
History checking of temporal fuzzy logic formulas for monitoring behavior-based
mobile robots

Appears in International Conference on Tools with Artificial Intelligence, pages 312-319, 2000

Khaled Ben Lamine and Froduald Kabanza
Dépt. de math et info

Universit́e de Sherbrooke
Sherbrooke, QC J1K 2R1 Canada
{benlamin,kabanza}@dmi.usherb.ca

Abstract

Behavior-based robot control systems have shown re-
markable success for controlling robots evolving in real
world environments. However they can fail in different man-
ners due to their distributed control and their local deci-
sion making. In this case, monitoring can be used to de-
tect failures and help to recover from them. In this work,
we present an approach for specifying monitoring knowl-
edge and a method for using this knowledge to detect fail-
ures. In particular we show how temporal fuzzy logic can
be used to represent monitoring knowledge and then uti-
lized to effectively detect runtime failures. New semantics
are introduced to take into consideration uncertainty and
noisy information. There are numbers of advantages to our
approach including a declarative semantics for the monitor-
ing knowledge and an independence of this knowledge from
the implementation details of the control system. Moreover
we show how our system can deal effectively with noisy in-
formation and sensor readings. Experiments with two real-
world robots and the simulator are used to illustrate fail-
ure examples and the benefits of failure detection and noise
elimination.

1. Introduction

Some key issues in the design of robot control architec-
tures are whether the architecture should be centralized or
distributed, whether the reasoning should be deliberative or
reactive, whether there is a global model of the world and
whether the control should be top-down or bottom-up.

In one end of the spectrum deliberative architectures op-
erate in a sense, plan, act open-loop style. Sequences of
actions emerge from the interplay of the planner, the given

goals, and the world model constructed from the sensory
data. Actions are dictated by a generated plan. They depend
on the information available at the planning time. Thus
discrepancies between the “real world” at execution time
and the internal “world model” used at planning time might
cause the robot plan to fail. Such discrepancies are caused
by unexpected events, or contingencies and can be handled
at plan generation, by anticipating them or through moni-
toring of the execution of the system [1, 7, 3].

In the other end, behavior-based approaches [2] operate
in a situation-action style. In this case actions are triggered
by the perceptual conditions. There is no explicit represen-
tation of goals, plans or internal “world model”. Goals are
implicit in the condition-action coupling and plans emerge
in real-time as one action is executed in a way that it trig-
gers another one. As actions are dictated by local informa-
tion sensed, failures occur when the local decisions don’t
go toward the achievement of the overall goal. In deliber-
ative approaches progress toward the goal is guaranteed as
long as there isn’t discrepancies between the real world and
the internal model. This is not the case for behavior based
approaches where sensory information are frequently up-
dated. Then, the robot can get trapped in a local minimum
or wander indefinitely in a region formed by obstacles. Fail-
ures can be handled, in these cases, by introducing a short
memory [12] or changing the local configuration of the en-
vironment [17].

These failure detection techniques rely on heuristic mon-
itoring of robot’s behaviors to detect potential failures. By
“heuristic”, we mean that there is no well-defined semantic
behind the verification method. These methods rather rely
on rules of thumbs and handle failures in an ad-hoc fashion.
While this effectively helps in detecting some failures, it is
often difficult to analyze and understand the range of typical
failures covered by heuristic monitoring strategies.

Actually we need a language to specify failure condi-
tions and facilities to monitor them. The work of Jahanian
et al. [8] is particularly interesting. Real-time conditions
to be monitored and verified are specified using a tempo-
ral logic called Real Time Logic (RTL). This is a logic of
events. Timing conditions are specified in terms of start-
ing time and ending time of relevant events. The evaluation
of these conditions is made over a runtime trace gathered
during the system execution. Another related approach was
proposed by Felder and Morzenti [5].

An another problem facing real world robot’s monitoring
systems is uncertainty coming from the complexity of the
environment itself, from noisy sensors, or from imprecise
actuators. According to [14] there is three ways to cope
with uncertainty.

