
History-Aware, Resource-Based Dynamic Scheduling  

For Heterogeneous Multi-core Processors 
 

    
 
 
 
 
 
 
 
 
    Abstract 

In this work we introduce a history-aware, resource-
based dynamic (or simply HARD) scheduler for 
heterogeneous CMPs. HARD relies on recording 
application resource utilization and throughput to 
adaptively change cores for applications during runtime.  
We show that HARD can be configured to achieve both 
performance and power improvements.  We compare 
HARD to a complexity-based static scheduler and show 
that HARD outperforms this alternative.  

 

1.     Introduction1 

Exploiting thread-level parallelism is believed to be a 
reliable way to achieve higher performance 
improvements in the future. Moreover, as technology 
advances provide microprocessor design with more 
options, finding new solutions to use the possible 
capabilities is necessary. Chip multiprocessing offers an 
attractive solution as using multiple cores makes efficient 
execution of parallel threads possible. 

There are many design decisions that impact 
performance in a CMP. Designers have to make many 
choices including, the number of cores, the appropriate 
interconnect and the memory system. Server applications 
focus primarily on throughput. A CMP targeting these 
applications, ideally, uses a large number of small low-
power cores. On the other hand, for desktop users the 
performance of a single application is more important. 
Architects of a desktop would more likely focus on a 
smaller number of larger and more complex cores with 
better single-thread performance. As CMPs become 

                                                            
+  The author was spending his sabbatical leave at the school of 
computer science of IPM when this work was done. 

more popular in different design spaces, and  considering 
the variety of programs that a typical processor is 
expected to run,  exploiting  heterogeneous CMPs  seems 
to be a reasonable future choice.  A heterogeneous CMP 
equipped with both high- and low-complexity cores 
provides enough resources to execute both latency- and 
throughput-sensitive applications efficiently. Recent 
research in heterogeneous CMPs has identified 
significant advantages over homogeneous CMPs in terms 
of power and throughput [1]. 

 In order to achieve the potential benefits of 
heterogonous CMPs, an effective application-to-core 
scheduler is essential. Such a scheduler would assign 
latency-sensitive applications to stronger cores while 
leaving the throughput-sensitive to the weaker ones. 
Running demanding applications on weak cores hurts 
performance. Meantime, running low-demand 
applications on strong cores, results in unnecessary 
power dissipation. The task of the scheduler is to avoid 
both scenarios, finding the best assignment that prevents 
both resource over-utilization and under-utilization. 

Between two possible scheduling policies, static and 
dynamic, the latter has significant advantages. This is 
particularly true for heterogeneous CMPs. In addition to 
the behavior variations among applications, there are 
behavior changes within an application. Therefore, an 
application's demand for processor resources varies 
during runtime.  Dynamic scheduling uses runtime 
information to tune core-application assignments through 
such changes.  

Many scheduling policies have been introduced for 
parallel programs, (e.g., gang scheduling and 
uncoordinated scheduling).  Such policies often focus on 
concurrent execution on the threads of an application on 
distinct processors. In this study applications are 
independent.     

Ali Z. Jooya 
Computer Engineering Department 

Iran University of Science and Technology 
School of Computer Science of IPM 

Tehran, Iran 
al_zolfaghari@comp.iust.ac.ir 

 

Amirali Baniasadi+ 
Electrical and Computer Engineering 

Department 
University of Victoria 

Victoria, British Columbia, Canada 
amirali@ece.uvic.ca 

 

Morteza Analoui 
Computer Engineering Department 

Iran University of Science and Technology 
Tehran, Iran 

analoui@iust.ac.ir  
 



We intro
dynamic (or s
CMPs.  We re
application to 
how we set 
improving per
overall perform
more resource
dissipation by
to weaker core

We evalu
user’s and s
Turnaround T
System Throu
[2].  Note tha
the overall 
Therefore, and
report Fairnes

The rest o
Section 2 de
section 3 we i
4 we presen
summarizes th
section 6 we o

 

2.     Moti

Application be
in variations 
resources dur
weakly utilize
may over-utili

Figures 1 
processor thro
We have div
100K clock cy
instructions d
throughput. W
average inst
instruction w
throughput fo
shows integer 
same applicat
that applicatio
during runtim
[3-5]. 

