

History-dependent Petri nets

Citation for published version (APA):
Van Hee, K., Serebrenik, A., Sidorova, N., & Van Aalst, W. D. (2007). History-dependent Petri nets. In A.
Yakovlev (Ed.), Petri Nets and Other Models of Concurrency - ICATPN 2007 - 28th International Conference on
Applications and Theory of Petri Nets and Other Models of Concurrency, ICATPN 2007, Proceedings (pp. 164-
183). (Lecture Notes in Computer Science; Vol. 4546). Springer. https://doi.org/10.1007/978-3-540-73094-1_12

DOI:
10.1007/978-3-540-73094-1_12

Document status and date:
Published: 01/12/2007

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 24. Aug. 2022

https://doi.org/10.1007/978-3-540-73094-1_12
https://doi.org/10.1007/978-3-540-73094-1_12
https://research.tue.nl/en/publications/3d2be767-347a-453c-b84c-fa253ae425f8

History-Dependent Petri Nets

Kees van Hee, Alexander Serebrenik, Natalia Sidorova, and Wil van der Aalst

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{k.m.v.hee,a.serebrenik,n.sidorova,w.m.p.v.d.aalst}@tue.nl

Abstract. Most information systems that are driven by process models
(e.g., workflow management systems) record events in event logs, also
known as transaction logs or audit trails. We consider processes that
not only keep track of their history in a log, but also make decisions
based on this log. To model such processes we extend the basic Petri
net framework with the notion of history and add guards to transitions
evaluated on the process history. We show that some classes of history-
dependent nets can be automatically converted to classical Petri nets
for analysis purposes. These classes are characterized by the form of
the guards (e.g., LTL guards) and sometimes the additional requirement
that the underlying classical Petri net is either bounded or has finite
synchronization distances.

1 Introduction

Numerous state-of-the-art enterprise information systems contain a workflow
engine, which keeps track of all events as a part of its basic functionality. In
this paper we consider processes that not only record the events but also make
choices based on the previous events, i.e. based on their history. The ability of
a system to change its behavior depending on its observed behavior is known
as adaptivity and in this sense this paper is about a special class of adaptive
systems.

In classical Petri nets the enabling of a transition depends only on the avail-
ability of tokens in the input places of the transition. We extend the model by
recording the history of the process and introducing transition guards evaluated
on the history. To illustrate the use of history, we consider a simple example of
two traffic lights on crossing roads.

Example 1. Figure 1 (left) presents two traffic lights, each modelled by a cycle
of three places and three transitions. The places model the states of each traffic
light (red, green and yellow), and the transitions change the lights from one color
to the next color. We assume that in the initial state both lights are red.

We want the system to be safe and fair, i.e., the traffic lights are never green
at the same time, the right traffic light can become green at most R times more
than the left traffic light, and similarly, the left traffic light can become green
at most L times more than the right traffic light. Usually one takes R = 1 and

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 164–183, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

History-Dependent Petri Nets 165

a

b

c f

d

e

RedL RedR

GreenL

YellowL

GreenR

YellowR

a

b

c f

d

e

RedL

RedR

GreenL

YellowL

GreenR

p

q

YellowR

Fig. 1. Traffic lights: without restrictions (left) and alternating (right)

a

b

c f

d

e

RedL RedR

GreenL

YellowL

GreenR

YellowR

p

q

a

b

c f

d

e

RedL RedR

GreenL

YellowL

GreenR

YellowR

#{d}=#{e} and #{b}<#{e}+L

#{a}=#{b} and #{e}<#{b}+R

Fig. 2. A history-dependent Petri net with parameters R and L (left) and the history
guards replaced according to Theorem 23 for R = 1 and L = 2 (right)

L = 0, or R = 0 and L = 1, implying alternating behavior of the traffic lights.
In order to obtain the alternating behavior one traditionally adds control places
p and q as in the right-hand side of Figure 1. This figure models the situation
with R = 0 and L = 1. Note that it is not easy to generalize this construction
for arbitrary R and L.

Our approach consists in making the guards explicit as shown in left-hand
side of Figure 2. To ensure safety, we require that b can fire only if the right
traffic light is red, i.e., transitions d and e have fired the same number of times.
The guard of b is written then as #{d} = #{e}. Similarly, e obtains the guard
#{a} = #{b}. In order to guarantee fairness, we require that in any history, b

fires at most L times more than e, i.e. #{b} ≤ #{e} + L, and e fires at most R

times more than b, i.e., #{e} ≤ #{b} + R. To ensure this we add the additional
requirement #{b} < #{e} + L to the guard of b and the additional requirement
#{e} < #{b} + R to the guard of e. This results in the history-dependent Petri
net shown in Figure 2 (left).

Using history we can separate the modeling of the standard process informa-
tion (switching the traffic light to the following color) from additional require-
ments ensuring the desired behavior. Hence, we believe that introducing

166 K. van Hee et al.

history-dependent guards amounts to enhanced modeling comfort. Observe also
that global access to the history allows to ease modeling of synchronous choices.
Assume that at a certain point a choice has to be made between transitions a

and b. Assume further that the only impact of this choice is somewhere later in
the process: a′ has to be chosen if a has been chosen and b′ has to be chosen if b

has been chosen. A classical solution of this problem involves creating two places
pa and pb with the only incoming arc coming from a (b) and the only outgoing
arc leading to a′ (b′). Rather than cluttering our model with additional places,
we set the guard of a′ (b′) to demand that a (b) has been chosen before.

In this paper we consider two approaches to introduce history into the Petri
net model: (1) token history, where each individual token carries its own history,
i.e., history can be seen as special kind of color, and (2) global history, where there
is a single centralized history and every transition guard is evaluated on it (like
in our traffic lights example). Token history can be used in distributed settings
where different components do not have information about the actions of other
components. Global history is in fact a special case of token history for transparent
systems where all components are aware of the actions of other components.

By introducing history-dependent guards, we increase the expressive power.
On the traffic lights example, we can easily see that we can check the emptiness
of a place using history: RedR is empty if and only if #{e} − #{d} = 1. Hence,
we can model inhibitor arcs and consequently our formalism is Turing complete.
Since, we are interested not only in modeling but also in verification, we iden-
tify a number of important classes of global history nets (e.g. nets with LTL
guards) that can be transformed to bisimilar classical Petri nets and provide
corresponding transformations. For instance, the history-dependent net on the
left-hand side of Figure 2 can be automatically transformed to the classical net
on the right-hand side (we took R = 1 and L = 2).

