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Abstract We consider history-dependent behavior in domain-type configurations in orientational order that
are formed in configurations reached via continuous symmetry-breaking phase transitions. In equilibrium,
these systems exhibit in absence of impurities a spatially homogeneous order. We focus on cases where
domains are formed via (i) Kibble-Zurek mechanism in fast enough quenches or by (ii) Kibble mechanism
in strongly supercooled phases. In both cases, domains could be arrested due to pinned topological defects
that are formed at domain walls. In systems exhibiting polar or quadrupolar order, point and line defects
(disclinations) dominate, respectively. In particular, the disclinations could form complex entangled struc-
tures and are more efficient in stabilizing domains. Domain patterns formed by fast quenches could be
arrested by impurities imposing a strong enough random-field type disorder, as suggested by the Imry-Ma
theorem. On the other hand, domains formed in supercooled systems could be also formed if large enough
energy barriers arresting domains are established due to large enough systems’ stiffness. The resulting
effective interactions in established domain-type patterns could be described by random matrices. The
resulting eigenvectors reveal expected structural excitations formed in such structures. The most impor-
tant role is commonly played by the random matrix largest eigenvector. Qualitatively different behavior is
expected if this eigenvector exhibits a localized or extended character. In the former case, one expects a
gradual, non-critical-type transition into a glass-type structure. However, in the latter case, a critical-like
phase behavior could be observed.

1 Introduction

History-dependent configurations are ubiquitously
formed in diverse physical systems. In particular, they
might also appear in systems that in equilibrium display
a relatively simple order in a phase that is entered via a
symmetry-breaking phase transition [1]. Such systems
often display kinetic-dependent qualitatively different
configurations, where several features display univer-
sal behaviors which are independent of systems’ micro-
scopic details [2, 3]. It is of strong interest to identify
key parameters that dominate such behaviors.

Take for example discontinuous temperature-driven
order–disorder phase transition, which in the lower
symmetry phase exhibits (i) polar or (ii) quadrupolar
(e.g., uniaxial nematic order) [4, 5]. The hallmark exam-
ples of these p-atic orientational order (where p = 1
and p = 2 refer to the polar and quadrupolar order,
respectively) are (i) ferromagnetic–paramagnetic and
(ii) isotropic-nematic liquid crystal (LC) phase tran-
sitions. The mesoscopic-scale order parameter could
be in such cases represented by (i) vector −→m = mŝ
and (ii) tensor Q = m(ŝ ⊗ ŝ − I/3) field [4], where
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|ŝ| = 1. Note that, these order parameters consist of
two qualitatively different contributions: amplitude m
and phase ŝ. The amplitudes determine the strength
of the established order, whereas phase fingerprints the
symmetry-breaking choice. In the quadrupolar case, the
states ±ŝ are physically equivalent. In bulk equilibrium,
the symmetry broken phases are characterized by spa-
tially homogeneous values of m and ŝ. Furthermore, m
exhibits a unique temperature-dependent value. On the
other hand, ŝ displays infinite degeneracy [4] (i.e., any
symmetry-breaking direction choice is equivalent).

However, complex configurations could be estab-
lished on varying kinetic phase transition paths, par-
ticularly in the presence of impurities (i.e., different
imperfections or the presence of “foreign” elements in
the system). Let us first consider cases following phase
transition quenches, where the phase change is realized
in a relatively short time scale with respect to the rele-
vant amplitude order parameter relaxation time [6]. In
such cases, in well-enough separated regions, different
symmetry-breaking directions are in general selected
due to the finite speed of information propagation [6, 7].
Consequently, domains are formed, within which points
along a similar direction. At domain interfaces, topolog-
ical defects (TDs) are formed [8, 9], corresponding to
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topologically protected localized order parameter dis-
tortions. Due to their topological protection, they could
be eliminated only via the annihilation [10, 11] of rele-
vant defect-antidefect pairs if the field is not melted.
Domain walls and TDs are in general energetically
expensive. Consequently, in common cases, the char-
acteristic linear size of domains grows with time [12,
13], which is enabled by the annihilation of TDs. Note
that, qualitatively different TDs appear for polar- and
quadrupolar-order parameter. The former can exhibit
topologically stable point defects, while the latter can
display in addition also line defects [4].

If the impact of impurities is relatively weak, the
domain growth exhibits a universal scaling law ξd ∝ tγ ,
where γ is the scaling coefficient [12–14]. For example,
in three-dimensional (3D) nematics, it holds γ ∼ 1

2 .
But if the interaction with impurities is significant, they
might arrest the domain size growth. Namely, phases
reached via a symmetry-breaking phase transition pos-
sess energy costless Goldstone modes [4], which can be
easily excited. According to the Imry-Ma theorem [15,
16], one of the pillars of statistical mechanics of dis-
order, even an infinitesimally weak random-field type
of disorder destroys long-range order, which is antici-
pated in pure systems. The resulting structure is pre-
dicted to exhibit short-range order, where the char-
acteristic Imry-Ma domain size ξ

(IM)
d ∝ w−2/(4−d) is

determined by the disorder strength w and d stands for
the spatial dimensionality. Note that, subsequent inves-
tigations reveal that for weak enough disorder, quasi-
long-range order or even short-range order might be
established [17–20].