1. Get rid of it, by carefully engineering the robot and/or
the environment;

2. Tolerate it, by writing robust programs able to oper-
ate under a wide range of situations, and recover from
errors; or

3. Reason about it, by using techniques for the represen-
tation and the manipulation of uncertain information.

The approach we advocate here is in the same line of
inquiry of Jahanianet al. work, but is more tailored for
behavior-based robots. First of all, we use a temporal fuzzy
logic to account for noisy information, uncertainty, and
fuzzy behaviors in theSAPHIRA mobile robot architecture.
On a more technical level, we use a state-based logic. Ba-
sic propositions in our logic relates to states rather than to
events. Accordingly, our approach for checking conditions
specified in that logic is different. We use an incremental
method that can do the verificationon the fly. This method
is inspired from [9], where a similar approach was used to
generate plans by verifying temporal logic goals over sim-
ulated traces of predicted execution sequences. An earlier
version of our approach was presented in [10]. In this pa-
per we extend the experimental setting to show how noise
is eliminated. Different models of noise are studied and we
show the effectiveness of our approach for filtering noise.
Also some insights on the algorithmic complexity are dis-
cussed.

The remainder of this paper is organized as follows. In
the next section, we define our new temporal fuzzy logic.
then we give some examples of failure specifications. This
is followed with a description of the algorithm used to mon-
itor and check the violation of behavioral properties ex-
pressed in that logic. We also discuss the complexity of
the algorithm. Finally some empirical results are presented.
In particular, we show how we can deal with noisy informa-
tion.

2. Monitoring knowledge specification

To specify properties that must be monitored, we need
a language of state sequences. Linear temporal formulas
have been used successfully for specifying such properties
for the purpose of verifying concurrent systems [6]. Formu-
las in such logics are interpreted over models that are infi-
nite sequences of states and temporal modalities are used to
assert properties of these sequences.

In our case, we also use linear temporal logic formulas,
but with a fuzzy semantics. The basic building blocs of our
temporal logic are fuzzy propositions. They specify facts
about states. The truth of a proposition has a real-value
over the interval [0,1] indicating the degree of truth. Tem-
poral connectors are then involved to specify properties of
sequences of states. It is important to notice that we are
dealing here with degrees of truth and not with degrees of
uncertainty [4]. For instance we may have a proposition
V isibleBall stating that some ball of interest is visible to
the robot. In practice, robotics vision is noisy so that it is of-
ten hard to determine whether the ball is visible or not. The
graded truth value of the propositionV isibleBall allows
us to include fuzzy statements such as “slightly visible” or
“completely visible”. In the case of uncertainty reasoning,
the real number between0 and1 would reflect the possi-
bility that the ball is visible or not visible. The greater the
value is the greater the possibility that the ball is visible.

In reality we have both situations. While fuzzy propo-
sitions take a graded truth values they are also uncertain.
This is in accordance with the facts that some state vari-
ables have values obtained from uncertain readings caused
by intrinsic errors, communication disturbance or compu-
tation limitations (e.g., in image recognition). Uncertainty
can be handled using possibility or probability theory.

In our approach, instead of evaluating a proposition from
just one snapshot, we observe its truth value on a whole pe-
riod and conclude its truthness based on snapshots taken
during that period. To allow this, our propositions are eval-
uated over segments of state sequences rather than over a
single state. The size of the segment is determined empir-
ically. When the segment has only one state, then this is
equivalent to a traditional state-based evaluation. In theory,
it is possible to attain the same result by a temporal formula
rather than a single proposition, but this would not be effi-
cient. In this case, the truth value of the formula would be
obtained after some logical entailment, while in our case, it
is obtained from a single function evaluation.

2.1. Syntax

Our fuzzy temporal formulas are constructed from an
enumerable collection of propositions; Boolean connectives
∧ (and),¬ (not),∨ (or),→ (implies), and the temporal con-

nectives© (next),2 (always),3 (eventually),U (until).
The formulas formation rules are:

• every fuzzy proposition p is a formula and

• if f1 andf2 are formulas, then so are¬f1, f1∧f2,f1∨
f2, f1→ f2 , © f1, 2 f1, 3 f1, andf1 U f2.

In addition to these basic rules the language contains a
set of atomic fuzzy propositions{⊥0.0, . . . ,⊥1.0}, where
⊥0.0 denotes statements “completely”false and⊥1.0 de-
notes statements “completely”true.