Due to the Turing completeness, not every history-dependent net can be repre-
sented by a classical Petri net. We are still interested in simulation and validation
of history-dependent nets. Simulation and validation are however complicated
by the fact that the representation of the current state of the system requires in
general an unbounded amount of memory, due to the growth of the history. We
solve this problem for a Turing complete subclass of global history nets (in which
we use event counting, but not event precedence in the guards) by defining a
transformation to bisimilar inhibitor nets. Inhibitor nets, though being Turing
complete, have a state representation of a fixed length (a marking), which makes
the simulation and validation feasible.

The remainder of the paper is organized as follows. After some preliminary
remarks in Section 2, we introduce the notion of event history together with a
history logic in Section 3. Section 4 introduces token history nets and Section 5
introduces global history nets. In Section 6 we show how to map several subclasses
of global history nets with counting formulae as guards to classical Petri nets
or inhibitor Petri nets, and in Section 7 we describe a transformation of global
history nets with LTL guards to classical Petri nets. Finally, we review the related
work and conclude the paper.

History-Dependent Petri Nets 167

2 Preliminaries

N denotes the set of natural numbers and Z the set of integers.
Let P be a set. A bag (multiset) m over P is a mapping m : P → N. We

identify a bag with all elements occurring only once with the set containing the
elements of the bag. The set of all bags over P is denoted by N

P . We use +
and − for the sum and the difference of two bags and =, <, >,≤ and ≥ for the
comparison of bags, which are defined in a standard way. We overload the set
notation, writing ∅ for the empty bag and ∈ for the element inclusion. We write
e.g. m = 2[p] + [q] for a bag m with m(p) = 2, m(q) = 1, and m(x) = 0 for all
x �∈ {p, q}. As usual, |m| and |S| stand for the number of elements in bag m and
in set S, respectively.

For (finite) sequences of elements over a set P we use the following notation:
The empty sequence is denoted with ǫ; a non-empty sequence can be given by
listing its elements.

A transition system is a tuple E = 〈S,Act , T 〉 where S is a set of states, Act is
a finite set of action names and T ⊆ S ×Act ×S is a transition relation. We say
that E is finite if S is finite. A process is a pair (E, s0) where E is a transition

system and s0 ∈ S an initial state. We denote (s1, a, s2) ∈ T as s1
a

−→E s2,

and we say that a leads from s1 to s2 in E. We omit E and write s
a

−→ s′

whenever no ambiguity can arise. For a sequence of action names σ = a1 . . . an

we write s1
σ

−→ s2 when s1 = s0 a1−→ s1 a2−→ . . .
an−→ sn = s2. Next, s1

∗
−→ s2

means that there exists a sequence σ ∈ T ∗ such that s1
σ

−→ s2. We say that s2

is reachable from s1 if and only if s1
∗

−→ s2. Finally, the language of a process
(E, s0), denoted L(E, s0), is defined as {σ | σ ∈ T ∗, ∃s : s0

σ
−→ s}.

Definition 2. Let E1 = 〈S1,Act , T1〉, E2 = 〈S2,Act , T2〉 be transition systems.
A relation R ⊆ S1 ×S2 is a simulation if and only if for all s1, s

′
1 ∈ S1, s2 ∈ S2,

s1
a

−→E1
s′1 implies that s2

a
−→E2

s′2 and s′1 R s′2 for some s′2 ∈ S2.
E1 and E2 are bisimilar if there exists a relation R ⊆ S1 × S2 such that both

R and R−1 are simulations.

Next we introduce a number of notions related to Petri nets.

Definition 3. A Petri net N over a fixed set of labels Σ is a tuple 〈P, T, F, Λ〉,
where: (1) P and T are two disjoint non-empty finite sets of places and tran-
sitions respectively; we call the elements of the set P ∪ T nodes of N ; (2)
F : (P × T) ∪ (T × P) → N is a flow relation mapping pairs of places and
transitions to the naturals; (3) Λ : T → Σ is a labeling function that maps
transitions of T to action labels from Σ.

An inhibitor net is a tuple 〈P, T, F, Λ, I〉 such that 〈P, T, F, Λ〉 is a Petri net
and I ⊆ P × T is a set of inhibitor arcs.

We present nets with the usual graphical notation. For any pair of nodes x, y

with F (x, y) ≥ 1, we say that (x, y) is an arc with weight F (x, y).

168 K. van Hee et al.

Given a transition t ∈ T , the preset •t and the postset t• of t are the bags
of places where every p ∈ P occurs F (p, t) times in •t and F (t, p) times in t•.
Analogously we write •p, p• for pre- and postsets of places.

A marking m of N is a bag over P ; markings are states (configurations) of a
net. A pair (N, m) is called a marked Petri net. A transition t ∈ T is enabled in
marking m if and only if •t ≤ m and moreover, for inhibitor nets, m(p) = 0 for
any p such that (p, t) ∈ I. An enabled transition t may fire. This results in a new

marking m′ defined by m′ def

= m− •t+ t•. We interpret a labeled Petri net N as a
transition system/process 〈NP , Λ(T), −→〉 / (〈NP , Λ(T), −→〉, m0) respectively,
where markings play the role of states and labels of the firing transitions play the
role of action names. The notion of reachability for Petri nets is inherited from
the transition systems. We denote the set of all markings reachable in net N

from marking m as RN (m). We will drop N and write R(m) when no ambiguity
can arise. A marked net (N, m0) is called bounded if its reachability set is finite.

3 Event History and History Logic

In this section we present the general notion of event history. In the coming
sections we investigate two kinds of nets that use event history: token history
nets and global history nets.

One might expect an event history to be a totally ordered series of events.
However, information on the relative order of events registered by different com-
ponents might be missing. Therefore, we define a history as a partial order.

Definition 4. Given a set of action labels Σ, a history is a labeled poset, i.e.,
a triple 〈E, ≺, λ〉, where E is a set of events coming from a fixed universe, ≺
is a partial order on E and λ : E → Σ is a labeling function. If E = ∅ the
corresponding history is called the empty history and denoted by ǫ.

Two histories 〈E1, ≺1, λ1〉 and 〈E2, ≺2, λ2〉 are consistent if and only if the
transitive closure of ≺1 ∪ ≺2 is a partial order for E1 ∪ E2 and λ1(e) coincides
with λ2(e) for any e ∈ E1 ∩ E2.

We define two operations to create a new history out of existing histories: ex-
tension and union.

Definition 5. The extension 〈E, ≺, λ〉 :: ℓ of a history 〈E, ≺, λ〉 with an event
labeled by ℓ is the history 〈E∪{e}, ≺ℓ, λℓ〉, where e is a new event,1 ≺ℓ is defined
as ≺ ∪{(x, e) | x ∈ E} and λℓ maps e to ℓ and coincides with λ on E.