Finally, in slow enough quenches, where the system’s
free energy barrier separating the competing phases at
the phase transition temperature Tc is large relative to
kBT c (kB stands for the Boltzmann constant), super-
cooling of the higher symmetry phase could be real-
ized. At low enough temperatures, the energy barrier
(which is decreasing with T ) could be overcome. Sim-
ilarly, as for fast quenches, domain-type structures are
expected to form. However, in supercooled cases, the
relevant order parameter times are significantly shorter
and the resulting ordering within domains is expected
to be stiffer.

In summarizing, systems exhibiting a symmetry-
breaking order–disorder phase transition are expected
to exhibit domain-type configurations if they are
reached via fast enough quenches or they are strongly
supercooled in presence of impurities. If topologi-
cal defects are strongly enough pinned [21] (i.e., the
annihilation of TDs is hindered by energy barriers
that are unlikely to be overcome by thermal fluc-
tuations), domain-like structures could be stabilized
for macroscopic scale time regimes, or even corre-
spond to arrested metastable states protected by unsur-
mountable energy barriers. The effective interactions in
such arrested configurations could be approximated by
random-bond-like effective interactions. Furthermore,
such systems are expected to exhibit several univer-
sal features, where some of which could be described

by random matrices [22, 23]. In the following, we illus-
trate how such approaches could be implemented to
analyze different configurational changes on varying rel-
evant controlled parameters in systems of our interest.

The plan of the paper is as follows. In Sect. 2,
we present common domain-type generic mechanisms.
The resulting configurations experience randomness,
and related effects are analyzed in Sect. 3. In Sect. 4,
we present how these features could yield history-
dependent phenomena. In the last section, we summa-
rize the key features.

2 Domain generating mechanisms

In the following, we illustrate two universal and qual-
itatively different domain generating mechanisms that
are effective in configurations that are reached via a
continuous symmetry-breaking transition. We present
the Kibble [6], Kibble-Zurek mechanism [1], and the
Imry-Ma theorem [15].

2.1 Kibble and Kibble-Zurek mechanism

We first illustrate the derivation of the characteristic
size ξ

(p)
d of protodomains that are nucleated via the

universal Kibble [6] and Kibble-Zurek (KZ) [1] mecha-
nism. The Kibble mechanism was originally introduced
in cosmology [6] in order to explain coarsening dynam-
ics of topological defects in the Higgs field in the early
universe. The principal aim of this and consequent lat-
ter investigations has been to study the impact of infla-
tion velocity on the concentration of defects in the early
universe because they might serve as nucleating sites
for galaxies. The two conditions needed for the mech-
anism are (i) continuous symmetry-breaking and (ii)
finite velocity of information propagation. Later, Zurek
suggested [1] that critical slowing down should also play
the important role. The resulting combined effects of (i)
continuous symmetry-breaking, (ii) causality, and (iii)
freezing of ordering close to the relevant phase tran-
sition are referred to as the Kibble-Zurek (KZ) mech-
anism. Validity and fundamental consequences of the
KZ mechanism have been since 1990 intensively stud-
ied in various condensed matter systems [1, 7, 24–30],
in which experiments can be realized and controlled.
Namely, such experiments can not be realized on the
cosmological scale.

Let us consider a fast enough temperature-driven
order–disorder phase transition, where the symmetry
broken phase exhibits a spatially homogeneous orienta-
tional order. For illustration, we consider the case where
the established order is described by the vector order
parameter m = mŝ. Due to the finite speed of informa-
tion in well-separated regions, the symmetry-breaking
directions are not correlated. Consequently, a domain-
type pattern is formed. Here, a domain refers to a region
characterized by a similar ordering (i.e., orientations of
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ŝ) within it. At domain intersection, there is large prob-
ability that TDs will be formed. To a good approxi-
mation, the established pattern can be described by a
single characteristic length ξd. Note that, the average
separation between nearby defects is also given by ξd.
This is the essence of the Kibble mechanism. The first
formed domains are referred to as the protodomains.
Derivation of their characteristic size is described by
the KZ mechanism.

