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History effects on the gas exchange between a bubble and a liquid
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Diffusive processes exhibit a strong dependence on history effects. For a gas bubble at

rest in a liquid, such effects arise when the concentration of dissolved gas at the bubble

surface, dictated by Henry’s law, depends on time. In this paper we consider several such

situations. An oscillating ambient pressure field causes the occurrence of rectified diffusion

of gas into or out of the bubble. Unlike previous investigators, who considered the opposite

limit, we study this process for conditions when the diffusion length is larger than the

bubble radius. It is found that history effects are important in determining the threshold

conditions. Under a static ambient pressure, the time dependence of the gas concentration

can arise due to the action of surface tension, which increases the gas pressure as the bubble

dissolves or, when the bubble contains a mixture of two or more gases, due to the different

rates at which they dissolve. In these latter cases history effects prove mostly negligible for

bubbles larger than a few hundred nanometers.

DOI: 10.1103/PhysRevFluids.1.064202

I. INTRODUCTION

Dependence on past history is one of the distinctive features of diffusive processes. In this paper

we study the consequences of this dependence on the mass exchange between a gas bubble and

the ambient liquid super- or undersaturated with dissolved gas. The driver for the exchange is the

difference between the concentration of the diffusing species at the surface of the bubble and in the

surrounding liquid. The former is dictated by the bubble internal pressure according to Henry’s law.

We consider the limit of small radial velocities, which enables us to omit the effects of convection,

focusing specifically on diffusion and the attendant history phenomena. We first develop a general

theory (Sec. II) followed by some general scaling considerations (Sec. III), and then illustrate its

consequences for cases in which the ambient pressure oscillates (Sec. IV) or is constant (Secs. V

and VI), finding strong effects in the former situation and small ones in the latter two.

The mass transfer between a bubble and the surrounding liquid in an oscillating pressure field

is well known in the acoustics literature, where it is referred to as rectified diffusion (see, e.g.,

Refs. [1–3]). The adjective rectified refers to the fact that a net inflow of gas dissolved in the liquid

becomes possible in certain conditions. This phenomenon is due to the alternating expansion and

contraction of the bubble, which causes the pressure of the gas contained in it to oscillate. Due to

Henry’s law, the concentration of dissolved gas in the liquid at the bubble surface also oscillates and,

if it becomes sufficiently small during expansion, the resulting diffusive influx may be large enough

to balance the mass lost during contraction when the pressure rises.

A very complete theory of rectified diffusion has been developed by Fyrillas and Szeri [4] for

conditions in which the diffusion layer, of order
√

D/ω (with D being the gas diffusivity in the liquid

and ω being the angular frequency of the ambient pressure field), is much thinner than the bubble

radius. In this limit, the alternating thinning and thickening of the diffusive boundary layer at the

bubble surface play a dominant role in determining the mass transfer. Here we focus on the opposite
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limit, in which the frequency is low and the diffusion layer is much thicker than the bubble radius.

A situation of this type might be encountered, for example, in the case of bubbles present in a liquid,

the container for which is subject to mechanical vibrations; examples of other possible occurrences

are low-frequency acoustic fields or bubbles in a turbulent liquid flow. Under these conditions there

is no diffusive boundary layer and rectified diffusion is only dependent on the difference in the

surface area of the bubble upon expansion and contraction.

The bubble-liquid mass exchange in a constant pressure field was first studied in a by-now classic

paper by Epstein and Plesset [5], who treated the problem of the dissolution or growth of a gas

bubble in a liquid under- or supersaturated with gas. More recently their approach has been extended

to the dissolution or growth of single-component drops in an immiscible liquid [6,7] and to the study

of nanodrops and nanobubbles [8]. As long as surface tension and dynamical effects are negligible,

whatever the bubble radius, the gas pressure in the bubble balances the constant ambient pressure

and the dissolved gas concentration at the bubble surface remains constant, according to Henry’s

law. With surface tension, however, the bubble internal pressure comes also to depend on the bubble

radius and, therefore, it changes as the bubble grows or dissolves.