Applicatio
variations ha
different core
resources. H
applications on
system throug
This goal co

oduce a his
imply HARD) 
ecord and use 
find the best m
our system p

rformance or r
mance by upgr
es to stronger

y downgrading
es.  

uate our sched
system’s. We 
ime (ANTT) fo

ughput (STP) f
at the Fairness

throughput 
d to provide b
ss for our sched

of the paper ha
scribes the m
introduce HAR
nt methodolog
he results and c
offer concludin

ivation 

ehavior chang
in applicati

ring different 
e processor re
ize them.  

and 2 show be
oughput and c
ided the appl

ycle intervals. W
during an inter

We define core 
truction wind
window size. 

r fmm and ba
and floating p

ions. We conc
ons show perio
e. This is con

on behavior 
ave motivated
es come with 
Heterogeneous
n different cor

ghput while im
ould be achi

tory-aware, r
scheduler for 
past core assig

matching core. 
parameters we
reducing power
rading applica
r cores. We 

g under-utilizin

duler from two
use Averag

or the user’s p
for the system
s of the schedu
and power 

better understan
duler.  

as the following
motivation of 
RD in more de
gy and result
contributions o
g remarks.  

es during run 
on demand 
phases. Some

esources while

ehaviour chang
core utilization
lication execut
We use the num
rval to estima
utilization as t

dows occupa
Figure 1 i

arnes applicati
point core utili
clude from Fi
odic and varia
sistent with pr

and resou
d designing 

different com
s CMPs r
es with the goa

mproving resou
ieved if mor

resource-based
heterogeneous

gnments for an
Depending on

e can aim at
r. We improve

ations requiring
reduce power

ng applications

o perspectives
e Normalized

perspective and
m’s perspective
uler can affect

consumption
nding, we also

g organization
our study. In

etail. In section
ts. Section 5
of our work. In

time resulting
for processor
e phases may
e other phases

ges in terms of
n, respectively
tion time into
mber of retired
ate application
the ratio of the
ancy to the
illustrates the
ions. Figure 2
izations for the
gures 1 and 2
able behaviour
revious studies

urce demand
CMPs where

mplexities and
run different
al to maximize

urce utilization
re demanding

d 
s 
n 
n 
t 
e 
g 
r 
s 

: 
d 
d 
e  
t 
. 

o 

. 
n 
n 
5 
n 

g 
r 
y 
s 

f 
. 

o 
d 
n 
e 
e 
e 
2 
e 
2 
r 
s 

d 
e 
d 
t 
e 
. 

g 

appli
powe
appli
cores

T
assig
appli
a dyn
accor
show
sched
impr
heavy

 

 

 

Figur
The x
the sy

Figur
applic
The x

0
40
80

120
160
200

0

50

100

150

200

0

20

40

60

80

100

0
20
40
60
80

100
 

ications/thread
erful core
ications/thread
s. 

To achieve b
gned to core
ication demand
namic schedul
rding to resou

wn that heterog
duling increa
ove average re
y loads [6].  

re 1. Throughpu
x-axis shows the
ystem throughpu

re 2. Core u
cations for integ
x-axis shows the 

1 401

1

1 401

1

0                           

0                400       

0                400       

0                            

           integer unit u

s are assigned
s while 
s are assigned

est results, ap
es with diffe
d changes. Un
ler can reassig

urce requireme
geneous CMPs 
ase maximum
esponse time a

ut for a) fmm a
e execution inter
ut divided by tho

utilization for 
ger and floating
execution interv

801 120

101

801 12

101

    100                       

      800            1200
intervals 

(a) 

intervals 
(b) 

       800             1200

     100                      

intervals 
(a) 

interva
(b) 

utilization                   

d to more com
less d

d to smaller an

pplications ha
ferent comple
der such circu

gn applications
ents. Previous 

equipped with
m system th
and remain sta

and b) barnes ap
rvals and the y-

ousand.  

a) fmm and 
g point instructio
vals. 

01 1601

201

201 1601

201

       200                   

            1600           2

0            1600            

          200                als 

            floating poin

mplex and 
demanding 
nd simpler 

ave to be 
exities as 
umstances, 
s to cores 
study has 

h dynamic 
hroughput, 
able under 

 

 

pplications. 
axis shows 

 

b) barnes 
on buffers. 

2001

301

2001

30

           300 

2000  

2000  

             300  

nt unit utilization 



HARD comes with two important benefits. The first 
benefit is maximizing throughput. This is achieved as 
more demanding threads are assigned to more powerful 
cores as soon as such demands are noted and suitable 
cores become available.  The second benefit is reducing 
power. The scheduler assigns threads and applications to 
more simple cores as soon as the system detects that the 
application is underutilizing its core.  In this work we 
show that both benefits are obtainable using HARD.  

  

3.     HARD Scheduler 

In this section we introduce HARD. The scheduler relies 
on two subsections: phase detection and reassignment.  

