth year, this number increases by 20% (from 29.02% to 49.14%). This

may occur because as libraries evolve, they become larger and more likely to change.

3.5. Results 35

RQ3: What is the impact of API breaking changes in client

applications?

In this third research question, we investigate the impact of the breaking changes re-

ported in RQ1 on client applications. For that, we analyze both the types with breaking

changes and the types declaring fields and methods with breaking changes. The goal

is to assess the potential impact of breaking changes by analyzing import statements

in client systems. As detailed in Section 3.4.3, our dataset of client applications has

around 260K Java systems.

Considering all API elements, 140,460 breaking changes were detected (see Ta-

ble 3.6), referring to 16,291 types. From such types, 1,290 (7.91%) potentially impacted

at least one client application, i.e., clients with at least one import to these types in

our dataset. For the remaining types with breaking changes, we did not find clients

in the Javali/Boa dataset; therefore, they were discarded. Figure 3.13 presents the

distribution of absolute and relative number of impacted clients per library/type. A

logarithmic scale is applied to absolute plots to ensure outliers visualization.

349

10

100

1000

10000

70000

Libraries

(a)

#
 C

lie
n
ts

 (
lo

g
 s

c
a
le

)

26

10

100

1000

10000

Types

(b)

#
 I
m

p
a
c
te

d
 C

lie
n
ts

 (
lo

g
 s

c
a
le

)

2.54
0

25

50

75

100

Types

(c)

%
 I
m

p
a
c
te

d
 C

lie
n
ts

Figure 3.13. Impact of API breaking changes in client applications: (a) number of clients
of APIs with breaking changes, (b) number of clients impacted by each type with a breaking
change, and (c) relative number of clients impacted by each type with a breaking change.

Figure 3.13(a) presents the absolute distribution of the number of impacted clients

per library. The first quartile is equal to 75 clients; the median, 349; and the third quar-

tile is 2,245 clients. In this context, the top-3 libraries with more impacted clients are

junit-team/junit4, with 54,217 clients; spring-projects/spring-framework,

with 23,793 clients; and google/guava, with 12,524 clients.

Figure 3.13(b) shows the absolute distribution of the number of clients impacted

per type with breaking change. The first quartile, the median, and the third quartile

are 10, 26 and 90.75 clients, respectively. Despite the low numbers registered by the

36 Chapter 3. Historical and Impact Analysis

quartiles, the top-3 types with more impacted clients belong to well-known libraries:

org.junit.Assert (imported on 10,857 clients), junit.framework.Assert

(imported on 10,535 clients), and org.bukkit.plugin.java.JavaPlugin (im-

ported on 8,005 clients).

Finally, Figure 3.13(c) details the relative distribution of the impacted clients, i.e.,

number of clients impacted by a breaking change in a given API divided by the total

number of clients of this API. The first quartile is 1%, the median is 2.54%, and the

third quartile is 13.10%. The top-3 types with higher rates of breaking change impact

are: *.streaming.video.VideoQuality, from fyhertz/libstreaming, with

100%; *.chronicle.Excerpt, from peter-lawrey/JavaChronicle, also with

100%; and *.scene2d.ui.Label, from libgdx/libgdx, with 99.64%. However,

in all these three cases, the number of clients of each type is low (at most 280 clients

in libgdx/libgdx).

Therefore, the impact of breaking changes in terms of impacted clients tends to

be low (2.54%, on the median). This may indicate that (i) library developers are careful

before inserting breaking changes on heavily-used types, or (ii) the changed types are

for internal usage only (i.e., APIs not created for external clients, but for the system

itself) [Hora et al., 2016; Businge et al., 2013]. However, we also notice many outliers

(123 types) with more than 32.03% of clients impact. Table 3.7 lists the breaking

changes with the highest impact on clients.

Table 3.7. Top-10 breaking changes with the highest impact on clients.

Type Impact

*.streaming.video.VideoQuality 100.00%

*.chronicle.Excerpt 100.00%
com.badlogic.gdx.scenes.scene2d.ui.Label 99.64%
android.content.res.AssetManager 97.87%

*.mustachejava.DefaultMustacheFactory 96.47%
android.telephony.TelephonyManager 95.86%
com.android.volley.RequestQueue 93.52%
org.bukkit.plugin.java.JavaPlugin 93.45%
org.pegdown.PegDownProcessor 91.67%
android.widget.AbsListView 90.51%

Summary: 2.54% of the client applications are potentially impacted by breaking

changes, on the median. One possible explanation is that developers may be careful

to break widely-used types ot that most APIs elements may not be widely used by

client application.

3.5. Results 37

RQ4: What are the characteristics of libraries with high and low

frequency of breaking changes?

To analyze libraries with high and low percentage of breaking changes, we compare top

and bottom libraries as described in Section 3.4.4. The purpose is to verify whether

library popularity, size, community, activity, and maturity impact the frequency of

breaking changes.

Table 3.8 details the metrics related to each characteristic and the respective p-

values and d coefficients obtained for top and bottom libraries. Metrics in bold have

p-value < 0.05, and d > 0.147, i.e., they are statistically significant different with at

least a small effect size in top and bottom libraries. As can be observed in the table, the

selected top and bottom libraries are statistically significant different in 6 out of the 12

metrics. The effect size is small in three metrics (number of watchers, number of API

elements, and number of releases), and medium in other three (number of watchers,

number of contributors, and average API elements per contributor). Next, we analyze

each group:

Table 3.8. Metrics and their respective p-values and d on top and bottom libraries. Bold
means p-value < 0.05 (statistically significant different) and d > 0.147 (at least a small effect
size). Direction: “↑” = top libraries have significantly higher value on this metric. “↓” =
bottom libraries have significantly higher value on this metric.

Dimension Metric p-value d-value Size Direction

number of stars 0.490 0.272 small ↓

number of watchers 0.016 0.377 medium ↓Popularity
number of forks 0.679 0.247 small ↓

number of files 0.010 0.017 negligible ↓
Size

number of API elements < 0.001 0.149 small ↓

number of contributors 0.014 0.330 medium ↓

average files per contributor 0.454 0.192 small ↓Community
average API elements per contributor < 0.001 0.335 medium ↓

number of commits < 0.001 0.219 small ↓

number of releases 0.001 0.251 small ↓Activity
average days per release 0.003 0.088 negligible ↑

Maturity age (in number of days) 0.350 0.215 small ↓

• Popularity. Libraries with higher measures for number of watchers are on the

bottom group, i.e., they have higher values of breaking changes. Thus, our results

suggests that popular libraries (at least, in number of watchers) are more likely

to break compatibility. This contradicts our initial conjecture, once we believed

that popular libraries would be more careful before inserting breaking changes.

In fact, based on these results, we hypothesize that popular libraries have more

38 Chapter 3. Historical and Impact Analysis

pressure to evolve, including the need to make design decisions that lead to

breaking changes.