2.2. Semantics

Formulas are interpreted over models of the form
〈w, π, Π〉, where:

• w is an infinite sequence of worlds statew0, w1, . . .;

• Π a set of real-valued functions that evaluate proposi-
tions pk in world states.πj(pk, wi) returns the truth
value in[0, 1] of propositionpk in the world statewi,
πj ∈ Π. Thus, the truth value of a proposition usu-
ally depend on a state. But atomic fuzzy propositions
⊥k always have the same value regardless of the state.
Thus,π(⊥0.5, wi) always yields0.5.

• π is a real-valued function that evaluate formulas in
world states. π(f, wi, Π) returns the truth value in
[0, 1] of formulaf in the world statewi.

For a statewi in a modelM = 〈w, π, Π〉, propositionp, or
formulasf , f1, andf2 :

• π(⊥k, wi,Π) = k; k ∈ [0, 1]

• π(p, wi, Π) = πk(p, wi); πk ∈ Π

• π(¬p, wi, Π) = 1− π(p, wi, Π)

• π(f1 ∧ f2, wi, Π) = π(f1, wi,Π)⊗π(f2, wi,Π)

• π(f1 ∨ f2, wi, Π) = π(f1, wi,Π)⊕π(f2, wi,Π)

• π(f1→ f2, wi,Π) = π(f2, wi, Π)®π(f1, wi, Π)

• π(© f, wi, Π) = π(f, wi+1, Π)

• π(2 f, wi,Π) = π(f, wi, Π)⊗π(2 f, wi+1, Π))

• π(3 f, wi, Π) = π(f, wi, Π)⊕π(3 f, wi+1,Π)

• π(f1 U f2, wi, Π) =
π(f2, wi, Π)⊕((π(f1, wi, Π)⊗π(f1 U f2, wi+1,Π))

wherex⊗ y is the minimum ofx andy, that is, the fuzzy
counter-part ofand binary logic connective;x⊕ y is the
maximum ofx andy, that is, the fuzzy counter-part ofor
binary logic connective;x® y is the maximum of(1 − y)
andx, that is the fuzzy counter-part of→ binary logic con-
nective.1

The functionπ(p, wi, Π) returns the truth value of a
propositionp at a given statewi in a runtime trace. This
truth value not only depends on the statewi, but on a subse-
quence ending atwi. The length of the subsequence and the
interpretation mechanism are implicit in the user-defined
proposition evaluation functions. Thus, for propositions,π
invokes user-defined proposition evaluation functions. For
instance, assumep is the propositionV isibleBall. We de-
fine a function that will evaluatep to a value that depends
on how the vision system sees the ball on each of the latest
4 states. We then take an “average” value over these states.
Here, the number4 is set empirically.

More formally, following Yager’s approach [18], we use
ordered weighted average(OWA) operators to evaluate the
truth value of propositions over histories.

Definition 1 An OWA operator of dimension n is a mapping
F from [0, 1]n to [0, 1] associated with a wieghting vector
W = [W1,W2, . . . , Wn], such that

1. Wi ∈ [0, 1]

2.
∑

i Wi = 1

and

F (a1, a2, . . . , an) = W1b1 + W2b2 + . . .Wnbn

where bi is the ith largest element in the collection
a1, a2, . . . , an

Different OWA operators can be defined depending on
the weighting vector. For example[1, 0, 0 . . .] represent the
max operator,[0, 0, . . . , 1] represent the min operator and
[1/n, 1/n, . . . , 1/n] represent the average operator.

We associate with each proposition a specific OWA so
that the evaluation of a proposition corresponds to an “or-
anding” of the truth values over a recent state history. Thus,
we have:

πk(p, wi) = F (πs(p, wi1), πs(p, wi2), . . . , πs(p, win));
πk ∈ Π

Hereπs is a real-valued function that returns the value of
a proposition based on a single world state. The weights of
the OWA and the extent of the history needed to evaluate a

1In general, fuzzy logic may use different definitions ofand, or and
→. It is generally required that⊗ be any continuous triangular norm or
t-norm, with quasi-inverse®, and⊕ is any continuoust-conorm. The
definitions we have adopted satisfy those conditions and are among those
most frequently used.

proposition are defined empirically depending on the appli-
cation and the properties being expressed by propositions.
Automated learning of such parameters is also an interest-
ing research topic [13].