 

 3.1.     Phase Detection Unit  

In order to record application behavior we run our phase 
detection algorithm at the end of every 100K clock cycle 
interval.  Very short intervals can degrade performance 
as the result of frequent and high switching overhead. 
Long intervals, on the other hand, may miss application 
phase changes. We picked 100K intervals after testing 
many alternatives.  

The phase detection algorithm relies on two 
measurements: throughput and core utilization. In [17] 
Kumar used throughput to detect phase changes. We use 
throughput and core resource utilization to identify a 
phase change. We use a counter to record the number of 
retired instructions as an estimation of application 
throughput. The size of the counter depends on the 
maximum possible throughput in each core. For 
example, maximum nominal throughput of a 6-way core 
during a 100K clock interval is 600K instructions. 
Therefore, a 20-bit binary counter is large enough to 
store the throughput of the intervals.      

To calculate core utilization, instruction window 
occupancy is measured. Two counters, one for integer 
instruction window utilization and one for floating point 
instruction window utilization, are used to estimate core 
utilization. The phase detection algorithm uses the 
greater of the two to decide core utilization. The sizes of 
the counters depend on both instruction windows size 
and interval size. For example, for a core with the largest 
instruction window among all cores (i.e., 104 and 48 for 
integer and floating point instructions respectively), and 
100K clock intervals, the maximum number of occupied 
instruction window entries are 104×100K and 48×100k, 
respectively.  These numbers can be stored using 24-bit 
and 23-bit binary counters. Core utilization within each 
interval is estimated by dividing the counter values by 
the interval size.  

The phase detection algorithm uses throughput and 
core utilization to categorize intervals into one of the 
following classes.           

• Upgrading (UG): An interval belongs to this 
category if a) the utilization exceeds high 
utilization threshold (HUT) or b) the throughput 
exceeds the high throughput threshold (HTT). 
Either condition implies that the application could 
use more resources and that switching to a stronger 
core will most likely boost performance.   

• Downgrading (DG): An interval belongs to this 
category if utilization is less than the low utilization 
threshold (LUT) and throughput is less than the low 
throughput threshold (LTT). Under these 
circumstances we assume that the application is 
under-utilizing core resources and switching it to a 
weaker core will most likely reduce power 
dissipation without compromising performance.  

• No-change (NC): An interval not belonging to 
either of the classes discussed above is assumed to 
be in this class. We assume that the core is running 
the application within reasonable power and 
performance budgets. Therefore there is no need to 
switch to a weaker or stronger core. 

Figure 3 shows these three classes.  

 

 
Figure 3. Three intervals classes. The x-axis represents 
throughput and the y-axis represents core utilization. 

 

3.2.     Reassignment Unit 

As we discussed before, our dynamic scheduler uses the 
phase detection algorithm to detect application phase 
changes. When the phase detection unit detects an 
upgrading or downgrading phase change, the scheduler 
activates the reassignment unit. This unit records 
application phase change history. History is used to 
decide if the application needs to switch to another core.  

Note that there is a cost associated with switching. 
For example, the cache should be flushed to save all dirty 



cache data in
caches is an
simulator we u

The reass
unit output and
the demand h
own demand c
phase change
incremented o
classified as e
value is used
weaker core is
stronger or we
or below a pre
these thresho
alternatives).  

We run th
However, swi
consecutive in
decided thresh
DHC masks 
behavior effec

Our study
attention to m
our design we
number of co
shows that bes
after four cons

As the d
scheduler shou
application ca
instance, cons
levels of per
application is
reassignment u
mid-level core
this stage. In 
exists, the sch
original core t
core with the 
target cores ar
the busy cor
scheduler pic
upgrading to 
least demand 
weaker core, 
counter is pic
applications ru
most (or harm 

In some c
degrade the 
example, con
demand count

n the shared L
nother unwant
utilize applies t

signment unit r
d the value of 

history counter
counter which 
e history for 
or decremente
either UG or D
d to decide if 
s necessary. W
eaker core if t
e-decided thres
olds to 6 an

he phase detec
itching to a n
ntervals until D
holds. It is im

the transitiv
ctively minimiz

y shows that N
make sure that t
e reset the dem
onsecutive NC
st results are ob
secutive NC in

demand count
uld pick a str
an move only
sider a CMP w
rformance, and
s running on
unit can only a
es.  There may

the event wh
heduler transfe
to one of the 
lowest ID is 

re busy, the sch
es and swap 
cks the targe
a stronger cor
counter is pick
the (busy) cor
cked. Intuitive
unning on the 
least in some 

cases swappin
overall throu

nsider an upg
ter on the targ

L2. The cold-s
ted consequen
these overhead

relies on the p
a 5-bit counter
r (DHC). Each
is used to keep
each applica

ed if the last
DG respectively

switching to 
We switch the a

this counter’s v
shold respectiv
nd -6 after 

ction algorithm
new core requ
DHC reaches o

mportant to not
ve change in
zing oscillation

NC intervals r
the scheduler 
mand counter 

C intervals occ
btained if the c
tervals.  