The union 〈E1, ≺1, λ1〉∪〈E2, ≺2, λ2〉 of consistent histories is defined as 〈E1∪
E2, ≺, λ1 ∪ λ2〉, where ≺ is the transitive closure of ≺1 ∪ ≺2.

These operations will be used in the next sections on token history and global
history for Petri nets. In global history nets each firing of a transition extends

1 Note that it is essential that e is a “fresh” identifier not present in E but also not
used in any “known” history.

History-Dependent Petri Nets 169

the global history. In token history nets, tokens created by a transition firing
carry the union of histories of the consumed tokens extended with the firing
event.

Next we present a language of history-dependent predicates that will be used
in the guards of history-dependent nets. From here on we assume a countable
set Var of variables to be given.

Definition 6. Given a set Σ of labels and x ∈ Var, we define a formula ϕ, a
term q and a label expression l over Σ as follows:

ϕ ::= false | ϕ ⇒ ϕ | x � x | q < q | l == l

q ::= N | (#Var : ϕ) | (q + q)
l ::= Σ | λ(x)

Sets of formulae, terms and label expressions over Σ are denoted as FΣ, QΣ

and LΣ, respectively.

Using the definition above we can define the following short-hand notations
in the standard way: true, ¬, ∧, ∨, >, ≥, ≤, = (comparisons of terms). We
omit brackets if this does not introduces ambiguities. The counting operator
is powerful enough to express the standard quantifiers: We write ∃x : ϕ for
(#x : ϕ) > 0 and ∀x : ϕ for (#x : ϕ) = (#x : true). For a finite set of labels
S = {s1, . . . , sn}, ℓ ∈ S stands for (ℓ == s1 ∨ . . . ∨ ℓ == sn) and #S stands for
(#x : λ(x) ∈ S). Finally e1 ≺ e2 means that (e1 � e2) ∧ ¬(e2 � e1).

In order to define the semantics we introduce the notion of an assignment
defined as a mapping of variables from Var to events from E. Given a variable x,
an event e and an assignment ν, ν[x → e] denotes the assignment that coincides
with ν for all variables except for x which is mapped to e.

Definition 7. Given a history H = 〈E, ≺, λ〉 and an assignment ν, the eval-
uation eval and the truth value of a formula are defined by mutual structural
induction. The evaluation function eval maps a term q to N as follows:

eval (H, ν, q) =

⎧

⎨

⎩

q if q ∈ N;
∣

∣{e ∈ E | 〈H, ν[x → e]〉 |= ϕ}
∣

∣ if q is #x : ϕ;
eval (H, ν, q1) + eval(H, ν, q2) if q is q1 + q2.

Similarly, eval maps a label expression l to Σ:

eval(H, ν, l) =

{

l if l ∈ Σ;
λ(ν(x)) if l is λ(x).

Finally, the truth value of a formula is defined as follows:

– 〈H, ν〉 |= false is always false;

– 〈H, ν〉 |= ϕ1 ⇒ ϕ2 if not 〈H, ν〉 |= ϕ1 or 〈H, ν〉 |= ϕ2;

– 〈H, ν〉 |= x1 � x2 if ν(x1) ≺ ν(x2) or ν(x1) coincides with ν(x2);

170 K. van Hee et al.

– 〈H, ν〉 |= q1 < q2 if eval (H, ν, q1) < eval (H, ν, q2) (< is the standard order
on the naturals);

– 〈H, ν〉 |= l1 == l2 if eval (H, ν, l1) coincides with eval(H, ν, l2).

One can show that for closed terms and formulae, i.e., terms and formulae where
all variables appear in the scope of #, the result of the evaluation does not depend
on ν. Therefore, for a closed term q we also write eval(H, q) and for a closed
formula ϕ we also write H |= ϕ. The set of closed formulae over Σ is denoted
CFΣ .

To illustrate our language, we return to the traffic light example from Figure 2.
The guards of transitions are formulated according to Definition 6.

4 Token History Nets

In this section we introduce token history nets as a special class of colored Petri
nets [11] with history as color. The tokens of an initial marking have an empty
history and every firing of a transition t produces tokens carrying the union of
the histories of the consumed tokens extended with the last event, namely the
firing of transition t labeled by Λ(t).

Definition 8. A token history net N is a tuple 〈P, T, F, Λ, g〉 such that NP =
〈P, T, F, Λ〉 is a labeled Petri net and g : T → CFΛ(T) defines the transition
guards.

The semantics of a token history net is given by the transition system defined
as follows:

Color is the set of possible histories 〈E, ≺, λ〉 over the label set Λ(T). A state
m of a token history net N is a bag of tokens with histories as token colors, i.e.,
a marking m : (P × Color) → N.

The transition relation is specified by: m
a

−→ m′ if and only if there exist a
transition t with Λ(t) = a, a history H and two bags cons and prod of tokens
such that:

– H =
⋃

(p,c)∈cons
c (H is the unified history),

– cons ≤ m (tokens from cons are present in m),

–
∑

(p,c)∈cons
[p] = •t (tokens are consumed from the right places),

– prod =
∑

p∈t• [(p, H :: Λ(t))] (prod is the bag of tokens to be produced),
– m′ = m − cons + prod, and

– H |= g(t) (i.e., the guard evaluates to true given the unified history H).

A token history net is thus defined by attaching a guard to all transitions of a
classical Petri net. A transition guard is evaluated on the union H of histories of
consumed tokens. Recall that the union of two histories is defined for consistent
histories only. We will call a marking consistent if the union of all its token
histories is defined. The following lemma states that consistency of markings is an
invariant property (observe that a transition firing cannot destroy consistency).

History-Dependent Petri Nets 171

b

c

a

p

q

d

#{a}=1

Fig. 3. A token history net

Lemma 9. Let m be a consistent marking and m
∗

−→ m′ for some marking m′.
Then m′ is consistent.

Proof. Proof of the lemma relies on the fact that a fresh event is used every time
histories are extended.

To conclude this section we illustrate the semantics of token history nets.