• Size. Libraries with higher measures for number of API elements are also on

the bottom group. Indeed, libraries with more API elements tend to be harder

to maintain and evolve, increasing the probability of breaking changes.

• Community. Libraries with higher measures for number of contributors and av-

erage API elements per contributors also appear on the bottom group. Thus, our

results suggest that libraries with more contributors tend to have more breaking

changes than the others.

• Activity. Libraries with higher measures for number of commits and number

of releases are on the bottom group. Thus, our results suggest that more code

changes are more likely to break compatibility.

• Maturity. Finally, we detected that there is no statistical significant difference

between top and bottom libraries with respect to their age (in number of days).

As an illustrative example, Table 3.9 details a comparison between a top and a

bottom library. The top library is daimajia/AnimationEasingFunctions, with no

breaking change at all (among 17,550 changes). On the other hand, the bottom one is

zeromq/jeromq, with 100% of API changes classified as breaking change (among 23

changes). Indeed, it is clear the difference between both libraries regarding the metrics

we found a statistically significant result.

Table 3.9. Comparison between a top and bottom library, respectively: daimajia/Anima-
tionEasingFunctions and zeromq/jeromq.

Metric
Top Bottom

Library Library

number of watchers 94 142
number API elements 139 3,139
number of contributors 3 40
avg API elements per contributor 46.33 78.48
number of commits 22 528
number of releases 2 8

3.6. Summary and Findings 39

Summary: Bottom libraries are statistically significantly different from top ones in

6 out of 12 metrics. Libraries with more contributors and more API elements per

contributor have more breaking changes, with medium effect size. Also, the number

of API elements, the number of commits, and the number of releases affect breaking

changes, with small effect. Maturity, though, has no effect on breaking changes.

3.6 Summary and Findings

Based on our historical large-scale study on 317 real-world Java libraries, their 9K

releases, and 260K client applications, we derive the following findings and implications

into API breaking changes impact and evolution:

1. Libraries often break backward compatibility. We show that 27.99%

of all API changes break backward compatibility. On the median, the percentage

of breaking changes per library hits 14.78%. In this context, we observe that API

breaking changes are recurrent and occur in a relevant percentage. This may occur

due to several reasons, for example, (i) unawareness of breaking change risks, (ii)

development by naive or less experienced programmers, or (iii) need to restructure the

library and, consequently, change the API elements. Therefore, we point out the need

for further investigation on reasons developers break contracts with client applications.

In the next chapter, we provide an analysis on this subject.

2. Breaking changes frequency increases over time. Our study shows that

the percentage of breaking changes tends to increase over time by a rate of 20% when

comparing their first and fifth years (from 29.02% to 49.14%). This result shows that

as time passes, libraries do not become more reliable and stable, as expected. Thus,

we suggest the adoption of historical analysis to measure library stability, warning API

developers about the increase of breaking changes on their libraries. This analysis

would also provide useful information for client developers when reasoning whether to

depend or not on a library.

3. Most breaking changes do not have a massive impact on clients.

Despite the high number of verified breaking changes, we observe that, on the median,

only 2.54% of clients are potentially impacted. This low percentage may indicate that

(i) library developers pay especial attention on the usage of types before breaking

contracts or (ii) the changed types are for internal usage, i.e., not intended to be used

by client applications. However, the ratio of impacted clients increases to 13% in a

quarter of the studied libraries. Moreover, the analysis of outlier values shows that

this impact can be very large, reaching 100% of clients in some cases. Based on that,

40 Chapter 3. Historical and Impact Analysis

an impact analysis tool can be helpful for library developers to support their decisions

before changing highly used APIs.

4. Development and social coding measures are associated with API

breaking changes. We show that libraries with higher frequency of breaking changes

have specific project characteristics. We found statistically significant higher values

for the following metrics: number of watchers, number of API elements, number of

contributors, average API elements per contributor, number of commits, and number

of releases. Thus, libraries with higher frequency of breaking changes are larger, more

popular, and more active. Moreover, notice that the relative measure on the workload

of API elements per contributor is also associated with high frequency of breaking

changes: the more API elements a contributor has to maintain, the more unstable is

likely to be the library. Thus, we suggest the usage of relative development metrics

(such as average API elements per contributor) as a proxy that developers should use

to assess the “health” of their libraries.

3.7 Threats to Validity

3.7.1 Construct Validity

Construct validity is related to whether the measurements in the study reflect real-

world situations.

Classification of Repositories. One possible threat of our study is that repositories

may have been incorrectly classified into library and non-library. Non-library systems

in our studied dataset may bias the results obtained. However, an especial attention

was dedicated to this manual classification through the analysis of each repository web

page and documentation.

Historical Analysis. In our historical analysis, we consider the first five years of each

studied library which represents the third quartile of their age (5.2 years). Therefore,

this value can be considered a representative threshold, although not covering the entire

life cycle of the studied libraries.

Impact Analysis. To calculate the impact of breaking changes, we count the number

of client applications that feature an import statement to types that hold a breaking

change. A known threat of this decision relates to the impact of breaking changes in

fields and methods, since an import to their enclosing type does not implies in real

usage. However, this measure at least represents the worst case scenario.

3.8. Final Remarks 41

3.7.2 Internal Validity

Internal validity is related to uncontrolled aspects that may affect the experimental

results.

Parser Implementation. A possible threat is the possibility of errors in the imple-

mentation of our APIDiff tool, which identifies breaking and non-breaking changes in

Java API elements. However, to mitigate this threat, the implementation of APIDiff

is largely based on a well-known Eclipse library: JDT.

Findings Validation. We paid special attention to the appropriate use of statistical

tests (i.e., Mann-Whitney test and Cliff’s Delta effect size), specially when reporting

the results in RQ4. This reduces the possibility that these results are due to chance.

Association and Causation. In RQ4, we examined whether there are metrics cor-

related with high and low frequency of breaking changes. However, it is important to

acknowledge that correlation does not imply causation [Couto et al., 2014].

3.7.3 External Validity

External validity is related to the possibility to generalize our results. We focused

on 317 popular Java libraries hosted in GitHub, the most used code repository nowa-

days. Therefore, they are credible and representative case studies, with source code

easily accessible. In addition, our client applications dataset has more than 260K

Java systems. Despite these observations, our findings—as usual in empirical Software

Engineering—cannot be generalized to other libraries, specifically those implemented

in other programming languages. Moreover, we only consider syntactical breaking

changes, which result in compilation errors. Behavioral API changes are outside the

scope of this dissertation.

3.8 Final Remarks

In this chapter, we presented the first study of this dissertation, performed in the

context of 317 real world Java libraries, 9K releases, and 260K clients. Four research

questions were investigated in order to support library/client developers in maintenance

activities. Specifically, we applied historical and impact analysis to assess: (i) the

frequency of breaking changes, (ii) the behavior of these changes over time, (iii) the

impact on client applications, and (iv) the characteristics of libraries with high and low

frequency of breaking changes.