ter reaches 6
ronger (or wea
y one level a
with cores repr
d a situation 
n the weake
assign the core

y be more than
here one or m
ers the applica
idle cores (in 
picked). If al

heduler has to 
the two app

et core as fo
re, the (busy) 
ked. When dow
re with the gr
ely we do so 

two swapping
cases as explai

ng the two app
ughput of the
grading switc
get core is eq

start effect on
nce [17]. The
ds.  

phase detection
r referred to as
h core has its
p record of the

ation. DHC is
t interval was
y. The counter
a stronger or

application to a
value is above
ely (we picked
testing many

m every 100K
uires up to six
one of the pre-
tice that using
n applications
n frequency.  

require special
is effective. In
if and when a

cur. Our study
counter is reset

6 (or -6), the
aker) core. An
at a time. For
resenting three
where a UG

est core. The
e to one of the
n one choice at
more idle core
ation from the

our study the
ll the possible
choose one of

plications. The
ollows. When
core with the

wngrading to a
reatest demand

to make sure
g cores benefit
ined below).  

plications may
e system. For
ch where the
qual or greater

n 
e 

n 
s 
s 
e 
s 
s 
r 
r 
a 
e 
d 
y 

. 
x 
-
g 
s 

l 
n 
a 
y 
t 

e 
n 
r 
e 

G 
e 
e 
t 
e 
e 
e 
e 
f 
e 
n 
e 
a 
d 
e 
t 

y 
r 
e 
r 

than 
upgra
the s
sched
a mo
dema
of th
incre
(10 i
chan
the s
upgra
value

T
value
is ex
sectio
bench
execu
differ
Figur
over 
water
DHC
(mos
proce
core 
any 
Ther
its ph
provi
4(b) 
with 
are d
of th
rest (

Figur
weak
 

-12
-8
-4
0
4
8

12

-12
-8
-4
0
4
8

12

six. The appl
ading one and
witch takes pl
duler avoids th
ove in the oppo
and counter. Fo
he application 
ements DHC u
in this study). 
ge DHC after 
scheduler is a
ading switch 
e of DHC is -1

To provide bet
es for one stro
xtracted from 
on 4 for more 
hmark may 
ution time, the
rent benchma
re 4(a) shows
850 intervals

r-spatial (90%
C value of 1
stly from water
essor. This con
by one applic
application to
efore, DHC rem
hase decreasin
iding a chance
shows a simila
DHC equal to

divided among
e intervals with
(including the b

re 4. Demand co
core. The x-axi

1

1

lication on the
d will most lik
ace. To avoid 

he switch if the
osite direction 
or each interva

does not tak
until the count

The followin
reaching the m

aware that the
as soon as p
0. 

tter insight in F
ng core and on
running five b
details) on a f
run on diffe

e intervals bel
arks coming 
s DHC values
s. The core tim

% of intervals) 
0 show upgr

r-spatial), whic
ndition results 
cation as the s
o a core wit
mains 10 until
ng DHC with 
e for a switch
ar trend for the
o -10) over 400
g all benchmar
h DHC of -10 
beginning inter

 

 
 

ounter values fo
s is the executio

intervals
(a) 

intervals
(b) 

e target core i
kely lose perfo

such circumsta
e target core ha

of that sugges
al that the switc
ke place, the 
ter reaches a m
g UG interval
maximum. At 
e application 

possible. The 

Figure 4 we rep
ne weak core. 
benchmarks (m
five-core CMP
erent cores d
ong to the exe
and leaving 
 for the stron
me is divided
and cholesky 
rading switch
ch are impossib

in exclusive u
scheduler cann
th DHC equa
 the application
every DG int

h to other core
e weakest core 
0 intervals. The
rks, except oce
belong to chol
rvals) belong t

or a) a strong cor
n interval. 

 

s 

is also an 
ormance if 
ances, the 

as to make 
sted by its 
ch request 
scheduler 
maximum 
ls can not 
this point 
needs an 
minimum 

port DHC 
This data 

mix3, see 
P. As each 
during its 
ecution of 
the core. 

ngest core 
d between 
(10%). A 
 requests 
ble on this 
usage of a 
not switch 
al to 10. 
n changes 
terval and 
es. Figure 
(intervals 

e intervals 
ean. Most 
lesky. The 
o barnes.     