Example 10. Consider the token history net in Figure 3. Firings of transition
d are allowed iff there is only one event labeled by a in the union of the his-
tories of tokens consumed from places p and q, i.e. tokens on p and q origi-
nate from the same initial token. Let the sequence abcabc fire from the initial
marking, which results in the marking m = [(p, H1)] + [(p, H2)] + [(q, H3)] +
[(q, H4)] with H1 = 〈{e1, e2}, {e1 ≺ e2}, {(e1, a), (e2, b)}〉, H2 = 〈{e4, e5}, {e4 ≺
e5}, {(e4, a), (e5, b)}〉, H3 = 〈{e1, e3}, {e1 ≺ e3}, {(e1, a), (e3, c)}〉 and H4 =
〈{e4, e6}, {e4 ≺ e6}, {(e4, a), (e6, c)}〉. The transition labeled d can fire consuming
tokens [(p, H1)] and [(q, H3)] since the tokens share event e1 in their history. The
produced token is [(s, H5)] with H5 = 〈{e1, e2, e3, e7}, {e1 ≺ e2, e1 ≺ e3, e1 ≺
e7, e2 ≺ e7, e3 ≺ e7}, {(e1, a), (e2, b), (e3, c), (e7, d)}〉. This transition cannot fire
on e.g. [(p, H1)] and [(q, H4)] since the union H1∪H4 contains two events (e1 and
e4) labeled by a while the guard specifies that the number of a events should
be one (#{a} = 1). Token history allows thus distinguishing between tokens
originating from different firings of the same transition, i.e., mimicking another
popular color, namely case identifiers.

5 Global History Nets

In this section we introduce global history nets, where history is a separate object
accessible when the guards of transitions are evaluated.

Definition 11. A global history net N is a tuple 〈P, T, F, Λ, g〉 such that NP =
〈P, T, F, Λ〉 is a labeled Petri net and g : T → CFΛ(T) defines the transition
guards.

The semantics of global history nets is defined as follows:
A state of N is a pair (m, H) where m is a marking of NP and H is a history

over Λ(T). The transition relation is specified by: (m, H)
a

−→ (m′, H ′) if and

172 K. van Hee et al.

only if there exists t ∈ T such that λ(t) = a, •t ≤ m, H |= g(t), m′ = m− •t+ t•

and H ′ is H :: Λ(t).

Given a global history net N we denote by S(N) the set of all states of the
net. Analogously to marked Petri nets we consider marked global history nets
being pairs (N, (m, H)) such that N is a global history net and (m, H) ∈ S(N).
The set of states reachable from (m, H) in N is denoted RN ((m, H)); the set of
states reachable from an initial state (m0, ǫ) is thus RN ((m0, ǫ)).

The interleaving semantics results in the following property:

Proposition 12. Let N = 〈P, T, F, Λ, g〉 be a global history net and (m, 〈E, ≺
, λ〉) ∈ RN ((m0, ǫ)). Then ≺ is a total order on E.

Note that history does not contain information which transitions exactly have
fired, but labels of those transitions only. Therefore, knowing the initial marking
and the history, we cannot reconstruct the current marking in general. However,
it can easily be seen that if Λ is injective the current marking can be derived
from the initial marking an history.

Proposition 13. Let N = 〈P, T, F, Λ, g〉 be a global history net such that Λ is
injective. Then, for a given H: (m1, H), (m2, H) ∈ RN ((m0, ǫ)) implies m1 =
m2.

This proposition implies that we are able to express conditions on the marking by
using global history nets with injective labeling. To illustrate this, we introduce
#•p as a shorthand for

∑

t∈•p #{Λ(t)} for some place p, i.e., #•p is the number
of tokens produced to the place p. Similarly, #p• denotes

∑

t∈p• #{Λ(t)}, i.e.,
the number of tokens consumed from p according to the history. (Note that
the sum is taken over a bag.) Now, let m0 be the initial marking of a global
history net N where Λ is injective, and assume (m, H) ∈ RN ((m0, ǫ)). Clearly,
m(p) = m0(p) − #p• + #•p for any p ∈ P . Hence, we can express any condition
on the current state in a transition guard. For example, we can simulate inhibitor
arcs by adding the condition m0(p) − #p• + #•p = 0. Since inhibitor nets are
known to be Turing complete (cf. [17]), global history nets with unique labels
are Turing complete as well.

Corollary 14. Global history nets N = 〈P, T, F, Λ, g〉 are Turing complete.

Next we discuss the implications of Corollary 14 on the expressive power of token
history nets.

Token history vs. global history. Observe that in general it is impossible
to derive the corresponding token histories from the history of a global history
net. Consider the net from Figure 3 as a global history net and suppose that its
global history is aabc. One cannot derive whether the tokens on places p and q

will share the history event labeled by a or not. On the other hand, in general
it is impossible to reconstruct the corresponding global history from a given
marking of a token history net, since no information is available on the order of

History-Dependent Petri Nets 173

truly concurrent firings. So marking m from Example 10 can be obtained as a
result of firing sequences abcabc, aabbcc, abacbc, etc. and have the corresponding
global history. We can however mimic a global history net with a token history
net.

The key idea behind our construction is adding a new place p∗ with one
initial token, connected to all transitions. Since the token in p∗ is updated at
each firing, it will keep a global log. Since all transitions are connected to p∗,
their guards will be evaluated on the same history as in the original global
history net. Formally, given a global history net N = 〈P, T, F, Λ, g〉 with initial
marking m0, we construct a token history net N ′ = 〈P ′, T, F ′, Λ, g〉 with initial
marking m′

0 such that P ′ = P ∪ {p∗} (with p∗ �∈ P being the new place),
F ′(n1, n2) = F (n1, n2) for (n1, n2) ∈ (P × T) ∪ (T × P) and F ′(n1, n2) = 1
for (n1, n2) ∈ ({p∗} × T) ∪ (T × {p∗}), and ∀p ∈ P : m′

0((p, ǫ)) = m0(p),
m′

0((p
∗, ǫ)) = 1 and m′

0(x) = 0 in all other cases. N ′ is called the log extension
of N . It is easy to show that both nets are indeed bisimilar.

Lemma 15. (N, m0) and (N ′, m′
0) as above are bisimilar.

Proof. (Idea) Note that in any reachable marking, the token on p∗ contains the
global history of N ′, while the histories in the tokens of N ′ are partial suborders
of the global history. (N, m0) and (N ′, m′

0) are bisimilar by construction.

Corollary 16. Token history nets are Turing complete.

Proof. By Lemma 15 and Corollary 14.

It is easy to map both a token history net and a global history net onto a colored
Petri net with token values being histories. Figure 4 shows a screenshot of CPN
Tools simulating the two traffic lights from Example 1 controlled by history.
Note that we added place global to store the global history.

The remainder of this paper focuses on global history nets.

6 Global History Nets with Counting Formulae Guards

In this section we consider global history nets with guards being counting for-
mulae, i.e., formulae that do not explore the precedence of events ≺. Formally,
a counting formula ϕ is defined as

ϕ ::= false | ϕ ⇒ ϕ | q < q | l == l

where q and l are terms and label expressions as in Definition 6.
Note that global history nets with counting formulae guards are Turing com-

plete since they allow zero testing on the marking of a place. To facilitate sim-
ulation and validation of these nets, we show that every global history net with
counting formulae guards can be transformed into a bisimilar inhibitor net. Fur-
thermore, we identify conditions on the global history net implying that the net
can be translated to a bisimilar classical Petri net.