Originally, the KZ mechanism was derived for the
temperature-driven second-order phase transition [1, 6].
The temperature variations are described by the dimen-
sionless temperature

r = (T − Tc)/Tc, (1)

where Tc stands for the phase transition temperature.
Let us assume linear time variation in temperature
across Tc, which is characterized by the quench rate
τQ :

t = −τQr. (2)

where τQ describes the time needed to increase the
temperature from T = 0 to Tc. Close to the second-
order phase transition, the characteristic amplitude-
order parameter relaxation length and relaxation time
obey equations

τ ≈ τ0
|r|η , ξ ≈ ξ0

|r|v . (3)

where η and v stand for the universal critical
coefficients, and τ0 and ξ0 determine characteristic
responses deep in the symmetry broken phase. For
example, the mean-field description of the paramag-
netic–ferromagnetic second-order transition yields [1, 4]
η = 1 and v = 1/2.

To estimate the size of protodomains, we assume that
we start from the disordered phase, corresponding to
r > 0 (see Eq. 1). Then we linearly in time approach
the phase transition according to Eq. (2). The max-
imal size of fluctuations exhibiting local order within
the disordered “sea” is estimated by ξ (see Eq. 3). The
regime corresponding to |t| > τ is referred to as the
“impulse” regime, where the dynamic of the system is
fast enough to adapt to changes in temperature. There-
fore, in this regime, we assume that the system exhibits
roughly equilibrium ordering. The qualitative change in
behavior is estimated by the condition, when the time
to reach the phase transition, referred to as the Zurek
time tz, becomes comparable to the relaxation time.
Thus, the Zurek time is defined by the condition [1]

|tz| = τ, (4)

Taking into account Eqs. (2) and (3), it follows

|tz| ∼
(

τ0τ
η
Q

) 1
1−η

. (5)

In the time regime −|tz| < t < |tz|, to which we
referred as the adiabatic regime, the order parameter
dynamics is relatively slow. In our approximate treat-
ment, we set that dynamics is frozen in in this time
interval and that the system falls out of equilibrium.
When the system exits the adiabatic regime at t = |tz|,
the dynamics unfreezes. Note that, at t = −|tz|, the size
of the largest fluctuation generated clusters exhibiting
ordering is estimated by

ξ(max) = ξ

(

|rz| =
|tz|
τQ

)

. (6)

For temperatures, corresponding to t < 0, such clus-
ters are unfavorable. One assumes that on crossing
the temperature interval {−|rz|,|rz|}, corresponding to
the adiabatic regime, the correlation length is frozen
due to dynamical slowing down. On exiting this inter-
val, the fluctuations unfreeze at = |tz|. At the corre-
sponding temperature, the clusters exhibiting orienta-
tional order become energetically favorable and tend to
expand. Therefore, the initial size ξp of domains, com-
monly referred to as the protodomains, is estimated by
ξp = ξ(max). It follows [1]

ξp ∼ ξ0

(

τQ

τ0

) v
1+η

. (7)

For η = 1 and v = 1/2, one obtains [30]

|tz| ∼ √
τ0τQ, ξp = ξ0

(

τQ

τ0

)1/4

. (8)

2.2 Imry-Ma theorem

We next consider a possible static source of disor-
der. The Imry-Ma theorem [15] claims that even an
infinitesimally weak random-field type disorder breaks
the system into a domain-type pattern exhibiting short-
range order. The corresponding characteristic domain
length ξ

(IM)
d reveals the compromise between elastic

and random-field tendencies. The former favors spa-
tially homogeneous order and the latter tends to align
the nematic field along a local random-field enforced
orientation.

To express ξ
(IM)
d in terms of material parameters,

let us consider an average domain of volume V d and
estimate the key free energy contributions within it.
We use a minimal continuum type model describing an
ensemble of spins ŝ, where |ŝ| = 1. We set that they
tend to be aligned homogeneously along a symmetry-
breaking direction in absence of disorder. In addition,
we introduce a random-field term that enforces locally
randomly selected orientation ê, and |ê| = The resulting
free energy density is expressed [15, 20] as f = fe+fRF :

fe =
K

2
|∇ŝ|2, (9a)
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fRF = −W

2
Pn(ê · ŝ). (9b)

The elastic term fe enforces homogeneous orienta-
tional order and is weighted by a positive elastic con-
stant K. The random-field contribution fRF is weighted
by a positive constant W , Pn stands for the Legen-
dre polynomial of order n and enforces locally orienta-
tion along ê. The cases n = 1 (P1(x) = x) and n = 2
(P2(x) =

(

3x2 − 1
)

/2) refer to systems exhibiting polar
and nematic orientational order, respectively.

We focus on an average domain of volume Vd ∼ (ξd)
d,

where ξd stands for the characteristic linear domain
size. The corresponding average domain free energy
penalty is approximated by [20]

ΔFd ∼ Vd

2

(

K

ξ2d
− WPn(ê · ŝ)

)

. (10)

where the overbar (. . . ) stands for the spatial average
within Vd, whose average orientation is determined byŝ.
According to the central limit theorem, it holds [4, 15]
Pn(ê · ŝ) ∼ 1

/√
Nd, where Nd ∼ (ξd/aRF)d estimated

number of ê random reorientations within Vd, where the
average separation of nearby reorienting sites is given
by aRF . The size ξ

(IM)
d is obtained by balancing the elas-

tic and random-field interactions. From the requirement
ΔFd = 0, one obtains [15, 20]

ξ
(IM)
d ∼

(

K

Wa
d/2
RF

) 2
4−d

. (11)

Therefore, in 2D and 3D systems, it holds ξ
(IM)
d ∼

K
WaRF

and ξ
(IM)
d ∼

(

K

Wa
3/2
RF

)2

, respectively.