Epstein and Plesset [5] did not explicitly account for the time dependence of this effect, assuming

an instantaneous adjustment of the dissolved gas concentration to the changing boundary condition

and, in so doing, they omitted history effects. This situation is considered explicitly in Sec. V, with

the conclusion that their procedure is essentially justified as long as the bubble is larger than a

few hundred nanometers. Another situation in which the dissolved gas concentration at the bubble

surface depends on time, considered in Sec. VI, is that of a multicomponent bubble, the constituents

of which dissolve and diffuse at different rates. Here again history effects prove of relatively minor

importance.

History effects have also been studied in a very recent paper [9] focusing, however, on situations

different from those considered here, namely the response of the bubble when the ambient pressure

undergoes jump discontinuities and rectified diffusion in the limit of small-amplitude oscillations.

The method of investigation is similar, except for the use of a modified time variable (a point which

we briefly consider in the appendix). This paper also contains several interesting observations on the

nature of the approximations made in the mathematical model.

The phenomena studied in the present work are similar to those considered in a previous recent

paper [10] devoted to the dissolution or growth of a multicomponent drop. In that case, the time

dependence of the surface concentration of the diffusing species is a consequence of their mutual

interaction as the composition of the drop varies in time.

II. ANALYSIS

We follow the formulation of Epstein and Plesset [5], according to which a bubble, containing

an incondensible gas at a pressure pg , is instantaneously exposed to an infinite liquid medium

containing the same gas dissolved with a uniform concentration ρi
g . The ambient pressure in the

liquid is p∞ and diffusion and pressure variation are so slow that mechanical equilibrium may be

assumed at the bubble surface, according to which

pg = p∞ +
2σ

R
, (1)

where σ is the surface tension coefficient and R is the bubble radius. As in Ref. [5] we assume that

the bubble remains spherical and that it does not move relative to the host liquid.

The liquid concentration ρ
sf
g of the dissolved gas at the bubble surface is determined by Henry’s

law as

ρsf
g = K(T )pg , (2)

in which K(T ) is a function of the absolute temperature T . The difference ρ
sf
g − ρi

g sets up a diffusive

flux −D∇ρg which causes inflow or outflow of gas from the bubble; D is the mass diffusivity of
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the gas in the liquid. In order to characterize the solubility of the gas it is useful to follow Ref. [5],

introducing a parameter

d =
ρsat

ρ0
b

=
K(T )RGT

Mg

, (3)

with ρsat being the density of gas dissolved in the liquid at saturation under the pressure p0
∞, ρ0

b

being the density of the free gas at the same pressure p0
∞, RG being the universal gas constant, T

being the absolute temperature, and Mg being the molecular mass of the gas.

For a bubble undergoing spherically symmetric motion, the convection-diffusion equation for the

density ρg of gas dissolved in the liquid may be written as

∂ρg

∂t
=

1

r2

∂

∂r

[

Dr2 ∂ρg

∂r
− R2Ṙ

(

ρg − ρi
g

)

]

, (4)

in which R = R(t) is the bubble radius, Ṙ = dR/dt , and r is the distance from the bubble center.

For motions taking place on a time scale ω−1 sufficiently long that the diffusion length
√

πD/ω

exceeds the radius, the characteristic length for the gradient is the bubble radius itself and we have

the estimate

R2Ṙ
(

ρg − ρi
g

)

Dr2∂ρg/∂r
∼

R2

r2

RṘ

D
, (5)

in which the second fraction may be considered a Péclet number. Thus, the last term in (4) will

be negligible compared with the diffusion term provided the Péclet number is small, which we

assume. In an oscillating pressure field, if the bubble radius changes by �R during the time ω−1,

Ṙ ∼ ω�R and RṘ/D ∼ (R2ω/D)(�R/R). The first factor is the square of the ratio of the radius

to the diffusion length and is essentially the square of the parameter � introduced later in (22).