Since the evaluation of a formula yields a real-valued
value, instead of true or false, we have degrees of truthness
or conversely, degrees of falsity. Nevertheless, assuming
some empirical threshold value (e.g., false for values below
0.5 and true otherwise), we can talk about a property being
violated or being satisfied.

Formulas in our logic have a future semantics but are
evaluated on trace that represents the history. This is coher-
ent with the fact that, a formula is used to express the de-
sirable future behaviors of the system, but then the system
will check it against its runtime trace to determine whether
or not the current execution is effectively consistent with the
formula.

3. Examples of specifications

Our experiments are being conducted with anActivme-
dia Pioneer I mobile robot and Pioneer AT mobile robot,
both equipped with seven sonars used to perceive obstacles,
a Fast Track Vision system from Newton Labs used to per-
ceive colored object and a gripper used for grasping objects.

The sensors and actuators suffer from noisy reading and
uncertainty. For example, variation of the light intensity can
affect precision in seeing colored object, and wheel slippage
can affect precision in measured travel distances.

In addition, the robot is controlled over a radio modem
link which can suffer from environment disturbance.

One of the tasks that we have experimented consists in
searching for a red ball and bringing it to a home location
marked by green. The green location have to be localized
too. We programmed this tasks, by decomposing it into two
subtasks: searching and homing. The searching subtask in-
cludes searching for the red ball, approaching it, and then
grasping it. The homing subtask includes searching for the
home location, approaching it, and then releasing the red
ball.

In our early tests we noted some failures conditions. For
example, when searching for the red ball, the ball may be-
come visible only for a brief period of time in the visual
field of the camera, for example because the robot’s vision
angle becomes obstructed by an obstacle. In such a situ-
ation, the robot should not consider that it has found the
ball to begin approaching it. Another failure situation is
when the ball is in a corner the robot cannot reach it. This
may cause a stall if the robot commits to its goal and per-
sists in trying to grasp the ball. To capture such failures
situations, we use fuzzy temporal logic formulas to express
contextual properties under which robotics behaviors must
operate. Here are some examples:

1. Context failure

• 2(ApproachingBall → V isibleBall) when
approaching the ball it must remain on the visual
field of the camera

• 2(ApproachingHome → (V isibleHome ∧
Ballgrasped)) when approaching home it must
remain on the visual field of the camera and the
ball must be held on.

2. Goal failure

• 23(SearchingBall ∧ V isibleball) when
searching the ball it has to be visible for a period
of time to be considered found.

• 23(GettingBall ∧Graspedball) when grasp-
ing the ball it has to be be reached.

3. Stall failure

• ¬32(ActionSumNull∧ActionStopNull) If
this property is violated, this means that we have
a stall. That is, a stall occurs when the summation
of the behavior suggested actions is null and the
stop behavior (used to stop the robot when there
is no action suggested) is not active.

4. Sequencing failure

• ¬2(AproachingBall U SearchingBall) Ap-
proaching the ball should not, always, promote
searching for the ball.

In the above examples we recognize safety temporal
properties as well as different classes of progress proper-
ties as defined in [11]. For example the stall correspond to
a persistence formula (32 P).

4. Progression algorithm

Our algorithm is an extension of theformula progression
algorithmfrom [9] to handle our fuzzy semantics. As in [9],
a formula is verified over a sequence of states (a runtime
trace in our case) byprogressingit on the fly over the trace.
More specifically, this means that each state is a labelled
with a formula that must be evaluated by each sequence
starting from this state. Given any state and its label, the
label of a successor in the state history is obtained by ap-
plying the algorithm described in Fig. 1.

The input of the formula progression algorithm is a for-
mulaf , a statewi, and setΠ of evaluations functionsπi that
evaluates a propositionpi in states. The evaluation func-
tions are OWA operators defined for each proposition. The
output is a formula that, when evaluated over a sequence

from wi+1 it has the same value as the evaluation of the in-
put formula over the sequencewi. This algorithm satisfies
the following theorem.

Theorem 1 Let w1, w2, . . . denote any infinite se-
quence of world states,Π a set of evaluation func-
tions that evaluate propositions in states. Then
for any state wi and a formula f , π(f, wi,Π) =
π(Progress formula(f, wi,Π), wi+1, Π).