174 K. van Hee et al.

Fig. 4. The history-dependent Petri net with parameters R en L and using a global
place to record history simulated using CPN Tools

6.1 Nets with Counting Formulae as Guards vs. Inhibitor Nets

We start with the simplest form of counting formulae, namely (#A) ρ (#B + k)
for some A, B ⊆ Σ, ρ ∈ {≥, ≤} and k ∈ N. For the sake of brevity we call these
expressions basic counting formulae (over A and B). Note that taking B equal
to ∅ we obtain (#A) ρ k (since #∅ = 0).

Lemma 17. Let (N, m0) be a marked global history net with N = 〈P, T, F, Λ, g〉
such that for any t ∈ T , g(t) is a basic counting formula. There exists a marked
inhibitor net (N ′, m′

0) bisimilar to (N, m0).

Proof. We apply to the net (N, m0) an iterative process of guard elimination
resulting in (N ′, m′

0). At every iteration step we will replace one of the transi-
tion guards of the current net by true, adding some places and transitions to
preserve the net behavior. The process terminates when all guards are true, i.e.
we obtained a regular inhibitor net.

Let t be a transition whose guard we eliminate at the next step and let g(t)
be #A ρ #B+k for some A, B ⊆ Σ, ρ ∈ {≥, ≤} and k ∈ N. We can assume that
A and B are disjoint, since (#A) ρ (#B + k) if and only if (#(A \ B)) ρ (#(B \
A) + k).

Figure 5 shows the basic idea of the eliminating a transition with guard
g(t). Consider, for example the case ρ equals ≤. Figure 5(a) sketches the rel-
evant features of the initial net and Figure 5(b) shows the net where guard

History-Dependent Petri Nets 175

a

s'

b'

a'

s

b

t

(b) g(t) = #A #B+k removed

A

...

B

...

...

...

A’

B’

t

a

b

A

...

B

...

invariant:

max{0,#B-#A+k+1}

g(t)

invariant:

max{0, #A-#B}

a

s

b'

a'

s’

b

t

A

...

B

...

...

...

A’

B’

invariant:

max{0,#B-#A}
initial:

1

(a) Transition with guard g(t)

k+1

initial:

k+1

invariant:

max{0, #A-#B+1}

(c) g(t) = #A #B+k removed

Fig. 5. Replace the guard by places s and s
′, duplicate transitions, and inhibitor arcs

g(t) = (#A ≤ #B + k) is eliminated. Note that A and B refer to the sets of
transitions having a label from A respectively B. For the purpose of illustration,
we show a transition with label a ∈ A and a transition with label b ∈ B (note
that may not be such transitions).

In order to mimic the guard g(t), we add places s and s′, where s will contain
max{0, #B −#A+k+1} tokens while s′ will contain max{0, #A−#B} tokens.
Note that g(t) = (#A ≤ #B + k) evaluates to true if and only if there is at
least one token in s, therefore we add a bidirectional arc between s and t. In the
initial marking m0(s) = k + 1 and m0(s

′) = 0.
To support the computations on s and s′, we need to duplicate all transitions

with a label from A ∪ B, i.e., for every v such that Λ(v) ∈ A or Λ(v) ∈ B we
add a transition v′ with •v′ = •v, v′• = v•, and Λ(v′) = Λ(v). The resulting sets
of transitions are referred to as A′ and B′ in Figure 5(b). It is essential to note
that the transitions are mutually exclusive in terms of enabling and that s and
s′ are non-blocking, i.e., if v ∈ T was enabled in the original net, then either v

or v′ is enabled in the net with inhibitors.
The construction for ρ equal to ≥ is similar as shown in Figure 5(c). Note

that the initial marking has been updated and that t now tests for the presence
of k + 1 tokens in s where s always contains max{0, #A − #B + 1} tokens.

The transformation is repeatedly applied until no guarded transition is left. The
bisimilarity of (N, m0) and (N ′, m′

0) can be trivially proven by induction. �

176 K. van Hee et al.

Fig. 6. Bounded and unbounded nets

Our interest in transitions with basic counting formulae as guards is motivated
by the fact that any non-trivial counting formula is equivalent to a disjunction
of conjunctions of basic counting formulae.

Lemma 18. Any counting formula ϕ can be written in disjunctive normal form
where the literals are positive basic counting formula (i.e. without negations), so
ϕ ≡ true or ϕ ≡ false or ϕ ≡

∨

i(
∧

j ψi,j) and each ψi,j is a basic counting
formula.

Theorem 19. Let (N, m) be a marked global history net with N = 〈P, T, F, Λ, g〉
such that for any t ∈ T , g(t) is a counting formula. There exists a marked
inhibitor net (N ′, m′) bisimilar to (N, m).

Proof. (Idea) By Lemma 18 we consider only disjunctions of conjunctions of
basic counting formulae. First we transform our net to a net where all guards are
conjunctions of basic counting formulae by applying the following construction:
Every transition t with a guard ϕ ∨ ψ is replaced by transitions tϕ with the
guard ϕ, and tψ with the guard ψ, where •tϕ = •tψ = •t, t•ϕ = t•ψ = t• and
Λ(tϕ) = Λ(tψ) = Λ(t).

At the next step we eliminate conjuncts from the guards one by one by apply-
ing the construction depicted in Figure 5. The only difference is that we apply
the construction to a transition t with a guard (#A ρ #B + k) ∧ ϕ, and the
guard of t in the resulting net is then ϕ. ⊓⊔

Boundness and analyzability of global history nets. Although the con-
struction referred to in the proof of Theorem 19 is applicable to any global history
net with counting formulae as guards, the resulting net contains inhibitor arcs
and therefore, cannot be analyzed easily because of Turing completeness. How-
ever, it is well-known that inhibitor arcs can be eliminated in bounded inhibitor
nets. Boundedness of classical or inhibitor Petri nets is in principle finiteness of
its state space. Hence it is interesting to explore “finiteness notions” for global
history nets.

Finiteness of RN ((m0, ǫ)) for a global history net N = (〈P, T, F, Λ, g〉) does
not imply boundedness of the underlying Petri net (〈P, T, F, Λ〉, m0) and vice
versa. In Figure 6 we see two global history nets. The underlying Petri net

History-Dependent Petri Nets 177

shown in Figure 6(a) is unbounded, while the global history net has a finite
state space due to the transition guard. The underlying Petri net shown in
Figure 6(b) is bounded, while the global history net has an infinite state space
just because it has an unbounded history. Still, the behavior of this net is clearly
analyzable, since it is possible to construct a classical Petri net bisimilar to it.
The latter observation motivates our interest in the existence of a classical Petri
net bisimilar to a global history net.