On the basis of these considerations and assumptions we set u = r(ρg − ρi
g), drop the convective

term and recover the simpler diffusion equation

∂u

∂t
= D

∂2u

∂r2
, (6)

which will be used in this paper. This is the standard approximation made in a majority of papers

on the present subject, most recently in Ref. [9]. Some further considerations on these issues will be

found in the next section. The boundary conditions are

ρg[R(t),t] = H (t)ρsf
g (t) , lim

r→∞
ρg = ρi

g , (7)

where the Heaviside function H (t) enforces the fact that the boundary condition is applied

instantaneously at t = 0+, the concentration being ρi
g at earlier times. The initial condition is

ρg(r,0) = ρi
g . (8)

The rate at which mg , the mass of gas contained in the bubble, varies is given by

dmg

dt
= 4πR2(t)D

∂ρg

∂r

∣

∣

∣

∣

r=R(t)

. (9)

Unlike Epstein and Plesset, we allow here p∞ to be time dependent but to vary so slowly that the

quasiequilibrium condition (1) is very nearly satisfied at every instant. The condition for the validity

of this approximation is that the frequency be much smaller than the bubble resonance frequency,

of the order of
√

3p∞/(ρR2). Ordinarily this condition is much less stringent than the previous one

related to the neglect of convective terms.
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In response to the changing ambient pressure, the bubble radius will also change. If the gas in the

bubble can be described by the ideal gas law, the bubble radius satisfies the relation

pg

(

4

3
πR3

)

=
mg

Mg

RGT , (10)

in which pg is given by (1). In view of the assumed slow variation of the pressure, the gas will

behave essentially isothermally so that T can be considered to be a constant.

In principle, with a significant amount of vapor in the bubble, several new effects become

important: The mutual diffusion of the gas and vapor, latent heat, and temperature variations both

in the gas-vapor mixture and in the liquid. As the focus of this paper is to study the effect of

the time dependence of the dissolved gas concentration at the bubble surface, we disregard these

complications here simply noting that a constant vapor pressure contribution can be simply added

to the left-hand side of (1) if necessary.

Following the work of Epstein and Plesset and many other investigators [11–13], in the solution

of the mathematical problem posed by (6), (7), and (8) we will treat R as a parameter. Tao [14,15]

tried to improve on this approximation but his method of solution leads to an infinite series that must

be truncated, introducing errors that are difficult to quantify. A better approach was developed in a

recent paper [9] by the introduction of a modified time variable. The radius of a dissolving bubble

decreases very slowly for a significant fraction of its lifetime; it is only near the end of the process

that it varies rapidly. In this case, as shown in the appendix, the difference with our procedure is

small. In the case of an oscillating pressure field, the error is of the order of �R/R, and therefore it

is of the same order as that introduced by the neglect of convection, as explained in the next section.

Hence, treating the radius in a parametric way is consistent with the other approximations made in

this study.

We take the Laplace transform (denoted by a tilde) and solve the resulting differential equation

to find

ũ(r,s) = ũ|r=Re−
√

s/D (r−R) . (11)

In terms of ũ we have

∂ρ̃

∂r

∣

∣

∣

∣

r=R

= −
[

ũ(R,s)

R2
+

1

R

sũ(r,s)
√

Ds

]

r=R

, (12)

which can be readily inverted. When the result is inserted into (9) we find

dmg

dt
= 4πR2(t)D

[

ρi
g − ρ

sf
g (0)

√
πDt

+
ρi

g − ρ
sf
g (t)

R
−

∫ t

0

dρ
sf
g (τ )

dτ

dτ
√

πD(t − τ )

]

. (13)

The first term in the right-hand side is due to the discontinuity of the boundary condition at t = 0.