The proof is based on the observation that the algorithm is
merely a rewriting of the formula interpretation rules given
in section 2.2.

ProgressFormula(f, wi, Π)

1. casef

2. pi (pi a proposition): return⊥πi(pi,wi) whereπi ∈ Π

3. ¬f1: ¬ ProgressFormula(f, wi, Π)

4. f1 ∧ f2: ProgressFormula(f1, wi, Π) ∧
ProgressFormula(f2, wi, Π)

5. f1 ∨ f2: ProgressFormula (f1, wi, Π) ∨
ProgressFormula(f2, wi, Π)

6. f1→ f2: ProgressFormula (f1, wi,Π) →
ProgressFormula(f2, wi, Π)

7. © f1 : f1

8. 3 f1 : ProgressFormula(f1, wi, Π) ∨ 3 f1

9. 2 f1 : ProgressFormula(f1, wi, Π) ∧ 2 f1

10. f1 U f2 : ProgressFormula(f2, wi,Π) ∨
(ProgressFormula(f1, wi,Π) ∧ f1 U f2)

Figure 1. Formula progression algorithm

This theorem is in turn the basis of our temporal checker.
The basic process consists in progressing the formula over
the runtime trace. That way, each new state added to the
current trace obtains a formula label that is computed by
the above formula progression algorithm. The theorem
implicitly states that a state where the formula is “made
false” (more precisely, its value is below an empirically
set threshold) violates the temporal property expressed by
the original formula. However, progressing formulas over
infinite sequences is not suitable for robotic applications
where some timing constraints can be involved. For this
reason, when implementing the progress algorithm formu-
las are evaluated only on specific context. For example, the
formula2(ApproachingBall→V isibleBall) is effective
only when the robot is approaching the ball so that it does

not have to be evaluated in any other context. Also, we can
associate a time out to formulas. The progress algorithm
will, in this case, return false when the formula is evaluated
to false or when it is timed out.

The progression algorithm also uses Boolean simplifica-
tion on the intermediate results. The following simplifica-
tion rules are applied at various steps of the algorithm where
0 ≤ M,N ≤ 1 represents user defined thresholds, for True
(N) and False (M).

• (⊥k ∧ f |f ∧ ⊥k)→⊥k if k ≤ M

• (⊥k ∧ f |f ∧ ⊥k)→ f if k ≥ N

• ¬⊥k→⊥1−k

These simplifications are used for efficiency purpose. Some
recursive calls of the progress algorithm are avoided be-
cause of these transformations.. For example, when one
of the conjunct of an∧ connective evaluate to⊥k where
k ≤ M i.e. “False” all the formula is made⊥k i.e.
“False”.

4.1. Examples of formulas progression

Assume we want to check one of the example formu-
las above, namely:2(ApproachingBall→V isibleBall).
For this, let’s use the weight vector(0.0, 0.5, 0.5, 0.0)
for the OWA operator associated to the propositions
ApproachingBall and V isibleBall. For example if the
truth values ofV isibleBall over the 4 last trace states
S1 . . . S4 is (1.0, 1.0, 1.0, 0.0) then when evaluating the
propositionV isibleBall in the stateS4 we have

π(V isibleBall, S4) = 0.0× 1.0 + 0.5× 1.0 + 0.5× 1.0
+0.0× 0.0

= 1.0.

That is, the new value ofV isibleBall in stateS4 is 1.0
instead of0.0 when we evaluate it in a single state.

With this trace and given the formula
2(ApproachingBall→V isibleBall), i.e.
when approaching a ball it must be visible,
the progress algorithm produces the formula
(⊥1.0 ∧ 2(ApproachingBall→V isibleBall)) ≡
2(ApproachingBall→V isibleBall) in all states.

Figure 2 shows the progression of formulaf0 in a state
Si. The dotted arrows represent logical simplifications and
the solid ones correspond to steps from the algorithm given
in Figure 1.