3 Random-field favored configurations

We further discuss nature of excitations [4, 22, 23, 31]
that are enabled by effective interactions within the sys-
tem. For illustrating purposes, we use the simplest pos-
sible toy model.

We originate from the Ising lattice model in a trans-
verse field in the Cartesian system (x , y , z ), which is
defined by the unit vector triad (êx, êy, êz). The local
orientation at the i -th site is determined with pseu-
dospins ŝi, to which we henceforth refer to as spins.
Furthermore, in domain-type patterns, these spins rep-
resent average orientation within each domain. Com-
plex interdomain interactions are described by interac-
tion matrixJ . The matrix component Jij describes the
interaction between i -th and j -th spin (i.e., domain).

We express the dimensionless interaction energy of N -
interacting spins as [32–34]

W = −1
2

∑

i

∑

j

Jijs
z
i s

z
j − Ω

∑

i

sx
i . (12)

We treat ŝi as a classical unit vector and we use XY-
type model, where the orientation of spins is confined to
the Cartesian (x , z ) plane. Cases Jij > 0 (Jij < 0) favor
parallel (antiparallel) alignment of spins along the z -
axis. The transverse field Ω plays the role of an external
ordering field

−→
Ω = Ωêx. In the limit Ω → ∞ and finite

values of Jij , spins are homogeneously aligned along êx.
Furthermore, in our approximate treatment, we ana-

lyze conditions at zero temperature (i.e., we neglect
thermal fluctuations). We parametrize spins in terms
of angles θi (i.e., scalars ui = cosθi) as

ŝi = cos θiêx + sin θiêz = uiêx +
√

1 − u2
i êz. (13)

In the following, we study how ordering imposed by
interactions Jij is established on decreasing Ω where we
start from the limit Ω → ∞, where it holds ŝi = êx(i.e.,
ui = 0). We focus on the regime where the spins begin
to depart from the x -axis alignment, and we assume
|ui| 
 1. Consequently, we can expand W in terms of
small values of ui.

It follows

(14)

W ∼ −1
2

∑

i

∑

j

Jijuiuj − Ω
∑

i

(

1 − u2
i

2
− u4

i

8

)

= W (2) +
Ω
8

∑

i

u4
i ,

where we took into account all the terms up to the
fourth order in ui.

Note that, the minimization of W (2) (i.e., harmonic
term) yields the equilibrium equation

∑

j Jijuj = Ωuj ,
which we express in the matrix notation as

Jû(N) = Ωû(N). (15)

where the N -dimensional vector û(N) =
(u1, u2, u3, . . . uN ) approximates the configuration
of spins that are slightly misaligned from the êx

direction, and J = {Jij} stands for the interaction
matrix. Equation (5) is solved for eigenvectors û(m) of
J :

Jû(m) = Ωmû(m). (16)

where Ωm stands for eigenvalues, and eigenvectors are
normalized and orthogonal. It holds

∑

i

u
(m)
i u

(n)
i = δmn, (17)
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and δmn stands for the Kronecker symbol.
For relatively large values of Ω, it is sensible to

expand û(N) in terms of J eigenvectors as

û(N) =
∑

m

Amû(m), (18)

where Am is the measure amplitudes of modes.
Taking into account the expansion Eq. (18) and

ortho-normal condition Eq. (17) in the expression for
W (Eq. (14)), we get a Landau-type expansion in terms
of excitation mode amplitudes

(19)

W = −NΩ +
1
2

∑

m

A2
m (Ω − Ωm)

+
1
4

∑

m

∑

n

∑

k

∑

l

σmnklAmAnAkAl,

where

σmnkl =
Ω
2

∑

i

u
(m)
i u

(n)
i u

(k)
i u

(l)
i . (20)

3.1 Configurational changes on varying Ω

In the following, we study configurational evolution on
decreasing the external ordering field strength Ω. In the
first step, we neglect the interaction among competing
modes. Afterward, we analyze the interaction between
two modes and estimate threshold conditions leading
to structural transformations.