42 Chapter 3. Historical and Impact Analysis

Therefore, based on our results we could observe that: (i) libraries often break

backward compatibility (at a percentage of 27.99% of all API changes), (ii) breaking

changes frequency increase over time (at an increasing rate of 20%), (iii) most breaking

changes do not have a massive impact on clients (only 2.54% of clients are potentially

impacted, on the median), and (iv) development and social coding measures are asso-

ciated with API breaking changes (in relation to size, popularity, and activity).

In the next chapter, we present a qualitative analysis with developers that aims

to better investigate the reasons of API breaking changes in practice. Based on the

results observed in this first study, we selected a subset of libraries to survey their

developers and, as a consequence, (i) we elicit a list of reasons that motivate them to

introduce breaking changes, and (ii) we verify whether they are aware of their risks.

Chapter 4

API Breaking Changes Motivations

In this chapter, we present the second study of this dissertation: a survey with API

developers, whose purpose is to investigate the reasons why breaking changes are in-

troduced, and the awareness of developers about their risks for client applications.

In Section 4.1, we begin by detailing each research questions investigated. Next, we

present the methodology of our survey and the obtained results in Sections 4.2 and 4.3,

respectively. In Section 4.4, we discuss our results and present a summary of this study.

In Section 4.5, we list the threats to validity, and discuss the strategies adopted to mit-

igate them. Finally, we conclude the chapter with some final remarks in Section 4.6.

4.1 Research Questions

In order to investigate the specific reasons that drive API developers to introduce

breaking changes in their libraries, we perform a qualitative study with such developers

and real instances of API breaking changes. For that, we selected the libraries with

the highest amount of breaking changes in our quantitative study (see Chapter 3),

and contacted their contributors to understand the reason of such changes. Therefore,

we investigate (i) the reasons why developers implement breaking changes, and (ii)

whether they are aware about the risks of these changes. Specifically, our main goal

is to elicit a list of motivations for API breaking changes based on library developers

answers, and to verify whether they are aware of the impact on client applications. To

guide this investigation, we propose the following research questions:

• RQ5. Why do developers break API contracts?

• RQ6. Are developers aware of the impact of breaking changes on client applica-

tions?

43

44 Chapter 4. API Breaking Changes Motivations

4.2 Study Design

In this section, we describe the methodology of our survey by summarizing its four

main steps: selecting surveyed developers (Section 4.2.1), contacting developers (Sec-

tion 4.2.2), filtering responses (Section 4.2.3), and analyzing data (Section 4.2.4).

4.2.1 Selecting Surveyed Developers

First, we selected the repositories with more than 50 breaking changes collected in our

previous study, described in Chapter 3. Out of the 317 libraries, 90 (28.39%) filled this

selection criteria. Then, we accessed each repository with the purpose of retrieving the

email address of their major contributor (i.e., the developer with the highest amount

of commits in the repository according to GitHub statistics, as shown in Figure 4.1).

Figure 4.1. Major contributor of junit-team/junit4.

From the 90 selected libraries, 49 (54.44%) of their major contributors shared their

email on GitHub profile. Therefore, our initial dataset consists of the corresponding 49

libraries, including well-known and worldwide used projects, such as bitcoinj/bit-

coinj, javaslang/javaslang, and junit-team/junit4.

4.2. Study Design 45

4.2.2 Contacting Developers

For each selected library, we sent an email to its corresponding major contributor

(between November 12th and 25th 2016). Figure 4.2 presents the sent email, as well as

the proposed questions. In each email, we presented the number of collected breaking

changes and an external link describing each of them (i.e., the filtered output of our

APIDiff tool, containing each modified element, its enclosing type, and the breaking

changes description as presented in Section 3.2). Figure 4.3 illustrates a fragment of

this list for the oblac/jodd library. Moreover, we proposed three questions with the

goal of (i) verifying whether developers are aware about the listed breaking changes;

(ii) investigating their reasons for implementing breaking changes; and (iii) verifying

whether they are aware about the risks of breaking changes to client applications.

Specifically, the first question was used as a filtering criteria (i.e., developers who said

not being aware of the breaking changes had their emails discarded).

Dear [developer name],

I figured out that you are a major contributor of [rep/project], from which
we found [n] API breaking changes, for instance, in classes A and B (further
details here [link]).

I kindly ask you to answer the following questions to support our research:

1. Are you aware about these API breaking changes?
2. Could you describe why were these API breaking changes introduced?
3. Are you aware about the risks of breaking backward compatibility with your
clients?

Figure 4.2. Email sent to the major contributors of the studied libraries

Figure 4.3. Fragment of the breaking change list sent to oblac/jodd developer.

46 Chapter 4. API Breaking Changes Motivations

4.2.3 Filtering Responses

We received 14 answers, which represents a response rate of 28.6%. From these answers,

6 were considered unclear or invalid (e.g., responses reporting that the developer is no

longer engaged with the project). The following answer from a former developer of

LMAX-Exchange/disruptor illustrates it:

“I am no longer involved with the Disruptor and do not engage on the topic.”

Additionally, the developer of avast/android-styled-dialogs library stated

that he was not aware of the breaking changes reported (first question). Thus, we

executed our APIDiff tool a second time and manually analyzed the results with

the purpose of verifying false positives. As a result, we confirmed the existence of all

breaking changes reported. As the developer stated he was not aware of them, his

answer (illustrated in the following fragment) was also discarded.

“I’m not aware about breaking changes recently. The library is very stable,

doesn’t change often.”

Therefore, 7 answers were considered for analysis in this study. Table 4.1 de-

scribes the libraries whose responses were analyzed, as well as basic information about

them (i.e., number of stars and total of breaking changes). The number of stars

ranges from 857 (bitcoinj/bitcoinj) to 1,568 (mogobd/mongo-java-driver),

showing they are popular libraries. The number of breaking changes ranges from 53

(oblac/jodd) to 3,117 (mogobd/mongo-java-driver).

Table 4.1. Libraries with valid answers

Library Stars
Breaking

Changes

D1 mongodb/mongo-java-driver 1,568 3,117
D2 oblac/jodd 1,445 53
D3 Zielony/Carbon 1,380 358
D4 square/assertj-android 1,354 2,218
D5 javaslang/javaslang 1,108 663
D6 davideas/FlexibleAdapter 975 157
D7 bitcoinj/bitcoinj 857 1,940

4.3. Results 47

4.2.4 Analyzing Data

After collecting and filtering all emails, we analyzed the responses in order to investi-

gate the proposed research questions. To answer RQ5 (Why do developers break API

contracts?), we followed a thematic analysis, which is a technique whose goal is to

identify themes (or codes) within a set of documents [Cruzes and Dyba, 2011]. Thus,

each response to the second question in the survey email was manually analyzed and

a list of reasons that may explain why developers break API contracts was cataloged.