In the two following subsections we discuss sufficient conditions for the exis-
tence of a bisimilar classical Petri net.

6.2 Guards Depending on the Marking Only

In this subsection we give conditions on the guards that allow a transformation
into an equivalent bounded Petri net. So global history nets satisfying these
conditions will accept regular languages. We consider here guards that depend
only on the marking. As stated by Proposition 13 if transitions have unique
labels, then a marking is uniquely determined by the history.

Definition 20. Given a global history net N = 〈P, T, F, Λ, g〉 with Λ being in-
jective, we say that a formula ϕ is a marking formula if there exists a formula
ψ, ϕ ≡ ψ, such that ψ is a counting formulae and every basic counting formula
in ψ is of the form (#•p) ρ (#p• + k) for p ∈ P or (#•p + k) ρ (#p•), k ∈ N

and ρ ∈ {≤, ≥}.

Theorem 21. Let N = 〈P, T, F, Λ, g〉 be a global history net with injective Λ

such that for any t ∈ T , g(t) is a marking formula. If the underlying Petri
net (〈P, T, F, Λ〉, m0) is bounded, then there exists a bounded marked Petri net
bisimilar to (N, (m0, ǫ)).

Proof (Idea). We construct a net N ′′ = 〈P ′, T ′, F ′′, Λ〉 and a marking m′′
0 such

that (N ′′, m′′
0) bisimilar to (N, m0). We start by adding a duplicate place p′ for

every place p ∈ P such that •p′ = p• and p′• = •p. Since the underlying Petri
net is bounded, there exists b ∈ N such that for any reachable marking m and
any place p, m(p) ≤ b. We take n greater than the sum of b and the maximum
of all constants in the guards. We define m′

0 for N ′ as follows: ∀p ∈ P : m′
0(p) =

m0(p) ∧ m′
0(p

′) = n − m0(p). Observe that m(p) + m(p′) = n for any reachable
marking m. Moreover, by construction, #•p = #p′• and #p• = #•p′ for any
place p.

Without loss of generality we assume that transition guards are conjunctions
of the form (#•p) ρ (#p• + k) with k ≥ 0 and ρ ∈ {≤, ≥}. Indeed, first, the
proof of Theorem 19 shows how general counting formulae can be reduced to
basic counting formula. Second, if the guard is of the form (#•p + k) ρ #p•, by
the previous observation, we obtain (#p′• + k) ρ #•p′, i.e., (#•p′) ρ′ (#p′• + k)
with ρ′ being the comparison dual to ρ, i.e. ρ′ ∈ {≤, ≥} \ {ρ}. We denote the
resulting net N ′ = 〈P ′, T ′, F ′, Λ〉. Next we are going to add arcs depending on
the guards of N .

178 K. van Hee et al.

We distinguish between two cases. Let g(t) be (#•p) ≤ (#p•+k). Then t may
fire only if the number of tokens consumed from p does not exceed the number
of tokens produced to p by more than k, i.e., the number of tokens produced to
p′ does not exceed the number of tokens consumed from p′ by more than k. In
other words, m′

0(p
′) has at least k tokens. Moreover, if t ∈ •p′ then t may fire

only if p′ contains at least F ′(p, t) tokens. Therefore, we add an arc between p′

and t: F ′′(p′, t) = max{F ′(p′, t), m′
0(p

′) − k}, i.e., max{F (t, p), n − k − m0(p)}.
To complete the transformation, observe that we are not allowed to change the
behavior of the original net. Thus, we need to return tokens to p′. To this end we
add an arc between t and p′: F ′′(t, p′) = F ′(t, p′)+max{0, m′

0(p)−k−F ′(p′, t)},
i.e., F (p, t) + max{0, n − k − m0(p) − F (t, p)}.

Observe that this case also covers the situation when g(t) is (#•p) ≥ (#p•+k)
and k = 0. Therefore, we assume in the second case ((#•p) ≥ (#p• + k))
that k > 0. Similarly to the previous case, we add two arcs between p and t:
F ′′(p, t) = max{F ′(p, t), k+m′

0(p)}, i.e., max{F (p, t), k+m0(p)}, and F ′′(t, p) =
F ′(t, p)+max{0, k+m′

0(p)−F ′(p, t)}, i.e., F (t, p)+max{0, k+m0(p)−F (p, t)}.
In both cases t can fire if and only if the guard holds and the firing does not

change the behavior of the original net. �

6.3 Counting Formulae with Bounded Synchronization Distance

In this subsection we consider a condition on guards that allows to transform
a global history net to a bisimilar Petri net, which is not necessarily bounded.
We use here an important concept in Petri nets introduced by Carl Adam Petri:
synchronization distance [4,7,13]. We use a generalization of this notion, the
so-called y-distance [16].

Definition 22. Let (N, m0) be a Petri net and n be the number of transitions
in N . For a weight vector y ∈ Z

n the y-distance of (N, m0) is defined by

D((N, m0), y) = sup
σ∈Δ

yT · σ,

where yT is the transpose of y, σ is the Parikh vector of σ and Δ the set of all
executable finite firing sequences. The synchronization set is

Sync((N, m0)) = {y ∈ Z
n | D((N, m0), y) < ∞}.

In the net on the right-hand of Figure 6 transitions b and c can fire infinitely
often. If we take the underlying classical Petri net, the transitions are completely
independent of each other and the y-distance is ∞ for any weight vector with at
least one positive component. If we consider the global history net instead, the
number of the firings of c never exceeds the number of the firings of b by more
then 11. Hence the y-distance with y = 〈−1, 1〉 is 11. On the other hand, the
number of firings of b is not restricted by the number of the firings of c, and the
y-distance for y = 〈1, −1〉 is ∞.

For two label sets A and B, the characteristic weight vector for (A,B), denoted
y(A,B), is the weight vector with components equal to 1 for transitions with labels

History-Dependent Petri Nets 179

a

s

b

t

(a) g(t) = #A #B+k removed

A

...

B

...

invariant:

max{0,#B-#A+u}

a

s

b

t

A

...

B

...

invariant:

max{0,#A-#B+u}

u+k

initial: u

(b) g(t) = #A #B+k removed

initial: u

u-k

Fig. 7. Transforming nets with synchronization distance restrictions

in A, −1 for transitions with labels in B and 0 for all other vector components
(recall that we may safely assume that A and B are disjoint). We denote the
y(A,B)-distance by d(A, B) and we call it the characteristic distance (A,B). In
[16], an algorithm is given to decide whether y ∈ Sync((n, m0)) and to determine
the y-distance by examining a finite set of vectors.