 

re and b) a 



4.     Methodology  

 

We simulate a heterogeneous multicore processor using 
three types of cores with different performance levels, 
one EV6-like, two EV5-like and two EV4-like cores as 
reported in Table 1. Although there are many other 
possible configurations, our study shows that this 
configuration provides adequate execution resources to 
r u n  t h e  w o r k l o a d s  c h o s e n  i n  t h i s  s t u d y . 

The EV6-like core has the highest performance. The 
level one cache is private for each core and the 
instruction and data caches are separated. A large unified 
level two cache is shared between all cores. MESI 
protocol is used for cache coherency.  All cores are 
simulated in 100 nm technology and run at 2.1 GHz. 

 
  Table 1. Core configurations 

Core EV6-like EV5-like EV4-like 
Issue-width 6 (OOO) 4 (OOO) 2 (OOO) 
IL1-cache 64 KB, 4 way 32 KB , 2way 16 KB , DM 
DL1-cache 64 KB, 4 way 32 KB, 2 way 16 KB,  DM 
L2-cache 4 Mb       ,     8 way           (shared) 
B-predictor Hybrid Hybrid static 
Int Window 
size 104 80 56 

FP window 
size 48 32 16 

 
 
The simulations have been carried out using a 

modified version of the SESC simulator [7].  We use 
eight scientific/technical parallel workloads from 
Splash2 [8]. These workloads consist of four 
applications, i.e., barnes, water-spatial, ocean and fmm, 
and four computational kernels, i.e., radix, lu, cholesky 
and fft. We have used multi-program workloads which 
are composed of different sets of Splash2 benchmarks. 
Table 2 shows the benchmarks of each multi-program 
workload.  
 

 

 

 

 

 

 

5.     Experimental results 

 

In this section we present the simulation results. To 
provide better understanding we also compare HARD to 
a static scheduler. However there are many possible 
static schedules possible for each application mix, we 
assign applications to cores based on application run 
time. For example, the most time consuming application 
is assigned to the strongest core. The application runs on 
the same core during the entire runtime.  

Quantifying the performance of a computer system 
executing multiple programs is not a straightforward task 
as programs of the same mix interfere. In [2], Eyerman et 
al., introduced three metrics for quantifying the 
performance of a computer system executing multiple 
programs. Average Normalized Turnaround Time 
(ANTT) quantifies the average turnaround time 
slowdown due to multi application execution. System 
Throughput (STP) quantifies accumulated single-
program performance under multi program execution. A 
system is fair if the coexecuting programs in 
multiprogram mode experience equal relative progress 
with respect to single-program mode.  

 

5.1.     Performance Oriented Configuration  

 

In this section we report results assuming that 
performance is the main goal. To estimate performance 
of each mix we measure performance for each core and 
report average performance across all cores.  We tune the 
scheduler using the parameters reported in Table 3. We 
run all mixed benchmarks using both HARD and the 
static scheduler. We measure and report (in Table 3) 
average performance and power achieved for all mixed 
benchmarks.   

 

 

 

 

 

 

 

 

         Table 2. Mixed benchmarks 

 barnes water-
spatial ocean fmm radix lu cholesky fft 

mix1        
mix2         
mix3          
mix4       
mix5         
mix6       
mix7       
mix8        

 



 
 
 
 
 
 
 
 
 
 
 

 

In Table 
throughput am
For example, 
run the eight b
Among all be
throughput, de

Figures 5
improvements
scheduler, resp
report for Set
performance a
other benchm
the result of 
achieve highe
better perform
Figure 5. Mi
dissipation (Fi
benchmarks c
spatial benchm
demanding com

 

Figure 5. Perf
performance

 

 

 

0%

5%

10%

15%

20%

mix1

      

3 max refers
mong all applic

to measure m
benchmarks us
nchmarks, wat

eciding max. 

5 and 6 show
s achieved by H
pectively.  In t
t-B. For some
and power are
arks, we witn
an aggressive

er throughput. 
mance compare
ix8, however, 
igure 6). This d
composing the
mark (from m
mpared to barn

formance improv
e orineted config

mix2 mix3 mi

      Table3. Thr

Thr. C

Set-A 
EV
EV
EV

Set-B 
EV
EV
EV

s to the maxi
cations running
ax for the stro
sed in this stud
ter-spatial show

w performanc
HARD compar
the interest of 

e benchmarks 
e improved by
ess an increas
e usage of st

For instance
ed to mix 4 

also shows 
difference is th
 mixes. In th

mix8) is more
nes (from mix4

vement using  HA
guration vs. static

ix4 mix5 mix6

resholds for perf

Core LTT

V6-like 30% m
V5-like 30% m
V4-like 30% m
V6-like 25% m
V5-like 25% m
V4-like 25% m

imum possible
g on each core
ongest core we
dy on the core
ws the highest

ce and power
red to the static
space we only
(mix4-6) both
y HARD. For
se in power as
trong cores to
, mix8 shows
as reported in
higher power

he result of the
his case water-
e performance
4). 