The advisor and co-advisor of this dissertation reviewed the analysis and confirmed

the proposed codes. Finally, to answer RQ6 (Are developers aware of the impact of

breaking changes on client applications?), we analyzed responses to the third question,

and, as a result, we identified insights on how developers deal with the impact of API

breaking changes.

4.3 Results

In this section, we present the results obtained in our survey. We separate the section

in each research question investigated, answering to them and providing further details

observed in our analysis.

RQ5. Why do developers break API contracts?

We identified five main reasons that suggests the motivations that drive API developers

to introduce breaking changes in their libraries, as well as their recurrent explanations

for such changes. Table 4.2 describes these reasons, providing a brief description, and

detailing the number of occurrences for each of them.

Table 4.2. Reasons why developers break API contracts

Theme Description Occur.

Library Simplification Redesign to make APIs easier for clients 3
Refactoring Remodularization to improve quality code 2
Bug Fix Resolution of issues 2
Dependency Changes Switch of libraries on which the library

depend on
1

Project Policy Maintenance policy of the project 1

Next, we discuss each theme, detailing fragments of the obtaining answers, and

analyzing the changes that motivated them.

48 Chapter 4. API Breaking Changes Motivations

Library Simplification. The most frequent reason for breaking API contracts is

related to Library Simplification (3 instances). In this case, the change is mainly

motivated by the need of making APIs easier to use (e.g., developer-friendly code);

and also by the remotion of redundant (and more complex) elements. Developers D6,

D2, and D3 mentioned this motivation:

“Useless item. If a problem can be solved using another simple method, the

library can be simplified by removing the redundant solution.” [D6]

“The change leads to better and more developer-friendly code (for example, to

more fluent code). For example, we recently had one important API change

in BeanUtil, where we moved from utility class with static methods to a bean

class. Software is living and changing thing, and we constantly are looking

Jodd to be more efficient for developers.” [D2]

“A problem was solved in a different way. This is the case of addStateAnima-

tor and removeStateAnimator methods. These methods were removed because

StateAnimator was rewritten and the functionality was refactored. Another

examples are RadioButton and CheckBox classes.” [D3]

Refactoring. Differently from Library Simplification theme, whose intents

are related to improving the library for external clients, the second most frequent

motivation relates to Refactoring (2 instances). In this case, developers pointed

the need of internally improving the code of their APIs (e.g., by moving elements

between packages), and also the modification on the way that problems are solved. D6

illustrates this motivation, detailing a refactoring on his library with the purpose of

better organizing package signatures:

“The classes/methods/fields are not removed all, they are just refactored to a

better package signature (many months ago/last year) when the library was

know a little but not famous as now... When possible they are initially depre-

cated and then removed completely.” [D6]

In addition, developer D3 explains that a Refactoring was applied to change

the way a problem was solved, moving functionalities to classes that could provide the

same services in a more general way. More specifically:

4.3. Results 49

“A problem was solved in a more general way. For example car-

bon.widget.SVGView was a class used for displaying .svg files. With an in-

troduction of VectorDrawable that functionality was moved to ImageView and

there was no need for a separate SVGView class. StateAnimator, FloatingAc-

tionButton and RippleDrawable are another examples of such change.” [D3]

Other studies also indicate refactoring as a reason for breaking changes. For

example, Dig and Johnson [Dig and Johnson, 2006] found that 80% of the breaking

changes are due to refactoring (more details in Chapter 5).

Bug Fix. The third most commented reason that motivates API breaking changes

is related to Bug Fix (2 instances). In this case, developers are guided by the need of

solving some issue in their libraries and, as a consequence, end up breaking contracts

with client applications. Developers D3 and D2 discuss this motivation, as illustrated

in the following fragments:

“Bugfix. For example some of the items shouldn’t be accessible and were made

private.” [D3]

“Our approach is that we are going to make such changes if there is an issue

that has to be fixed, [...]” [D2]

In a recent study, performed with the purpose of analyzing the relationship be-

tween project policies and API breaking changes, Bogart et al. [2016] also cite Bug

Fix as a possible reason of such changes (more details in Chapter 5).

Dependency Changes. In addition, developer D4 discussed another motivation

related to changing the library dependencies: Dependency Changes. According to

him, the breaking changes reported were caused by the need of changing one library

that they depend on and was not being maintained anymore:

“We switched the assertion library on which the library was based since FEST

library was no longer being developed and AssertJ was a maintained and up-

dated fork.” [D4]

Project Policy. Finally, developer D6 comments that introducing breaking

changes is a deliberated maintenance practice in their project. In this case, we an-

alyzed their repository and found that they treat them by documenting all changes

and keeping a well defined release versioning. The following fragment illustrates it:

“It’s a deliberate policy. bitcoinj has never done a 1.0 release that would have

posted API stability.” [D7]

50 Chapter 4. API Breaking Changes Motivations

RQ6. Are developers aware of the impact of breaking changes

on client applications?

To verify whether developers are aware about the risks of breaking APIs, we analyze the

answers to the third question proposed in our initial email. Out of the seven responses,

in five instances developers affirmed being aware of the risks. In the two remaining,

we identified unclear or vague answers. Thus, all developers who gave valid responses

recognized being aware of the impact and costs of breaking changes. In some cases,

they also discussed alternatives to mitigate them.

A first and natural alternative to decrease the impact of breaking changes is to use

deprecation annotations and replacement messages [Brito et al., 2016; Robbes et al.,

2012]. Both developers D3 and D2 cited this strategy. However, developer D2 discusses

the lack of human resources to maintain deprecated methods.

“I always try to mark things I would like to remove as deprecated, give replace-

ments and document changes to make transitions easy.” [D3]

“Once one client asked to use @Deprecated on old methods, but we simply dont

have enough resources to maintain all deprecated methods.” [D2]

In addition, both developers justified their breaking changes by highlighting the

small number of clients of their libraries. Our previous study (Chapter 3) confirms this

fact. The library maintained by D3 has no client affected by the collected breaking

changes, while only one class of D2’s library impacts 7 clients (which represents 9% of

the total). The following comments illustrates their statements:

“Carbon is not a commercial, production-quality library, so I’m not as con-

cerned about potential problems as Google is with their libraries. I’m just

working on my ideas and I’m giving my solutions to the public.” [D3]

“Yes. But we are not Spring yet. [...] Being a small-to-middle library has it’s

benefits.” [D2]

Finally, developer D4 illustrated an interesting strategy to mitigate the risks of

breaking changes. With the purpose of rebuilding the library due to Dependency

Change reasons, and reusing most of the initial code, the decision was to create a new

library in the Maven Central Repository.1 Thus, clients interested in migrating had to

switch libraries (and update their code to the new API contracts). This is illustrated

in the following comment:

1https://maven.apache.org

https://maven.apache.org

4.4. Summary and Findings 51

“From the consumer perspective it’s a totally different library, not just a new

version of an existing one that has a new API. In order to upgrade, consumers

would have to change their build to point at the new coordinates. If all they

were doing was looking for a new version of the old coordinates they would

never see it. Additionally, because it’s separate coordinates you can even have

both versions installed side-by-side and do incremental migration. We decided

to keep the same repository despite essentially creating a new library because

they solve the same problem, we could re-use 90% of the code, and there never

would be releases made of the old version once we switched.” [D4]

4.4 Summary and Findings

In this section, we summarize the results and answer the investigated research ques-

tions.