3.1.1 Independent modes

We first neglect couplings among modes. It follows

W ∼ −NΩ +
∑

m

(

1
2
A2

m(Ω − Ωm) +
1
4
A4

mσm

)

,

(21)

where we introduced quantities

σm =
Ω
2

F
(m)
4 , (22)

F (m)
n =

∑

i

u
(m)n
i , (23)

where n ∈ {1, 2, 4}. Note that σm > 0 and F
(m)
2 = 1

because to modes are normalized.
Minimization of W with respect to mode amplitudes

yields

A(0)
m [Ω > Ωm] = 0, A(0)

m [Ω ≤ Ωm] =
√

(Ωm − Ω)/σm.
(24)

where the superscript (0) indicates that the modes are
decoupled. It follows that on decreasing Ω, the m-th
mode condensates via a second-order-type structural
transformation at Ω = Ωm. The total response of the
system along the z -axis is given by Eq. (18).

3.1.2 Coupled modes

Next, we consider coupling among the modes, which
is in general enabled by the last (fourth-order) term
of Eq. (14). For analytical purposes, we limit to cases
when only two modes mutually compete, i.e.:

W = − NΩ +
1

2

∑

m

A2
m(Ω − Ωm)

+
1

4

∑

m

⎛

⎝σmA4
m +

∑

l�=m

(
4μmlAmA3

l + 3γmlA
2
mA2

l

)
⎞

⎠,

(25)

μml =
Ω
2

∑

i

u
(m)
i u

(l)3
i , γml =

Ω
2

∑

i

u
(m)2
i u

(l)2
i .

(26)

For Ω > 0, it holds σm > 0 and γml > 0. On
the contrary, contributions μml might be also nega-
tive. Furthermore, these terms are in general smaller
with respect to σm and γml values because the sum-
ming contributions in μml could be of opposite sign.
Despite this, the latter terms might affect the qualita-
tive behavior of the system and give rise to hysteresis
behavior. Namely, these terms are the only contribu-
tions in Eq. (25) that are sensitive to relative orienta-
tion (i.e., the sign of amplitudes) of modes.

An equilibrium (meta) stable configuration, in which
two (i.e., m-th and l -th) modes are opened, satisfies
equations ∂W

∂Am
= ∂W

∂Al
= 0, ∂2W

∂A2
m

= ∂2W
∂A2

l
> 0, and

∂2W
∂A2

m

∂2W
∂A2

l
−

(

∂2W
∂Am∂Al

)2

> 0. The condition, where such
a configuration becomes unstable, is determined by

(

∂2W

∂Am∂Al

)2

− ∂2W

∂A2
m

∂2W

∂A2
l

= 0. (27)

where

(28a)

∂W

∂Am
= (Ω − Ωm) Am + σmA3

m

+ μ
(

A3
l + 3AlA

2
m

)

+ 3γAmA2
l ,

∂2W

∂A2
m

= (Ω − Ωm) + 3σmA2
m + 6μAmAl + 3γA2

l ,

(28b)

∂2W

∂Am∂Al
= 3μ

(

A2
l + A2

m

)

+ 6γAmAl, (28c)

and for simplicity, we set γ ∼ γml, and μ ∼ μml.
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3.1.3 Destabilization of parallel
and “antiferromagnetically” coupled localized modes

Next, we derive an estimate for the critical condition for
which “antiferromagnetic” coupled (i.e., μ > 0) modes
become unstable. For illustration purposes, we set that
the mode amplitudes are equal, i.e., Al = Am = A.
We originate from the cubic equation ∂W

∂Am
= 0 (see

Eq. 28a) and we solve it by expanding A about the
independent mode solution (see Eq. 24). It follows

A ∼ A(0)

(

1 − 4μ + 3γ

2β

)

, (29)

where β = βm ∼ βl. This equation suggests that the
coupling between the modes diminishes their ampli-
tude. We insert this results into the stability condition
Eq. (27), which yields the critical condition

β = 6(μ + γ). (30)

This condition could be fulfilled only if the overlap
between the modes is large enough. To illustrate this,
we set that both modes are localized and we model
them using a one-dimensional ansatz

u
(m)
i ∼ cme−|xi−xm|/ξm . (31)

where xi determines the i -th spin site, which is localized
at xm, ξm describes its localization length, and cm in
an amplitude (note that, the normalization condition
Eq. (17) should be fulfilled). In our estimate, we set that
the modes have the same shape, i.e., ξ ≡ ξm ∼ ξl. Using
the ansatz Eq. (31) in Eq. (30) yields the condition

|xi − xm|/ξ ∼ 0.7. (32)

This relation reveals under what circumstances an
initially parallel (i.e., they both have positive ampli-
tudes) modes which are “antiferromagnetically” cou-
pled become unstable. One sees that the instability
occurs if they are close enough with respect to their
localization length.

3.1.4 Mutual immobilization of coupled extended modes

We next analyze coupling between extended (i.e., non-
localized) modes. We show that on decreasing Ω, in
general, the first extended opened mode hinders open-
ing of the later extended modes.