ARD under the 
c scheduling. 

mix7 mix8

formance oriente

T LUT  

max  30%  
max  30%  
max  30%  
max  20%  
max  20%  
max  20%  

e 
. 
e 
. 
t 

r 
c 
y 
h 
r 
s 
o 
s 
n 
r 
e 
-
e 

 

 

 

 

 

 

Figu
pe

 

F
we u
appli
there
Every
switc
cores
mode
lead 
avail
circu
ANTT
time 
progr
proce
numb
Fairn
Figur
mixe

 

 

 

-30%

-20%

-10%

0%

10%

20%

ed scheduling.

HTT H

50% max 7
50% max 7
50% max 7
50% max 9
50% max 9
50% max 9

ure 6. Power red
erformance orien

Figure 7 repor
use HARD fo
ication executi
e is only one b
y phase chang
ch to another c
s are idle). On
e, a request fro

to a switch 
lability of ta
umstance ANTT
TT below one 

is improved 
ram execution
essor throughp
ber of applicat
ness is achieve
re 7 shows, HA

es. 

%

%

%

%

%

%

mix1 mix2

HUT Performan
improvem

0% 
9% 0% 

0% 
0% 

10%0% 
0% 

duction achieved
nted configuratio

rts ANTT, STP 
or both single
ions. In single
benchmark run
ge of the benc
core (one core

n the contrary, 
om an applicat

as a switch 
arget cores. 
T can be less 
indicates that 
comparing m

n. The same 
put when STP 
tions in mixed 
ed when Fairn
ARD improves

2 mix3 mix4

nce 
ment 

Increased 
power  

3% 

2% 

d using  HARD u
on vs. static sche

and Fairness.
-application a
e application e
nning on the p
chmark will r
e is in use and
in the multi-ap
ion does not n

also depend
 Therefore, 
than one. Not
processor’s tu

multi-program 
could be sa

is greater than
benchmarks). 

ness is equal to
s ANTT and ST

mix5 mix6 mi

 
under the 
eduling. 

Note that 
and multi-
execution, 
processor. 
esult in a 

d all other 
pplication 

necessarily 
ds on the 

in this 
te that an 
urnaround 
to single 

aid about 
n five (the 
Complete 
o one. As 
TP for the 

ix7 mix8



 
(a) 

 
(b) 

 
(c) 

Figure 7. a) ANTT, b) STP and c) Fairness for  HARD under 
the performance oriented configuration. 
 

5.2.     Power Oriented Scheduling 

In this section we report results assuming that reducing 
power is the main goal. Again we measure and report 
average power across  all cores.  We use  the  parameters 

 

 

 

 

 

 

 

 

 

 

 

introduced in Table 4.  Table 4 shows three sets of 
thresholds. As reported Set-C results in maximum power 
saving while Set-A leads to minimum performance 
loose. We run all mixed benchmarks using both HARD 
and the static scheduler. We measure and report (in 
Table 4) average performance and power achieved for all 
mixed benchmarks.   

Figure 8 and 9 show the amount of performance loss 
and power saving, respectively, using Set-B from Table 
4. As reported some mixes of benchmarks (e.g., mix7) 
come with higher performance loss but also show very 
high power reduction compared to others. On the other 
hand there are mixes (e.g., mix4) that show considerable 
power savings at the expense of modest performance 
loss. 

 

 
Figure 8. Performance loss using power oriented HARD 
scheduling vs. static scheduling. 

 
Figure 9. Power reduction achieved using  HARD under the 
power oriented configuration vs. static scheduling. 

 

 

 

 

 

 

 

 

 

 

 

0

0.2

0.4

0.6

0.8

1

mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8

0

5

10

15

mix1 mix2 mix3 mix4 mix5 mix6 mix7

0
0.1
0.2
0.3
0.4
0.5
0.6

mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8

0%

20%

40%

60%

mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8

0%

20%

40%

60%

mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8

                Table4. Thresholds used in power oriented scheduling 

Thr. Core LTT LUT  HTT HUT 
Performance 

lost 
Power 
saving  

Set-A 
EV6-like 50% max  35%  80% max 90% 

9% 30% EV5-like 40% max  30%  70% max 70% 
EV4-like 25% max  15%  60% max 60% 

Set-B 
EV6-like 30% max  40%  90% max 90% 

11% 33% EV5-like 25% max  25%  75% max 80% 
EV4-like 20% max  30%  70% max 90% 

Set-C 
EV6-like 40% max  30%  70% max 85% 

21% 46% EV5-like 30% max  30%  80% max 80% 
EV4-like 25% max  25%  50% max 70% 



Figure 10 reports ANTT, STP and Fairness.  