RQ5. Why do developers break API contracts? We elicit a list of five spe-

cific reasons pointed by developers as motivation for API breaking changes: Library

Simplification, Refactoring, Bug Fix, Dependency Changes, and Project

Policy. Some of them were recurrent between respondents. For instance, Library

Simplification was discussed in three out of seven analyzed answers. This may re-

veal that developers are more concerned about the usability of their APIs, despite the

possible costs caused by breaking changes.

RQ6. Are developers aware of the impact of breaking changes on client

applications? Our study shows that all developers are aware of the risks attached

to breaking contracts with clients. However, in most of the cases, they highlighted the

adoption of alternatives to mitigate them. This result suggests that developers have

conscious about the costs for client applications but rather than planning changes and

deprecating elements, they prefer adopting strategies to alleviate their side-effects.

4.5 Threats to Validity

The results presented in this study provide initial insights on the reasons why developers

break APIs and whether they are aware of the consequences for client applications.

Despite a response rate of 28.6%, only seven answers were considered for analysis,

which impacts the generalization of our results. However, the studied libraries are

representative especially due to their popularity (i.e., at least 857 stars), and high

number of breaking changes (i.e., more than 50 ones). Another threat is related to the

52 Chapter 4. API Breaking Changes Motivations

manual inspection of the answers to provide the reasons for breaking changes. Although

this activity has been done with special attention and support of both advisor and co-

advisor, its subjective nature may bias the presented results. Finally, against our belief,

the trustworthiness of the responses may also be a threat to be reported.

4.6 Final Remarks

In this chapter, we presented the second study of this dissertation: a survey with

the major contributors of popular libraries hosted on GitHub about real instances

of API breaking changes collected in their repositories. Two research questions were

investigated in order to elicit a list of reasons that motivate such changes, and to verify

their consciousness on the risks for client applications. Specifically, we performed a

qualitative study in order to investigate: (i) the reasons why developers implement

breaking changes, and (ii) whether they are aware about the risks of these changes.

As a result, we proposed a list of five reasons that motivate developers to break

API contracts, including: Library Simplification, Refactoring, Bug Fix, De-

pendency Changes, and Project Policy. Moreover, we showed that developers

are usually aware of the impact on clients and, in some cases, adopt strategies to alle-

viate them. In the next chapter, we discuss the state of the art, presenting the related

work, and highlighting their major limitations which motivated this dissertation.

Chapter 5

Related Work

API evolution and stability have been largely studied in the literature. Many ap-

proaches were proposed to support this activity and reduce its costs for client appli-

cations. In this chapter, we present related work, providing the state of the art, and

discussing their major limitations which motivated this dissertation. To accomplish

that, we separate these studies into two related subjects: Library Evolution (Sec-

tion 5.1), and Breaking Changes Impact (Section 5.2). Then, we conclude the chapter

with final remarks (Section 5.3).

5.1 Library Evolution

Library evolution and backward compatibility is a major concern for both library de-

velopers and client applications. There are several studies that focus on this area,

analyzing library changes and measuring their frequency during their life cycle. As

an initial effort to understand and measure this phenomenon, Dig and Johnson [2006]

studied a dataset of five known Java libraries, observing their changes and classifying

them according to their possible effect on client applications: breaking changes and

non-breaking changes (see the definitions in Section 2.2). Besides, with the purpose of

identifying the reasons of breaking changes, they elicited a catalog of 24 corresponding

breaking operations (e.g., Moved Method, Deleted Method, and Extra Argument), and

manually verified them in the change logs and release notes of their libraries dataset.

As a result, the authors found that 80% of all API changes are refactorings. In this dis-

sertation, we applied this classification of changes and we also identified Refactoring

as a motivation for breaking API contracts. However, we also discovered other four

reasons for breaking changes: Library Simplification, Bug Fix, Dependency

Changes, and Project Policy. Indeed, the most common reason identified in our

53

54 Chapter 5. Related Work

study (Library Simplification) is not discussed by Dig and Johnson. Additionally,

we performed a larger study, with a higher number of libraries, taking into consideration

the real impact of these changes on client applications.

In a recent work, Bogart et al. [2016] performed a general-purpose case study to

understand how, when, and by whom changes are applied in three important software

ecosystems: Eclipse,1 R/CRAN,2 and Node.js/npm.3 They contacted 28 experienced

developers, and conducted semistructured recorded interviews in phone calls that lasted

30–60 minutes. The authors structured their questions in a way that the respondents

discussed their roles as library developers and third-party clients. As a result, they re-

port the differences in practices, polices, and tools applied when performing or avoiding

breaking changes. They conclude that in Eclipse, developers usually do not break APIs;

in R/CRAN and Node.js/npm, they adopt strategies to deal with breaking changes:

in the first, they reach out affected clients with documentation, and in the second,

they simply increase the major version number. Additionally, the authors also argue

that community values take an important role in this process, helping both clients

and developers to understand and solve conflicts about design decisions and breaking

changes. Although this is also a qualitative study, we observe that the conclusions

stated by the authors do not reflect developers explanations about concrete breaking

changes. Instead, they reflect general perceptions and views about breaking changes

in the considered software ecosystems. By contrast, we based our analysis on a real

set of breaking changes collected in a larger dataset of libraries, considering developers

considerations about them.

There are also studies in the context of API deprecation. Raemaekers et al. [2014]

investigated deprecation annotations usage when studying the frequency of breaking

changes on major, minor, and patch API versions. The authors observe that meth-

ods are commonly deleted without applying deprecation annotations, and also that

methods with such annotations are never deleted. In a recent study, Brito et al. [2016]

measured the usage of deprecation messages at a large-scale level. They point that 64%

of the studied API elements (types, fields, and methods) are deprecated with replace-

ment messages, and that this percentage does not increase over time. As a conclusion,

the authors provide insights for the design of a tool to support client developers by

recommending missing deprecation messages.

To support client applications migrating between library versions, some tools and

techniques are proposed in the literature. For example, Kim et al. [2007] present a solu-

1https://eclipse.org
2https://cran.r-project.org
3https://www.npmjs.com

https://eclipse.org
https://cran.r-project.org
https://www.npmjs.com

5.2. Breaking Changes Impact 55

tion to automatically infer rules from structural changes, computed from modifications

on method signatures. Kim and Notkin [2009] propose LSDiff, a tool to compute

differences between two library versions. Nguyen et al. [2010] propose LibSync, a tool

that uses graph-based techniques to support developers migrating between library ver-

sions. Henkel and Diwan [2005] present CatchUp, an approach to capture and replay

refactoring. Hora and Valente [2015] present apiwave, an approach to keep track of

API evolution by mining import statement changes.