To illustrate this, we consider value of Ω where only
one mode (Am = A1) is open, and conditions are
such that it is extended. To estimate its amplitude, we
assume that its structural configuration is Gaussian. It
follows F(1)

4 ∼ 3
N and (see Eq. 24)

A
(0)
1 ∼

√

2N(Ω1 − Ω)
3

. (33)

Then, we decrease Ω slightly below the second largest
eigenvalue Ω2. In this case, the system energy is deter-
mined by Eq. (25), where only two modes are open (i.e.,
Am = A1, Al = A2), and we neglect the term weighted
by μml. In the equilibrium, it holds

0 =
∂W

∂A2
∼ (Ω − Ω2)A2 + βA3

2 + 3γA2
1A2, (34)

where we assume β = β1 ∼ β2 and γ = γ1 ∼ γ2.
Nonzero solutions of Eq. (23) read

A2 =
√

(

Ω2 − Ω − 3γA2
1

)/

β. (35)

Let us set Ω ∼ Ω2 and for Gaussian distribution of
mode components, one obtains γ ∼ Ω/(2N) and it fol-
lows

A2
2 ∼ 2N

3Ω
(Ω2 − Ω1) < 0. (36)

Thus, the second mode cannot open.

3.2 Eigenvector and eigenvalues of the interaction
matrix

Below, we illustrate numerically behavior which is com-
monly observed in systems whose key features are
described by random matrices [34–36]. We claim that
the latter well describe dominant properties in domain-
type configurations.

For sake of simplicity, we limit to one-dimensional
systems, where we consider different ranges of inter-
actions. In such a way, we mimic roughly higher-
dimensional systems in which systems’ elements inter-
act with a larger number of neighbors. As testbed sys-
tems, we treat cases where (i) first neighbors, (ii) n-
neighbors, and (iii) all N elements (i.e., infinite range)
interact. We remind that in domain-type patterns, spins
represent “scaled” objects (i.e., the i -th spin ŝi fin-
gerprints the average orientation of the i -th domain).
Note that, the stability of domains results from pinned
topological defects [8, 37, 38]. Different types of local-
ized topologically stable defects that can be present
are determined by the symmetry of the system [4,
39, 40]. For example, systems described by a vector
orientational-order parameter (e.g., magnetic or elec-
tric ordering) can exhibit only point defects. On the
other hand, systems exhibiting nematic symmetry pos-
sess also line defects, which present in general domain-
type patterns most abundant [12] TDs. In cases dom-
inated by point defects, one expects relatively strong
coupling only among adjacent domains. On the other
hand, in presence of line defect, also, relatively well-
separated domains could be correlated, giving rise to
an effectively longer range of order.

As a reference, we consider an unperturbed system
in which the nonzero pair interactions are equal to
Jij = J ≡ 1. In these cases in the equilibrium, all
the spins (independent of the range of interaction) are
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aligned along the positive or negative z -axis direction.
This solution equals the J eigenvector corresponding
to the largest eigenvalue. In addition, we consider also
random matrices. We study two qualitatively different
random distributions in Jij values. We either randomly
chose Jij values in the interval [0, 1] or [− 1, 1]. We
refer to these cases as “glass” and “spin-glass” matri-
ces, respectively.

The structural details of the mode eigenvectors can
be inferred from values of F

(m)
1 and F

(m)
4 . Let us assume

that N (m) spins are “opened” (i.e., the orientation of
these spins deviates from the x -axis) in the m-th mode.
We henceforth refer to such an assembly as a cluster if
N (m) 
 N and the opened sites are connected. Owing
to the normalization of modes, it roughly holds u

(m)
i ∼

±1/
√

N (m) (i.e., F
(m)
2 = 1). Consequently, the value of

F
(m)
4 fingerprints the m-th mode cluster size:

1/F
(m)
4 ∼ N (m). (37)

Furthermore, the value of F
(m)
1 is expected to be rela-

tively small with respect to
√

N (m) if the mode exhibits
oscillations about zero.

In Fig. 1 (Jij ∈ [0, 1]) and Fig. 2 (Jij ∈ [−1, 1]), we
plot the first four modes (corresponding to the first,
second, third, and fourth largest eigenvalue Ωm) that
open on decreasing Ω, where the number of interacting
neighbors equals to (a) 4, and (b) N . One sees that for
both “glass” and “spin-glass” matrices, these modes
are localized for the case (a). Note that, the overlap
between these clusters is in general negligible (see
Figs. 1a, 2a). Therefore, in these cases, the modes are
effectively decoupled and do not hinder each others
growth if the relevant parameter (in this case Ω) varies.
On the contrary, if the range of interactions is large
enough, all the modes are extended, see Figs. 1b, 2b.
Consequently, in this case, the modes are strongly
coupled.