 
(a) 

 
(b) 

 
(c) 

Figure 10. Average Normalized Turnaround Time, System 
Throughput and Fairness for HARD using power oriented 
configuration. 

 

To provide better understanding we measured the 
number of UG/DG switches for mix2 and mix7 of 
Table2. The number of UG/DG switches of mix2 are 1/1, 
1/0, 1/0, 2/2 and 2/1 for performance oriented scheduling 
and 0/0, 3/2, 0/0, 1/2 and 3/2 for power oriented 
scheduling for radix, lu, barnes, water-spatial and 
cholesky benchmarks, respectively. The number of 
UG/DG switches of mix7 are 1/1, 1/0, 1/1, 1/1 and 1/0 in 
performance oriented scheduling and 0/0, 5/4, 1/3, 7/7 
and 4/2 in power oriented scheduling for radix, cholesky, 
water-spatial, fmm and lu benchmarks, respectively.  

In Figure 11 we show the cores participating in the 
execution of barnes benchmark chosen from mix3. 
Regular and dotted lines show the cores picked to 
execute the application for both performance oriented 
and power oriented configurations respectively. For 
example, barnes starts its execution on the middle 
performance core and switches into the weakest core and 

ends its execution on the middle performance one under 
the power oriented configuration (represented by dotted 
line). 

 
Figure 11. Cores that barnes benchmark meets during its 
execution with performance oriented (regular line) and power 
oriented (dotted line) HARD, extracted from mix3.  

 

6.     Related Works 

 

In this section we briefly review previous works on 
phase change detection techniques and dynamic 
scheduling in multiprocessor, multithreaded and 
multicore platforms. Comparison between our proposed 
scheme and previous studies is part of our ongoing 
research.  

In [9] authors improved the execution time and 
power of multicore processors by predicting the optimal 
number of Threads depending on the amount of data 
synchronization and the minimum number of threads 
required to saturate the off-chip bus.  

In [10] Accelerated Critical Sections (ACS) is 
introduced which leverages the high-performance core(s) 
of an Asymmetric Chip Multiprocessor (ACMP) to 
accelerate the execution of critical sections. In ACS, 
selected critical sections are executed by a high-
performance core, which can execute the critical section 
faster than the other, smaller cores. Consequently, ACS 
reduces serialization. 

In [11] authors proposed scheduling algorithms 
based on the Hungarian Algorithm and artificial 
intelligence (AI) search techniques. Because of dynamic 
heterogeneity, hard errors and process variations, 
performance and power characteristics of the future 
large-scale multicore processors will differ among the 
cores in an unanticipated manner. These thread 
assignment policies effectively match the capabilities of 
each degraded core with the requirements of the 
applications. 

In [12] devised phase co-scheduling policies for a 
dual-core CMP of dual-threaded SMT processors was 
introduced. They explored a number of approaches and 
find that the use of ready and in-flight instruction metrics 

0
0.3
0.6
0.9
1.2
1.5
1.8

mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8

0

2

4

6

8

mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8

0

0.2

0.4

0.6

0.8

mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8

            power oriented HARD                    performance oriented HARD 

EV4-like 

EV5-like 

EV6-like 

 0           100        200         300        400        500         600        700         800 
intervals 



permits effective co-scheduling of compatible phases 
among the four contexts.  

In [13] authors proposed a scheme for assigning 
applications to appropriate cores based on the 
information presented by the job as an architectural 
signature of the application.  

In [14] authors made a case that thread schedulers 
for heterogeneous multicore systems should balance 
between three objectives: optimal performance, fair CPU 
sharing, and balanced core assignment. They argued that 
thread to core assignment may conflict with the 
enforcement of fair CPU sharing. They demonstrate the 
need for balanced core assignment. In [15] authors 
introduced a cache-fair algorithm which ensures that the 
application runs as quickly as it would under fair cache 
allocation, regardless of how the cache is actually 
allocated. If the thread executes fewer instructions per 
cycle than it would under fair cache allocation, the 
scheduler increases that thread’s CPU time slice. 

In [16] Kumar monitored workload run-time 
behavior and detected significant behavior changes.  The 
study also considered different trigger classes based on 
how IPC changes from one steady-phase to another.  