Finally, Dagenais and Robillard [2008] present an approach that recommends API

replacements based on library changes. In contrast, Schäfer et al. [2008] propose to

mine API usage change rules based on client changes. In the same context, Wu et al.

[2010] present an approach to infer evolution rules based on call dependency as well

as on text similarity analyses. Meng et al. [2012] propose a history-based matching

approach to support library evolution. In all these works the authors are concerned in

providing ways to help clients to deal with breaking changes. However, in none they

investigate the real extension of this problem. In this dissertation, we advanced the

knowledge on library evolution by providing two empirical studies on API breaking

changes, and discussing their results to provide insights on tools and techniques that

may support library developers and clients on these evolutionary activities.

5.2 Breaking Changes Impact

Besides analyzing the evolution of libraries, and measuring the frequency of occurrence

of breaking and non-breaking changes, there are many studies that also take into

consideration the impact of such changes on client applications. In fact, they go deeper

in their analysis by observing the usage of API elements (i.e., the more used an element

is, the more critical would it be a modification that breaks its contract).

In this context, Raemaekers et al. [2012] evaluated the stability of frequently

used APIs in terms of four defined metrics based on method removals, implementation

change, the ratio of changes in old methods to changes in new ones, and the percentage

of new methods. Therefore, the authors defined the following metrics: WRM (number

of removed methods weighted by usage frequency and age), CEM (changes observed

in existing methods), RCNO (percentage of changes in new to old methods), and

PNM (ratio of new methods observed). Next, the authors extracted their metrics by

performing a historical analysis of stability and impact on 140 clients of the Apache

Commons Library. They focused on the clients history, observing the usage frequency

and updates in their Maven build files. As a result, they discuss three major scenarios

56 Chapter 5. Related Work

on which the metrics would be useful for software developers and project managers: (i)

deciding about depending on a certain library, (ii) deciding whether to encapsulate or

not the dependencies on a project, and (iii) determining the state of maintenance of a

library. However, the real size of the phenomenon, and the impact of such instability

on client applications were questions left open. In this work, we study the evolution of

a larger set of libraries and compute the impact of breaking changes in an ultra-large

dataset of client applications. Additionally, we identify a set of characteristics related

to development and social coding that are associated with API breaking changes.

Another important work was performed by Jezek et al. [2015] in the context of

analyzing binary compatibility of OSGi-based systems.4 Nowadays, these are represen-

tative systems due to the increasing necessity of high availability (“24/7 systems”) and

the consequent necessity of features to swap libraries and components at runtime. In

this process, some incompatibilities may arise due to subtle differences between Java

compilers and the Java Virtual Machine–JVM (i.e., some API changes that may be

backward compatible according to the rules used by the compiler, but incompatible

from the JVM’s point of view). Therefore, the authors defined a set of specific changes

that may lead to unexpected runtime behavior during “hot upgrades”, dividing them

in three main groups: (i) binary and source code incompatible changes; (ii) binary

incompatible and source code compatible changes; and (iii) constant inlining. To eval-

uate these changes, and advance the understanding about API evolution, they used a

dataset of 109 Java programs and 564 program versions obtained in the Qualita Cor-

pus [Tempero et al., 2010]. As a result, the authors observed that API instability is

a common phenomenon, and also that only in a few cases it affects clients. However,

the study bases their conclusions on a small and specific set of libraries and client

applications, focusing on the analysis of particular changes in this kind of systems. In

this work, besides the larger dataset of libraries and client applications, we focus on

source code compatibility, analyzing syntactic changes on API code (which represents

the majority of breaking change scenarios).

In the Android context, McDonnell et al. [2013] investigate API stability and

adoption. The authors state that Android APIs evolve faster than client migration.

Linares-Vásquez et al. [2014] analyze how the number of questions in Stack Overflow

increases when APIs are changed. They show that Android developers are more active

when they face API modifications.

Finally, Robbes et al. [2012] investigate the impact of deprecation in a Smalltalk

ecosystem. They find that some API deprecation have large impact on client applica-

4http://www.osgi.org

http://www.osgi.org

5.3. Final Remarks 57

tions and that deprecation messages usually have low quality. In a recent work, Sawant

et al. [2016] perform a partial replication of this study in Smalltalk, but analyzing Java

APIs hosted on GitHub. They compare and contrast the results of both studies, pro-

viding insights on update practices and similarities in reaction behavior between both

languages. Still in the Smalltalk ecosystem, Hora et al. [2015] study the impact of

API replacement and improvement messages. The results show that a large amount of

clients are affected by API changes but most of them do not react.

5.3 Final Remarks

In this chapter, we discussed the state of the art in the subjects related to this disser-

tation: Library Evolution and Breaking Changes Impact. We briefly analyzed some of

these related work, and highlighted their limitations, which motivated the development

of our studies. To the best of our knowledge, this dissertation is the largest empirical

study investigating API breaking changes and their impact on client applications. It

also reveals development and social coding characteristics that impact on the frequency

of breaking changes. Moreover, this is the first study investigating the motivations be-

hind API breaking changes based on the actual explanations of developers on specific

breaking changes they have recently applied.

In the next chapter, we present our conclusions, discussing the major contribu-

tions of this dissertation and analyzing the implications of our results. In addition, we

also prospect future work on API breaking changes.

Chapter 6

Conclusion

In this chapter we present our conclusions for this master dissertation. First, we begin

by providing a summary of our two empirical studies and their results, as well as

discussing our main contributions (Section 6.1). Then, we conclude by prospecting

future work on API breaking changes (Section 6.2).

6.1 Summary and Contributions

In this dissertation, we investigated API breaking changes at a large-scale level. To

accomplish that, we proposed and implemented an APIDiff tool, which purpose is

to analyze two versions of a Java library and identify both breaking and non-breaking

changes between them. A catalog of 21 modifications was defined and implemented,

including 12 breaking and 9 non-breaking changes. We used this tool to empirically

study (i) the frequency and the impact of API breaking changes, and (ii) the motiva-

tions that drive API developers to introduce such changes in their libraries. In this

section, we summarize each study, highlighting their respective contributions.

Historical and Impact Analysis. In our first study, we measured the amount of

breaking changes on real-world libraries and its impact on client applications. For that,

we conducted a large-scale study with the top 317 Java libraries, their 9K releases,

and 260K possible clients. We selected popular and mature GitHub repositories by

filtering characteristics such as number of stars, number of releases, and age. Four

research questions were investigated to support the analysis on (i) the frequency of

API breaking changes, (ii) the behavior of these changes over time, (iii) the impact on

client applications, and (iv) the characteristics of libraries with high frequency of such

changes. Therefore, the lessons learned from our results are:

59

60 Chapter 6. Conclusion

• Libraries often break backward compatibility. We found that 27.99% of

all API changes break backward compatibility. On the median, 14.78% of the

changes, per library, are breaking changes.