Note that, the general features of “glass” and “spin-
glass” matrices are similar. This is well manifested in
the distribution of eigenvalues P (Ωm) (Figs. 3, 4) and
values of 1/F

(m)
4 (Figs. 5, 6) as a function of Ωm. In

the case of short-range interactions (first neighbors and
1D), both P (Ωm) distributions exhibit a singularity
at Ωm = 0. It fingerprints appearance of nonlocalized
states. This anomaly was first observed by Weissmann
[41] who studied electron states in the tight-bounding
approximation with randomly distributed atoms within
the crystal lattice, which illustrates the universality of
the phenomenon. In fact, this phenomenon is related to
the “famous” Anderson localization [42, 43]. The char-
acter of modes strongly changes on varying the number
of neighbors. For a larger number of neighbors, the cen-
tral anomaly in P (Ωm) vanishes and nonlocalized states
appear at finite values of Ωm. Note that, the character
of states could be well inferred from 1/F

(m)
4 . Figures 5b,

6b illustrate that for the infinite range of interactions,

all the modes are nonlocalized. The corresponding dis-
tribution of eigenvalues is in this case well described by
the Wigner distribution [22]

P (|Ωm| < |Ω1|) =
2

πΩ1

√

Ω2
1 − Ω2

m. (38)

4 Discussion

We consider possible origins of domain-type config-
urations that are metastable or arrested on macro-
scopic time scales, exhibiting glass-like features, in sys-
tems that in “normal” conditions exhibit long-range
orientational order in a temperature-driven symmetry-
breaking phase transition. We present qualitatively dif-
ferent domain generating mechanisms in such systems,
that might also appear mutually. These are (i) fast
enough quenches, described by the universal Kibble-
Zurek (KZ) mechanism [1], (ii) supercooling phase
transformations, described by the Kibble mechanism
[6], and (iii) Imry-Ma mechanism [15].

Note that, the KZ mechanism was originally derived
for the second-order phase transition. However, it could
be applied also to weakly first-order phase transition,
e.g., isotropic-nematic LC phase transition [30]). The
necessary condition is that the “freezing” condition is
realized (i.e., one can introduce the Zurek time, see
Eq. (4)). This requirement supplements the two condi-
tions for the appearance of the Kibble mechanism: the
existence of continuous symmetry-breaking phase tran-
sition and the finite speed of information propagation.
The characteristic linear size of resulting protodomains,
that are nucleated below the phase transition temper-
ature is determined by the quench rate. Note that,
after the domains “unfreeze,” they start to grow. In
the presence of impurities, which are coupled to the
relevant phase ordering field [4], an effective random-
field could be stabilized if the coupling is strong enough
[20]. Consequently, the domain pattern could persist in
a metastable state.

Similarly, domain-type structures could appear in
supercooled first-order phase transitions. In this case,
we define the reduced temperature as r = T−T ∗

T ∗ , where
T ∗ stands for the supercooling temperature. These sys-
tems should experience low enough perturbations so
that supercooling is possible. In such cases, a sys-
tem experiences local jumps into the ordered phase
well below the equilibrium phase transition tempera-
ture Tc, where the energy barrier between the compet-
ing phases could be overcome via thermal fluctuations.
Owing to the universal Kibble mechanism, domain pat-
tern is expected. In this case, domains might remain
arrested even in relatively pure samples, where impuri-
ties are weakly coupled with the relevant order param-
eter. Namely, at low enough temperature, the system
might be stiff enough to enable unsurmountable energy
barriers [44].
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Fig. 1 First four opened modes û(m) (corresponding to the
first, second, third, and fourth largest eigenvalue) for a four
first neighbors, and b N coupled neighbors (infinite inter-
action range). Jij ∈ [0, 1], 1D, N = 3000. The plot shows

values of u
(m)
i along the x -axis. The vertical axis is scaled

in arbitrary units (i.e.,
∑

i u
(m)2
i = 1)

Fig. 2 First four opened modes û(m) (corresponding to the
first, second, third, and fourth largest eigenvalue) for a four
first neighbors, and b N coupled neighbors (infinite inter-
action range). Jij ∈ [−1, 1], 1D, N = 3000. The plot shows

values of u
(m)
i along the x -axis. The vertical axis is scaled

in arbitrary units (i.e.,
∑

i u
(m)2
i = 1)
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Fig. 3 Distribution of eigenvalues for a first neighbors, b N coupled neighbors (infinite interaction range). Jij ∈ [0, 1], N
= 3000

Fig. 4 Distribution of eigenvalues for a first neighbors, b N coupled neighbors (infinite interaction range). Jij ∈ [−1, 1], N
= 3000

The potential stabilization of domains strongly
depends on the symmetry of the order parameter [4].
Structures described by vector order parameters could
exhibit point defects. On the contrary, the quadrupo-
lar symmetry allows also line defects. Domain pattern’s
growth is enabled by the annihilation of appropriate
defects and antidefects. If line defects are present, this
process is less probable. The resulting domains tend to
grow with time [13, 14, 25], however, in the presence
of impurities, their growth could be arrested. Impuri-
ties could strongly pin topological defects or even create

additional TDs. This is well manifested in recent studies
in LC phases perturbed by colloids [45–47], nanoparti-
cles [48–52], or by surface imperfections [53]. The fun-
damental ingredient stabilizing and pinning topological
defects seem to be curvature [54–63] and elastic terms
supporting excitations exhibiting Gaussian curvature in
a relevant physical field [64–71].