4.2. Complexity of the progression algorithm

The complexity of the progression algorithm lies with
the repeated progression of a formula through a sequence

Formulas:

f0def
f1def
p0def
p1def

f1

f2

f3

f4

f5

f6

Step 9

Step 6

Step 2

f7

PSfrag replacements
Progress(f0, Si, Π)

Progress(f1, Si, Π) ∧ f0

(Progress(p0, Si,Π)→Progress(p1, Si,Π)) ∧ f0

(⊥π0(p0,Si)→⊥π1(p1,Si)) ∧ f0

(⊥1.0→⊥1.0) ∧ f0

⊥1.0 ∧ f0

f0

f0 : 2(ApproachingBall→V isibleBall)

f1 : ApproachingBall→V isibleBall

p0 : ApproachingBall

p1 : V isibleBall

Figure 2. Example of formula progression

of states. During monitoring we have to progress the origi-
nal temporal formula through every statewi. This formula
might grow in length with each progression, which can lead
to growing space and time requirement. For example con-
sider the formula2 3 P progressed through a world state
whereP does not hold. The progression algorithm yields
the new formula,3 P ∧ 23 P which is twice the size of
the original formula.

However, the progressed formula has some sub-formulas
in common with the original one (“3P ”). Hence, we can
gain space by sharing the data structure of the sub-formulas.
In fact, in this example we only need to add a new “∧” at the
top level. Furthermore, not all formulas continue expand-
ing. Some formulas will generate conditions that have to be
evaluated only in the next state. So their length will dimin-
ish. For example if we progress the formula2(P →©Q)
through a worldw in which P holds, the result will be the
formula2(P →©Q) ∧Q. That is, the always test is prop-
agated to the next state, and in addition the next state will
be required to satisfyQ sinceP is “true” in w. On the other
hand, if P is “false” then the progressed formula would sim-
ply be 2(P →©Q). That is, there is no requirements on
the next state, we simply propagate the formula.

The progress algorithm evaluates formulas in states. So
it involves evaluating OWA operators. The evaluation in
this case implies sorting the values of the propositions in
different states and then computing the OWA average ac-

cording to the given weight vector. Since the dimension of
the OWA weight vector is not high the evaluation is gen-
erally efficient. Finally, the different state values that the
monitoring system receives from the robot control system
might involve some calculated functions. But the monitor-
ing system have no control over these functions.

5. Empirical results

We have implemented a monitoring system (see fig-
ure 3) to collect traces, to check for potential failures spec-
ified by temporal fuzzy logic formulas, and to notify the
SAPHIRA control program of those detected failures. The
general structure of the monitoring system consists of: (1)
a monitoring knowledge base containing models of the ex-
pected/unexpected ideal behavior of the robot in terms of
temporal constraints; (2) a trace collector for tracking the
actual behavior of the system; (3) a failure detection mod-
ule for checking a temporal fuzzy logic formula over the
current trace to determine whether or not it violates the for-
mula; and (4) a failure diagnosis module that evaluates a
trace of the temporal logic verification process to determine
the type of failure in a format that is meaningful to the robot
control system. In our actual implementation the trace col-
lector is reduced to simply passing inputs to the failure de-
tection component. The failure diagnosis component is also
reduced to simply passing notifications to the robot control
system. Ideally, each component of the monitoring system
can be viewed as an intelligent agent. For example, the trace
collector agent can decide which trace to collect and the
length of the trace. The diagnosis agent can analyze the
failure and suggests the appropriate recovery strategy.

Robot Control
system

(Saphira)

Trace Collector M
onitoring know

ledge
(Form

ulas, tim
eouts ...)

Failure

(formula ckecking)
detection

diagnosis
Failure

Figure 3. The general structure of the moni-
toring system

5.1. Noise filtering

In this part we aim at evaluating our detection algorithm
with regards to noise tolerance. Noise can be introduced
by a variety of sources. The sensors and actuators are the
primary source of noise. They can add random values to
the actual ones. Noise can also appear from communication
disturbance or malfunctioning. In typical traces the noise
can be modelled with either a salt-and-pepper or a gaus-
sian distribution. Salt-and-pepper noise is most often used
to model communication disturbance or a malfunctioning
sensor. The gaussian noise is most often used to model nat-
ural noise processes such as those occurring from electronic
noise in the sensors or actuators systems. The shape of these
noise types as a function of the fuzzy truth value level can be
modelled as a histogram. For example, there are only two
possible values of noise,a and b, for the salt-and-pepper
noise type and the probability of each isA and B. The
typical value for pepper-noise is 1 and for salt-noise is 0.
Noise is well studied in image processing systems [16]. It
can be removed using spatial filters (filters based on a small
neighborhood of pixels). Two types of filters are used, or-
der filters and mean filters. Order filters use the ordering of
neighborhood pixel gray values to select the “correct” value.
Mean filters use an “average” value to compute the correct
one. Order filters are suitable to remove salt-pepper noise
while mean filters are used for gaussian noise. We can also
define hybrid filters for the combination of the two types of
noises.