• Breaking changes frequency increase over time. Comparing the first and

fifth years of the studied libraries, the percentage of breaking changes increases

20% (from 29.02% to 49.14%).

• Most breaking changes do not have a massive impact on clients. Despite

the high number of breaking changes verified, only 2.54% of clients are potentially

impacted (on the median). However, this ratio reaches 100% for outlier values.

• Development and social coding measures are associated with API

breaking changes. We found that libraries with high frequency of breaking

changes are larger, more popular, and more active.

API Breaking Changes Motivations. In our second investigation, we surveyed

the major contributors of libraries with more than 50 breaking changes observed in our

first study. The goal was to (i) elicit the reasons why developers implement breaking

changes, and (ii) check whether they are aware about the risks of these changes. From

the initial dataset of 317 libraries, 90 registered more than 50 breaking changes, from

which we retrieved 49 developers contact. Then, we sent an email for each of them,

and received 14 answers (response rate of 28%). Seven were selected for analysis. From

this study, we learned that:

• Library developers break contracts with specific motivations. We elicited

a list of five reasons that motivate developers to break API contracts: Li-

brary Simplification, Refactoring, Bug Fix, Dependency Changes,

and Project Policy;

• Most developers are aware of the risks of such changes. We found that

developers are usually aware of the impact on clients and, in some cases, adopt

strategies to alleviate them.

6.2 Future Work

Based on the previous results, we observe the opportunity of developing techniques to

assist both API developers and clients to deal with breaking changes, mitigating their

6.2. Future Work 61

impact. In addition, we also prospect some future work to strengthen the knowledge

on the motivations of API breaking changes. Therefore, we suggest:

1. Plotting historical curves to analyze library stability. First, we suggest

the development of tools that may apply the techniques used in our quantitative study,

improving API evolution and generating important feedback in real-world scenarios. In

this context, historical analysis (i.e., information retrieved from releases history) may

be adopted to measure library stability and pressure developers to avoid compatibility

faults. For example, a historical curve may be plotted with the rates of breaking

changes along libraries life cycle, revealing how stable they are, and highlighting for

developers the necessity of taking especial attention (see Figure 3.12 for an example of

three important libraries curves). Also, this analysis would provide useful information

for client developers when reasoning whether to depend or not on a library.

2. Using impact analysis to reason about performing API breaking changes.

We also observe that techniques applying impact analysis may be helpful for library

developers, supporting their decisions before changing highly used APIs. In this case,

we may use information provided by JAVALI to calculate the impact of breaking

changes in specific API elements. Therefore, before performing a breaking change,

developers would be able to analyze the extent of their impact (i.e., the amount of

affected clients), and then decide whether to perform it or not.

3. Applying firehouse interviews to enlarge our list of API breaking

changes motivations. Finally, we suggest an in-depth study based on firehouse

interviews [Murphy-Hill et al., 2015] with the contributors of popular Java libraries

hosted on GitHub. The idea is to replicate a methodology used in a previous study

about refactoring motivations [Silva et al., 2016]. During several months, we would

monitor a large dataset of libraries, fetching commits from each remote repository to

a local copy. Next, we would use our APIDiff tool to iterate through each commit

and identify changes that break compatibility. Finally, an email would be sent to the

author of the commit asking two main questions:

• Could you describe why did you perform the listed breaking changes?

• Are you aware of the possible impact of them in case they are released to clients?

In this case, our goal is to contact API developers as soon as they introduce a

breaking change, while the modification is still fresh. In this way, we would receive

more answers, which is important to increase confidence on the initial list of reasons

for breaking changes elicited in this dissertation.

Bibliography

Bogart, C., Kästner, C., Herbsleb, J., and Thung, F. (2016). How to break an API: cost

negotiation and community values in three software ecosystems. In 24th Symposium

on the Foundations of Software Engineering (FSE), pages 109--120.

Brito, G., Hora, A., Valente, M. T., and Robbes, R. (2016). Do developers depre-

cate APIs with replacement messages? A large-scale analysis on Java systems. In

23rd International Conference on Software Analysis, Evolution and Reengineering

(SANER), pages 360--369.

Businge, J., Serebrenik, A., and van den Brand, M. G. (2013). Eclipse API usage: the

good and the bad. Software Quality Journal, 23(1):107--141.

Couto, C., Pires, P., Valente, M. T., Bigonha, R., and Anquetil, N. (2014). Predicting

software defects with causality tests. Journal of Systems and Software, 93:24--41.

Cruzes, D. S. and Dyba, T. (2011). Recommended steps for thematic synthesis in

software engineering. In 5th International Symposium on Empirical Software Engi-

neering and Measurement (ESEM), pages 275--284.

Dagenais, B. and Robillard, M. P. (2008). Recommending adaptive changes for frame-

work evolution. In 30th International Conference on Software Engineering (ICSE),

pages 481--490.

Dig, D. and Johnson, R. (2006). How do APIs evolve? A story of refactoring. In 22nd

International Conference on Software Maintenance (ICSM), pages 83--107.

Dyer, R., Nguyen, H. A., Rajan, H., and Nguyen, T. N. (2013). Boa: a language and

infrastructure for analyzing ultra-large-scale software repositories. In 35th Interna-

tional Conference on Software Engineering (ICSE), pages 422--431.

Dyer, R., Nguyen, H. A., Rajan, H., and Nguyen, T. N. (2015). Boa: ultra-large-scale

software repository and source-code mining. Transactions on Software Engineering

and Methodology, 25(1):1--34.

63

64 Bibliography

Grissom, R. and Kim, J. (2005). Effect sizes for research: a broad practical approach.

Lawrence Erlbaum Associates Publishers.

Henkel, J. and Diwan, A. (2005). Catchup!: capturing and replaying refactorings to

support API evolution. In 27th International Conference on Software Engineering

(ICSE), pages 274--283.

Hora, A., Etien, A., Anquetil, N., Ducasse, S., and Valente, M. T. (2014). APIEvo-

lutionMiner: keeping API evolution under control. In 21th Working Conference on

Reverse Engineering (WCRE), pages 420--424.

Hora, A., Robbes, R., Anquetil, N., Etien, A., Ducasse, S., and Valente, M. T. (2015).

How do developers react to API evolution? The Pharo ecosystem case. In 31st IEEE

International Conference on Software Maintenance and Evolution (ICSME), pages

251--260.

Hora, A. and Valente, M. T. (2015). apiwave: keeping track of API popularity and

migration. In 31st International Conference on Software Maintenance and Evolution

(ICSME), pages 321--323.

Hora, A., Valente, M. T., Robbes, R., and Anquetil, N. (2016). When should in-

ternal interfaces be promoted to public? In 24th International Symposium on the

Foundations of Software Engineering (FSE), pages 278--289.

Jezek, K., Dietrich, J., and Brada, P. (2015). How Java APIs break–an empirical study.