Theorem 23. Let N = 〈P, T, F, Λ, g〉 be a global history net with initial marking
m0 such that for any t ∈ T , g(t) is a disjunction of conjunctions of counting
formulae of the form #A ρ #B + k with ρ ∈ {<, ≤, >, ≥}, for each of which
the following property holds: if ρ is ≤ then d(A, B) < ∞ and if ρ is ≥ then
d(B, A) < ∞ in the underlying Petri net (〈P, T, F, Λ〉, m0). Then there exists a
marked Petri net (N ′, m′

0) bisimilar to (N, m0).

Proof. (Idea) The proof is done by construction. Disjunctions and conjunctions
are taken care of as in Theorem 19. Therefore, we restrict our attention to the
following special case: the guard of transition t is a basic counting formula of
the form #A ρ #B + k.

For the first case, where ρ is ≤, we set u = max{k, d(A, B)} + 1. Note that
u ≤ k implies that the guard of t will always be evaluated to true, and thus may
be trivially removed. So we assume that u > k. We apply the construction shown
at the left-hand side of Figure 7. A new place s is added with F (b, s) = 1 for all
b such that Λ(b) ∈ B, F (s, a) = 1 for all a such that Λ(a) ∈ A, and F (s, t) =
F (t, s) = u − k. Furthermore, the initial marking is m′

0(s) = u. Transition t can
fire if and only if s contains at least u − k tokens. Note that u − k > 0 and that
for any reachable state (m, H) we have m′(s) = u+#B−#A ≥ u−d(A, B) > 0.
Therefore t can fire only if #B − #A ≥ −k and the transitions with labels in
A or B are thus not restricted in their firings.

The second case, displayed in the right-hand net of Figure 7, is similar:
u = max{k, d(B, A)} + 1, the arcs are reversed, F (s, t) = F (t, s) = u + k and
m′

0(s) = u. �

180 K. van Hee et al.

lost

({issue} /\ ({lost, cancel}))
pay

issue

cancel

lost

false

pay

lost

pay

true

cancel

cancel

issue

issue

Fig. 8. A net with an LTL-guard

7 Global History Nets with LTL Guards

Now we consider the class of global history nets with LTL guards. We consider
the next-free variant of LTL, since the next time operator (X) should better be
avoided in a distributed context and it is not robust w.r.t. refinements. LTL-
formulae are defined by φ ::= false | φ ⇒ φ | φ Uφ | A, where A ⊆ Σ and U is
the temporal operator until.

Standard LTL works on infinite traces, while our history is always finite. There-
fore, we interpret formulae on a trace we observed so far. Let H = 〈e1 . . . en〉 be
a global history. We define A(ei) as (λ(ei) ∈ A), and (φ Uξ)(ei) as ∃ek : ((ei ≺
ek) ∧ ξ(ek) ∧ ∀em : ((ei � em) ∧ (em ≺ ek)) ⇒ φ(em)). We say that H |= φ

iff H |= φ(e), i.e., ∀e : ((∀ei : e ≺ ei) ⇒ φ(e)) is evaluated to true. Due to the
finiteness of the formula, every LTL formula can be rewritten to a finite formula
in our logic. Note that our interpretation of U coincides with the standard one.

Based on the temporal operator U we introduce additional temporal operators
♦ (“eventually”) and � (“always”) in the standard way: ♦φ := true Uφ, �φ :=
¬(♦¬φ).

We will show now how to translate a global history net with LTL guards to a
(classical) Petri net.

While LTL formulae over infinite traces can be translated to Büchi automata,
LTL formulae over finite traces can be translated to finite automata. [5] presents
a translation algorithm that modifies standard LTL to Büchi automata conver-
sion techniques to generate finite automata that accept finite traces satisfying
LTL formulae. The main aspect of modification there is the selection of accepting
conditions. The automata generated are finite automata on finite words. There-
fore, they can be made deterministic and minimized with standard algorithms
[10].

Let N = 〈P, T, F, Λ, g〉 be a given global history net. At the first step of our
transformation we build a finite deterministic automaton whose edges are labeled
by action names from Λ(T) for every non-trivial (not true or false) transition
guard. Then we transform this automaton into a marked Petri net (which is a
state machine) where a token is placed on the place corresponding to the initial
state of the automaton, and final places obtain auxiliary labels true and non-final
places are labeled by false .

History-Dependent Petri Nets 181

Fig. 8 shows a simplistic example for a credit card company, where a credit
card can be issued, reported lost, used for a payment or cancelled. The pay-
ment transition pay has a guard requiring that the payment is possible only
if the card has not being lost or cancelled after its last issue (♦({issue} ∧
�(¬{lost, cancel})). The net corresponding to the guard is shown on the right
hand side of the figure. Note that this net can perform an arbitrary sequence of
steps, and the place “true” has a token when the guard on the history should
be evaluated to true and “false” when the guard should be evaluated to false.

At the next step we build the net NS which is a synchronous product of
the Petri net NP = 〈P, T, F, Λ〉 with the guard nets Ni, by synchronizing on
transition labels. Namely, the set of places PS of the synchronous product is
the union P ∪ (∪iPi) of places of N and the places of the guard nets; every
combination of transitions t, t1, . . . , tn, where t ∈ T, ti ∈ Ti and Λ(t) = Λi(ti) for
all i, is represented in TS by a transition t′ with •t′ = •t+

∑

i
•ti, t′• = t•+

∑

i ti
•

and Λ(t′) = Λ(t).
The guard nets can perform any arbitrary sequence from Σ∗ and NS has thus

the same behavior as NP . Now we restrict the behavior of NS by taking the
evaluations of guards into account. To achieve it, we add biflow arcs between
every transition t ∈ NS and every true-place corresponding to the guard net of
this transition. The obtained net is bisimilar to the original global history net
by construction.

8 Related Work

Histories and related notions such as event systems [19] and pomsets [8,3] have
been used in the past to provide causality-preserving semantics for Petri nets.
Unlike our approach, these works did not aim at restricting the firings by means
of history-dependent guards. Baldan et al. [2] use two different notions of history.
First of all, they consider semi-weighted nets, i.e., nets where every token can
be uniquely identified by means of tokens used to produce it, transition that
produces it and the name of the place where it resides. This idea is similar in
spirit to our token history. However, the authors do not make this notion of
history explicit nor do they discuss additional operations that can be performed
on histories. Neither this notion, nor history as configuration used by the authors
in study of causality, can be used to restrict firings of transitions by means of
guards as suggested in our approach.