The resulting domain pattern might be presented as
an ensemble of randomly interacting effective spins,
where the latter represents an average orientation
within a domain. Within such a complex system, the
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Fig. 5 Values 1/F (m)
4 corresponding to eigenvalues Ωm which roughly reflects number N (m) of spins within the m-th

“cluster.” Jij ∈ [0, 1], N = 3000

Fig. 6 Values 1/F (m)
4 corresponding to eigenvalues Ωm which roughly reflect number N (m) of spins within the m-th

“cluster.” Jij ∈ [−1, 1], N = 3000

interaction among the spins is strongly influenced by
topological defects that are formed at domain bound-
aries. Essential universal energy-related features of
resulting configurations can be described by random
matrices. The corresponding eigenvectors of matri-
ces reveal patterns that such interaction intrinsically
favors. Their character might have a strong impact on
the resulting structural changes when relevant control
parameters are changed (e.g., temperature). Note that,
several studies reveal that the essential behavior of such

systems is weakly dependent on detail interaction char-
acter [34–36]. For this reason, we use a relatively sim-
ple description, where the scaled interaction strength of
mutually coupled spins either varies within the interval
[− J , J ] or [0, J ], where J ¿ 0 describes the maximal
coupling strength favoring local parallel orientation of
interacting units. These cases roughly mimic the behav-
ior in systems exhibiting polar and quadrupole interac-
tions, respectively. Of particular importance are eigen-
vectors corresponding to the largest matrix eigenvalue
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[36]. Namely, in general, they correspond to configura-
tions that exhibit minimal energy penalty. The essential
properties of these states are determined by the range of
interactions within a system and spatial dimensionality,
which both increase the number of mutually interacting
system elements. In our model via mimic these effects
just by increasing the number of interaction neighbors.
The key features of such systems are as follows. In sys-
tems where few elements interact by random interac-
tions display localized eigenvalues occur. On varying
relevant parameters, one expects that different local-
ized eigenmodes could be opened because the overlap
between the competing modes is expected to be rela-
tively low. Such systems are expected to show gradual
non-critical evolution of order on varying relevant con-
trol parameters (e.g., temperature). On the other hand,
if eigenmodes are nonlocalized, a critical-like behavior
might be observed. Namely, the firstly opened mode
is expected to hinder the opening of other competing
modes, which promote different configurations.

5 Conclusions

In the paper, we summarized common conditions
that might stabilize domain-type structures in sys-
tems, which are under normal conditions expected to
exhibit spatially homogeneous orientational order. In
such systems, one expects several universal features
which depend on the symmetry of order parameter
and range of effective interactions within the system.
We showed that domains are almost inevitable formed
in continuous symmetry-breaking phase transitions if
either quenched or strongly supercooled systems. In
the former case, impurities are needed to pin topo-
logical defects and consequently stabilize domains. In
the latter case, which appears only in first-order phase
transitions, structures could be stabilized also if stiff
enough order is formed. In either case, stabilization of
domains is more effective if line defects could exist.
The resulting general character of domain-type con-
figurations could be inferred from behavior of random
matrices, which mimic energetics of such structures
entangled by essentially random network of topologi-
cal defects. The related eigenvectors, corresponding to
relatively large eigenvalues, are in general expected to
have the strongest impact. If these states are localized,
one expects gradual evolution of order on varying a
relevant control parameter (e.g., temperature). If the
states are extended (nonlocalized), critical-like behavior
might emerge. We plan to perform research to illustrate
these effects also quantitatively by matching results of
selected well-defined experimental systems and numer-
ical studies using well-defined model which is designed
to model experimentally measured quantities.
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49. E. Karatairi, B. Rožič, Z. Kutnjak, V. Tzitzios, G.
Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, S.
Kralj, Nanoparticle-induced widening of the tempera-
ture range of liquid-crystalline blue phases. Phys. Rev. E
81, 041703 (2010). https://doi.org/10.1103/PhysRevE.
81.041703

50. X. Wang, Y.K. Kim, E. Bukusoglu, B. Zhang, D.S.
Miller, N.L. Abbott, Experimental insights into the
nanostructure of the cores of topological defects in liquid
crystals. Phys. Rev. Lett. 116, 147801 (2016). https://
doi.org/10.1103/PhysRevLett.116.147801

51. X. Wang, D.S. Miller, E. Bukusoglu, J.J. de Pablo,
N.L. Abbott, Topological defects in liquid crystals as
templates for molecular self-assembly. Nat. Mater. 15,
106–112 (2016). https://doi.org/10.1038/nmat4421
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