Information and Software Technology, 65(C):129--146.

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D. M., and Damian,

D. (2014). The promises and perils of mining GitHub. In 11th Working Conference

on Mining Software Repositories (MSR), pages 92--101.

Kim, M. and Notkin, D. (2009). Discovering and representing systematic code changes.

In 31st International Conference on Software Engineering (ICSE), pages 309--319.

Kim, M., Notkin, D., and Grossman, D. (2007). Automatic inference of structural

changes for matching across program versions. In 29th International Conference on

Software Engineering (ICSE), pages 333--343.

Kingsum, C. and Notkin, D. (1996). Semi-automatic update of applications in re-

sponse to library changes. In 12th International Conference on Software Maintenance

(ICSM), pages 359--379.

Bibliography 65

Konstantopoulos, D., Marien, J., Pinkerton, M., and Braude, E. (2009). Best principles

in the design of shared software. In 33rd International Computer Software and

Applications Conference (COMPSAC), pages 287--292.

Linares-Vásquez, M., Bavota, G., Bernal-Cárdenas, C., Penta, M. D., Oliveto, R., and

Poshyvanyk, D. (2013). API change and fault proneness: a threat to the success

of Android apps. In 9th International Symposium on the Foundations of Software

Engineering (FSE), pages 477--487.

Linares-Vásquez, M., Bavota, G., Penta, M. D., Oliveto, R., and Poshyvanyk, D.

(2014). How do API changes trigger Stack Overflow discussions? A study on the An-

droid SDK. In 22nd International Conference on Program Comprehension (ICPC),

pages 83--94.

McDonnell, T., Ray, B., and Kim, M. (2013). An empirical study of API stability and

adoption in the Android ecosystem. In 29th International Conference on Software

Maintenance (ICSM), pages 70--79.

Meng, S., Wang, X., Zhang, L., and Mei, H. (2012). A history-based matching ap-

proach to identification of framework evolution. In 34th International Conference on

Software Engineering (ICSE), pages 353--363.

Montandon, J. (2013). Documenting application programming interfaces with source

code examples. Master’s thesis, UFMG.

Moser, S. and Nierstrasz, O. (1996). The effect of object-oriented frameworks on

developer productivity. IEEE Computer, 29(9):45--51.

Murphy-Hill, E., Zimmermann, T., Bird, C., and Nagappan, N. (2015). The design

space of bug fixes and how developers navigate it. IEEE Transactions on Software

Engineering, 41(1):65–81.

Nguyen, H. A., Nguyen, T. T., Gary Wilson, J., Nguyen, A. T., Kim, M., and

N.Nguyen, T. (2010). A graph-based approach to API usage adaptation. In In-

ternational Conference on Object Oriented Programming Systems Languages and

Applications (OOPSLA), pages 302--321.

Raemaekers, S., van Deursen, A., and Visser, J. (2012). Measuring software library

stability through historical version analysis. In 28th International Conference on

Software Maintenance (ICSM), pages 378--387.

66 Bibliography

Raemaekers, S., van Deursen, A., and Visser, J. (2014). Semantic versioning versus

breaking changes: A study of the Maven repository. In 14th Working Conference on

Source Code Analysis and Manipulation (SCAM), pages 215--224.

Reddy, M. (2011). API Design for C++. Morgan Kaufmann Publishers.

Robbes, R., Lungu, M., and Röthlisberger, D. (2012). How do developers react to API

deprecation? The case of a Smalltalk ecosystem. In 20th International Symposium

on the Foundations of Software Engineering (FSE), pages 1--11.

Robillard, M. P., Bodden, E., Kawrykow, D., Mezini, M., and Ratchford, T. (2013).

Automated API property inference techniques. IEEE Transactions on Software En-

gineering, 39(5):613--637.

Sawant, A. A., Robbes, R., and Bacchelli, A. (2016). On the reaction to deprecation

of 25,357 clients of 4+1 popular Java APIs. In 32nd International Conference on

Software Maintenance and Evolution (ICSME), pages 400--410.

Schäfer, T., Jonas, J., and Mezini, M. (2008). Mining framework usage changes from in-

stantiation code. In 30th International Conference on Software Engineering (ICSE),

pages 471--480.

Silva, D., Tsantalis, N., and Valente, M. T. (2016). Why we refactor? Confessions

of GitHub contributors. In 24th International Symposium on the Foundations of

Software Engineering (FSE), pages 858--870.

Tempero, E. D., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H.,

and Noble, J. (2010). The Qualitas Corpus: a curated collection of java code for

empirical studies. In 17th Asia Pacific Software Engineering Conference (APSEC),

pages 336--345.

Tian, Y., Nagappan, M., Lo, D., and Hassan, A. E. (2015). What are the characteristics

of high-rated apps? A case study on free Android applications. In 31st International

Conference on Software Maintenance and Evolution (ICSME), pages 301--310.

Tourwé, T. and Mens, T. (2003). Automated support for framework-based software

evolution. In 19th International Conference on Software Maintenance (ICSM), page

148.

Wu, W., Gueheneuc, Y.-G., Antoniol, G., and Kim, M. (2010). Aura: a hybrid ap-

proach to identify framework evolution. In 32nd International Conference on Soft-

ware Engineering (ICSE), pages 325--334.

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Proposed Tool and Studies
	1.2 Publications
	1.3 Outline of the Dissertation

	2 Background
	2.1 Application Programming Interfaces
	2.2 Library Change and Compatibility
	2.2.1 Breaking Changes
	2.2.2 Non-breaking Changes
	2.2.3 Change Catalog

	2.3 Final Remarks

	3 Historical and Impact Analysis
	3.1 Research Questions
	3.2 API Change Catalog
	3.3 APIDiff Tool
	3.3.1 Overview
	3.3.2 Architecture

	3.4 Study Design
	3.4.1 Selecting Java Libraries
	3.4.2 Extracting API Breaking Changes (RQ1 and RQ2)
	3.4.3 Measuring API Breaking Changes Impact (RQ3)
	3.4.4 Comparing Libraries with High and Low Frequency of Breaking Changes (RQ4)

	3.5 Results
	3.6 Summary and Findings
	3.7 Threats to Validity
	3.7.1 Construct Validity
	3.7.2 Internal Validity
	3.7.3 External Validity

	3.8 Final Remarks

	4 API Breaking Changes Motivations
	4.1 Research Questions
	4.2 Study Design
	4.2.1 Selecting Surveyed Developers
	4.2.2 Contacting Developers
	4.2.3 Filtering Responses
	4.2.4 Analyzing Data

	4.3 Results
	4.4 Summary and Findings
	4.5 Threats to Validity
	4.6 Final Remarks

	5 Related Work
	5.1 Library Evolution
	5.2 Breaking Changes Impact
	5.3 Final Remarks

	6 Conclusion
	6.1 Summary and Contributions
	6.2 Future Work

	Bibliography