 

7.     Conclusion 

In this work we presented HARD a dynamic scheduler 
for heterogeneous multi-core systems. HARD uses past 
thread assignments to find the best matching core for 
every core.  HARD saves power by downgrading 
applications with low resource utilization to weaker 
cores. HARD improves performance by upgrading 
demanding application to stronger cores.  

We study different program mixes and show that 
HARD can reduce up to 46% power while improving 
performance by 10% for the application mixes used in 
this study. 

 

ACKNOWLEDGMENTS 
 

This work was supported by the Iran’s Institute for 
Research in Fundamental Sciences (IPM). 

 

References 
[1] W. Madison, A. Batson, Characteristics of program 

localities, In Communications of the ACM, vol. 19(5), 
May 1976, pp. 285-294. 

[2] Eyerman, S.; Eeckhout, L. System-Level Performance 
Metrics for Multiprogram Workloads. IEEE Micro. IEEE 
Computer Society. Vol. 28 (3). 2008. pp. 42-53. 

[3] P. Denning, On modeling the behavior of programs, In 
Proc. AFIPS Conf. 40 (SJCC), 1972, pp. 937-944. 

[4] Batson, W. Madison, Measurements of major locality 
phases in symbolic reference strings, In  Proc. 1976 
International Symposium on Computer Performance and 
Modeling, Measurement and Evaluation, ACM 
SIGMETRICS and IFIP WG7.3, March 1976, pp. 75-84. 

[5] T. Sherwood, E. Perelman, B. Calder, Basic block 
distribution analysis to find periodic behavior and 
simulation, In Proc. 2001 International Conference on 
Parallel Architectures and Compilation Techniques, Sep. 
2001, pp. 3-14. 

[6] Rakesh Kumar, Dean Tullsen, Parthasarathy Ranganathan, 
Norman Jouppi, and Keith Farkas. “Single-ISA 
Heterogeneous Multi-core Architectures for Multithreaded 
Workload Performance". In the 31st International 
Symposium on Computer Architecture, ISCA-31, June, 
2004. 

[7] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. 
Ceze, S. Sarangi, P. Sack, K. Strauss, P. Montesinos, 
SESC simulator, January 2005, http://sesc.sourceforge.net. 

[8] S.C. Woo, M. Ohara, E. Torrie, J. P. Singh, A. Gupta, The 
SPLASH-2 Programs: Characterization and 
Methodological Considerations, In Proc. 1995 
International Symposium on Computer Architecture, 
Santa Margherita Ligure, Italy, by the ACM, June 1995, 
pp. 24-36. 

[9] M. Aater Suleman, Moinuddin K. Qureshi, and Yale N. 
Patt, Feedback Driven Threading: Power-Efficient and 
High-Performance Execution of Multithreaded Workloads 
on CMPs, In the International Conference on Architectural 
Support for Programming Language and Operating 
Systems (ASPLOS) 2008. 

[10] M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi 
and Yale N. Patt, Accelerating Critical Section Execution 
with Asymmetric Multi-Core Architectures, In the 
International Conference on Architectural Support for 
Programming Language and Operating Systems 
(ASPLOS) 2009. 

[11] Jonathan A. Winter, David H. Albonesi: Scheduling 
algorithms for unpredictably heterogeneous CMP 
architectures. DSN 2008: 42-51 

[12] Ali El-Moursy, R. Garg, David H. Albonesi, Sandhya 
Dwarkadas: Compatible phase co-scheduling on a CMP of 
multi-threaded processors. IPDPS 2006. 

[13] Daniel Shelepov and Alexandra Fedorova, Scheduling on 
Heterogeneous Multicore Processors Using Architectural 
Signatures, In Proceedings of the Workshop on the 
Interaction between Operating Systems and Computer 
Architecture, in conjunction with ISCA-35, Beijing, 
China, 2008. 

[14] Alexandra Fedorova, David Vengerov and Daniel 
Doucette, Operating System Scheduling on Heterogeneous 
Core Systems, In Proceedings of the First Workshop on 
Operating System Support for Heterogeneous Multicore 
Architectures, at PACT 2007, Brasov, Romania. 



[15] Alexandra Fedorova, Margo Seltzer and Michael D. 
Smith, Improving Performance Isolation on Chip 
Multiprocessors via an Operating System Scheduler, In 
Proceedings of the Sixteenth International Conference on 
Parallel Architectures and Compilation Techniques 
(PACT), Brasov, Romania, September 2007. 

[16] Rakesh Kumar, Holistic Design for Multi-core 
Architectures, PhD Thesis, university of California, San 
Die go. 2006.  

 

 