In our case OWA operators act as a filter to remove noise
(uncertainty) from a trace. Different type of filters can be
defined using the OWA operator with different weight vec-
tors. For example to eliminate the salt or pepper noise we
can use the[1, 0, . . . , 0] (max) , and the[0, 0, . . . , 1] (min)
vector respectively. To eliminate the gaussian noise we
use the[1/n, 1/n, . . . , 1/n] corresponding to the arithmetic
mean filter, and to eliminate both we use the weight vector
[0, 1/(n − 2), . . . , 1/(n − 2), 0] which is equivalent to the
alpha-trimmed mean filter type in image processing.

The task used in the experiment is to track and approach
a moving goal in a simulated environment. The goal posi-
tion moves between two point and the robot can “see” the
goal position only if it lies within a certain angle ahead of it.
We add different type of noises to the trace and we note the
percentage of failures (the robot can’t track the goal posi-
tion). The tests are conducted using three increasing speed
for the moving goal position (S1, S2, and S3) and with the
OWA operator equivalent to the alpha-trimmed mean filter.
Tables 1, 2, and 3 show the results. The results are straight-
forward, the use of OWA operator as a noise filter can elimi-
nate noise of the different types. But when the noise become
dominant the filter can’t eliminate all the noise.

Salt-pepper
0.0 0.05 0.1 0.2

S1 1 1 0.95 0.5
S2 1 1 0.95 0.48
S2 0.75 0.75 0.64 0.4

Table 1. Salt-pepper noise

Gaussian
µ 0, σ 0.0 µ 0, σ 0.2 µ 0, σ 0.4 µ 0, σ 0.6

S1 1 1 0.9 0.8
S2 1 1 0.9 0.8
S2 0.75 0.75 0.7 0.6

Table 2. Gaussian noise

5.2. Failure coverage

In this part we aim at evaluating our approach in terms of
failure coverage. We tested our system in real world envi-
ronment. We have written one control program that contains
no monitoring processes (Prog1) and two control programs
that use our monitoring system (Prog2, Prog3).

Prog1 contains no monitoring processes. It serves as
a reference program with regards to the robustness of the
control system. It also gives an idea about the environment
conditions. In fact, we use basic behaviors for writing the
program. These behaviors can fail when the conditions they
are designed for are no longer valid.

Both Prog2andProg3use our monitoring system send-
ing information and receiving failures notifications from it.
Monitoring processes are replaced by fuzzy temporal for-
mulas that are checked online by our monitoring system.
We also added a communication process to send trace his-
tories and receive failure notifications.Prog3 uses noise
filtering while in Prog2no noise filtering is used. There is
no recovery from failures in either program.

We conducted30 runs of each program and noted the
number of failure notifications and the number of run fail-
ures. The number of run failures is high in part due to
the fact that there is no monitoring facilities and because
some failures are intentionally introduced. The number of
notifications is the same as the number of failure because
no recovery strategies are used. The experiments (Table 4)

Gauss. + Salt-pep.
0.05,µ 0, σ 0.2 0.1,µ 0, σ 0.4 0.2,µ 0, σ 0.6

S1 1 0.85 0.75
S2 1 0.85 0.75
S2 0.75 0.70 0.58

Table 3. Salt-pepper + gaussian noise

demontrate that when using noise filtering the system per-
forms better while detecting less failures. This is because
noise is considered as a failure condition inProg2while ig-
nored inProg3.