History-dependent automata [12] extend states and transitions of an automa-
ton with sets of local names: each transition can refer to the names associated to
its source state but can also generate new names which can then appear in the
destination state. This notion of history implies that one cannot refer to firings
of other transitions but by means of shared names. We believe that the ability
to express dependencies on previous firings explicitly is the principal advantage
of our approach.

Operations on pomsets similar to our union and intersection appeared under
different names in [6,14,18]. The major distinction is due to unimportance of

182 K. van Hee et al.

the events’ identities in these approaches. Therefore, these operations make use
of disjoint sum to define a union and bijectively rename the events to define
an intersection. Therefore, these operations are defined for any pomsets. Unlike
the existing approaches, we take the identities of the events into account. This
guarantees that common parts of histories appear only once in their union, and
only truly common events appear in the intersection.

y-distance and related notions were studied starting from [4,7,13,16]. Silva and
Murata [15] introduced group-B-fairness, where they extend the synchronization
distance notion from single transitions to the groups of transitions, like we do in
Subsection 6.3. The focus of Silva and Murata’s paper is however on group-B-
fair nets, i.e., nets such that any pair of transition sets from a given transition
covering is in a group-B-fair relation. Unlike their work, Theorem 23 demands
being in a group-B-fair relation only for sets of transitions corresponding to sets
of labels used in the guards.

9 Conclusion

In this paper we emphasize the importance of taking history into account while
modelling processes. Historical information is present in most state-of-the-art en-
terprise information systems. Moreover, it allows to separate process information
from safety constraints, improving the readability and maintainability of models.

We have provided means to model history-dependent processes by extending
the classical Petri nets model and considered two ways of incorporating history:
token history nets and global history nets. To provide analysis, simulation and
validation facilities, we have put a link from global history nets to classical
and inhibitor Petri nets. Namely, we have identified several subclasses of global
history nets that can be automatically transformed to classical Petri nets. For
the class of global history nets with counting formulae as guards we have defined
a transformation to inhibitor nets. Finally, observe that global history nets can
be easily implemented in CPN Tools [1].

Future work. For the future work we plan to adapt our token net framework
for modelling component-based systems. We intend to extend the language of
operations on histories by adding projection in order to allow information hid-
ing and intersection to check disjointness/presence of common parts in token
histories. The guard language will allow to evaluate conditions both on separate
tokens and on their combinations.

We are going to develop a method for transforming broader subclasses of
global history nets to classical and inhibitor Petri nets. For instance, our trans-
formation of global history nets with LTL guards can be easily extended for LTL
with Past. We also consider developing a transformation for global history nets
with LogLogics [9] guards, a three-valued variant of LTL+Past on finite traces.

Acknowledgement. We are grateful to Jan Hidders and Jan Paredaens for a
number of fruitful discussions at the early stages of this research.

History-Dependent Petri Nets 183

References

1. CBN Tools http://wiki.daimi.au.dk/cpntools/cpntools.wiki

2. Baldan, P., Busi, N., Corradini, A., Pinna, G.M.: Domain and event structure
semantics for Petri nets with read and inhibitor arcs. Theoretical Computer Sci-
ence 323(1-3), 129–189 (2004)

3. Best, E., Devillers, R.R.: Sequential and concurrent behaviour in Petri net theory.
Theoretical Computer Science 55(1), 87–136 (1987)

4. Genrich, H.J., Lautenbach, K., Thiagarajan, P.S.: Elements of general net theory.
In: Proceedings of the Advanced Course on General Net Theory of Processes and
Systems, London, UK, pp. 21–163. Springer, Heidelberg (1980)

5. Giannakopoulou, D., Havelund, K.: Automata-based verification of temporal prop-
erties on running programs. In: ASE, IEEE Computer Society (Full version avail-
able as a technical report) pp. 412–416 (2001)

6. Gischer, J.L.: The equational theory of pomsets. Theoretical Computer Science 61,
199–224 (1988)

7. Goltz, U., Reisig, W.: Weighted Synchronic Distances. In: Girault, C., Reisig, W.
(eds.) Selected Papers from the First and the Second European Workshop on Ap-
plication and Theory of Petri Nets. Informatik-Fachberichte, vol. 52, pp. 289–300.
Springer, Heidelberg (1981)

8. Goltz, U., Reisig, W.: The non-sequential behavior of Petri nets. Information and
Control 57(2/3), 125–147 (1983)

9. van Hee, K., Oanea, O., Serebrenik, A., Sidorova, N., Voorhoeve, M.: LogLogics:
A logic for history-dependent business processes, vol. 65(1) (2007)

10. Hopcroft, J., Ullman, J.: Introduction to Automata, Theory, Languages, and Com-
putation. Addison-Wesley, London (1979)

11. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. In: Monographs in Theoretical Computer Science, Springer, Heidelberg (1997)

12. Montanari, U., Pistore, M.: History-dependent automata: An introduction. In:
Bernardo, M., Bogliolo, A. (eds.) SFM-Moby 2005. LNCS, vol. 3465, pp. 1–28.
Springer, Heidelberg (2005)

13. Petri, C.A.: Interpretations of net theory. Technical Report ISF-Report 75.07
(1975)

14. Pratt, V.R.: Some constructions for order-theoretic models of concurrency. In:
Parikh, R. (ed.): Logics of Programs. LNCS, vol. 193, pp. 269–283. Springer, Hei-
delberg (1985)

15. Silva, M., Murata, T.: B-fairness and structural b-fairness in Petri net models of
concurrent systems. J. Comput. Syst. Sci. 44(3), 447–477 (1992)

16. Suzuki, I., Kasami, T.: Three measures for synchronic dependence in Petri nets.
Acta Inf. 19, 325–338 (1983)

17. Valk, R.: On the computational power of extended Petri nets. In: Winkowski, J.
(ed.): Mathematical Foundations of Computer Science 1978. LNCS, vol. 64, pp.
526–535. Springer, Heidelberg (1978)

18. Wimmel, H., Priese, L.: Algebraic characterization of Petri net pomset semantics.
In: Mazurkiewicz, A.W, Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243,
pp. 406–420. Springer, Heidelberg (1997)

19. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
Advances in Petri Nets. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1986)

http://wiki.daimi.au.dk/cpntools/cpntools.wiki

	Introduction
	Preliminaries
	Event History and History Logic
	Token History Nets
	Global History Nets
	Global History Nets with Counting Formulae Guards
	Nets with Counting Formulae as Guards vs. Inhibitor Nets
	Guards Depending on the Marking Only
	Counting Formulae with Bounded Synchronization Distance

	Global History Nets with LTL Guards
	Related Work
	Conclusion