Prog 1 Prog 2 Prog 3
notifications 0 22 15
failures 20 22 15
runs 30 30 30

Table 4. Empirical results

6. Conclusion

Monitoring is the process of recording event occurrences
during program execution in order to gain runtime informa-
tion about the system states as well as information about the
environment in which the system evolves [15, 8]. Therefore,
when the environment is uncertain and the collected infor-
mation is noisy any monitoring solution have to deal with
these issues. In this paper we presented a formal tool for
monitoring behavior based robot control systems which ex-
plicitly deals with such conditions. In particular we demon-
strated how OWA operators are used to filter noise from the
collected traces. Empirical results show the effectiveness of
the approach with different types of noises. However this
effectiveness holds to the fine tuning of the OWA operators
weight vector and its dimension. In this case, adaptive noise
filter might be used to alter its basic behavior depending on
the local statistics of the collected traces. Adaptive filters
are also used in image processing but they are more tailored
to image data and incur more computation. A detailed study
of the statistic properties of typical traces have to be done.
We also assumed that the noise is mainly salt-pepper and
gaussian. While this assumption seems to hold in our real
environment tests, further investigation is necessary to de-
termine the noise model in different environments and with
different robot systems.

References

[1] J. Ambros-Ingerson and S. Steel. Integrating planning, ex-
ecution and monitoring. InProceedings of the Seventh
National Conference on Artificial Intelligence (AAAI-88),
pages 735–740, St. Paul, Minnesota, 21–26 Aug. 1988. Mor-
gan Kaufmann.

[2] R. C. Arkin. Behavior-Based Robotics. MIT press, 1998.
[3] M. Beetz and D. McDermott. Improving robot plan during

their execution. InProc. Second International Conference
on AI Planning Systems, pages 3–12, 1994.

[4] D. Dubois and H. Prade. Partial truth is not uncertainty:
Fuzzy logic versus possibilistic logic.IEEE Expert, 9(4):15–
19, August 1994.

[5] M. Felder and A. Morzenti. Validating real-time systems
by history checking trio specifications.ACM Transactions
on Software Engineering and Methodology, 3(4), October
1994.

[6] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-
the-fly automatic verification of linear temporal logic. In
Proc. 15th Work. Protocol Specification, Testing, and Verifi-
cation, Warsaw, June 1995. North-Holland.

[7] G. Giacomo, R. Reiter, and M. Soutchanski. Execution mon-
itoring of high-level robot programs. InProc. of the Sixth
International Conference on Principles of Knowledge Rep-
resentation and Reasoning, pages 453–464, 1998.

[8] F. Jahanian, R. Rajkumar, and S. C. V. Raju. Run-time mon-
itoring of timing constraints in distributed real-time systems.
Real-Time Systems Journal, 7(3):247–273, 1994.

[9] F. Kabanza, M. Barbeau, and R. St-Denis. Planning control
rules for reactive agents.Artificial Intelligence, 95(1):67–
113, 1997.

[10] K. B. Lamine and F. Kabanza. Using temporal fuzzy logic
for monitoring behavior based mobile robots. InProc. of
the IASTED conference in Robotics and Applications, pages
116–121, Hawaii, August 2000.

[11] Z. Manna and A. Pnueli.The Temporal Logic of Reactive
and Concurrent Systems. Springer-Verlag: Heidelberg, Ger-
many, 1992.

[12] F. Pin and S. Bender. Adding memory processing behaviors
to the fuzzy Behaviorist-based navigation of mobile robots.
In ISRAM’96 Sixth International Symposium on Robotics
and Manufacturing, Montpelier, France, May 27-30 1996.

[13] R. R.Yager and D. Filev. On the issue of obtaining owa op-
erator weights.Fuzzy Sets and Systems, 94:157–169, 1998.

[14] A. Saffiotti. Handling uncertainty in control of autonomous
robots. InApplications of Uncertainty Formalisms in Infor-
mation, pages 198–224. Lecture Notes in Computer Science,
Vol. 1455, 1998.

[15] J. P. J. Tsai and S. J. H. Yang.Monitoring and Debugging
of Distributed Real-Time Systems. IEEE Computer Society
Press, 1995.

[16] S. E. Umbaugh.Computer vision and image processing : a
practical approach using CVIPtools. Prentice Hall, 1998.

[17] W. Xu. A virtual target approach for resolving the limit cycle
problem in navigation of a fuzzy behaviour-based moblile
robot. Robotics and Autonomous Systems, 30:315–324,
2000.

[18] R. R. Yager. On ordered weighted averaging aggregation op-
erators in multicriteria decisionmaking.IEEE Transactions
on Systems, Man, And Cybernetics, 18(1):183–190, 1988.