If ρ
sf
g is independent of time, this result coincides with that of Ref. [5]. The last term is the history

term due to the variation in time of the surface concentration, which is a consequence of the time

dependence of the bubble pressure caused by the variation of the ambient pressure, surface tension,

or other factors. The difference with Ref. [5] is even more evident upon rewriting this equation

identically as

dmg

dt
= 4πR2(t)D

{

[

ρi
g − ρsf

g (t)
]

(

1
√

πDt
+

1

R

)

−
∫ t

0

dρ
sf
g (τ )

dτ

[

1
√

πD(t − τ )
−

1
√

πDt

]

dτ

}

.

(14)

The first term in the right-hand side is the only term occurring in the original theory of Ref. [5].

After a discussion of orders of magnitude in the next section, we illustrate the effect of the new

memory term in (13) or (14) for the case in which the time dependence of ρ
sf
g is due to the time
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dependence of the ambient pressure or, in a constant pressure field, to the effect of surface tension

or to the presence of different gases.

III. SCALING

It was shown in the previous section that the convective term of the diffusion equation is small

compared with the diffusion term provided the Péclet number is small. We now turn to a consideration

of the other term in the convective derivative, namely ∂ρg/∂t . Proceeding as for the convective term,

the ratio of the two terms in the convective derivative can be estimated as

(R2/r2)Ṙ ∂ρg/∂r

∂ρg/∂t
∼

Ṙtdiff

R
, (15)

in which tdiff is the characteristic time scale over which ρg varies appreciably.

In a static pressure field tdiff can be estimated as R2/D, while Ṙ will be of the order of the initial

radius R0 divided by the total dissolution time tdiss which, for a monocomponent bubble, is of the

order of R2
0/[dD(1 − ρi

g/ρsat)], according to Epstein and Plesset. In this way we find

(R2/r2)Ṙ ∂ρg/∂r

∂ρg/∂t
∼

(

1 −
ρi

g

ρsat

)

d , (16)

a result previously given in Ref. [16]. In this case, therefore, it is consistent to neglect the convective

term provided d is small or the liquid is nearly saturated with gas.

The situation is different in an oscillating pressure field with frequency ω because, in this case, the

previous estimate of Ṙ is only applicable provided ωtdiss is less than 1, i.e., at very low frequencies.

When ωtdiss > 1, the proper time scale for both Ṙ and ∂ρg/∂t is just 1/ω and the ratio of the two

terms is of the order

(R2/r2)Ṙ ∂ρg/∂r

∂ρg/∂t
∼

Ṙ/R

ω
≃

�R

R
, (17)

with �R being of the order of the oscillation amplitude of the radius. When the radius changes are

small, the convective term is of higher order and can be neglected, which justifies the linearization

of the diffusion equation. In this case, the boundary condition at the moving bubble surface can be

treated as a domain perturbation as shown in one of the cases treated in Ref. [9]. When �R ∼ R,

however, the two terms of the convective time derivative are of a comparable order and, therefore, the

ratio of ∂ρg/∂t to diffusion is also of the order of the Péclet number. In these conditions, when this

number is small, it would be consistent to just use the steady-state diffusion equation treating time

simply as a parameter. In this quasisteady approximation, the only surviving term in the equation (13)

for dmg/dt would then be the middle one, proportional to 1/R, and all effects explicitly dependent

on time, including history, will be of the order of the Péclet number and, hence, small. When �R/R

is not small, omission of the convective term in spite of the retention of ∂ρg/∂t is unjustified from

a purely mathematical viewpoint. A pragmatic justification for our procedure is that it enables us to

explicitly identify the presence of history effects and to estimate their magnitude. Furthermore, as

will be shown in the next section in connection with Fig. 7, the effect of the magnitude of the ratio

�R/R is rather small, which lends further justification to the simplification adopted in this paper.

IV. MASS TRANSFER IN AN OSCILLATING AMBIENT PRESSURE

Bubble growth (or delayed dissolution) by rectified diffusion is a fundamentally nonlinear

processes. First, for equal positive and negative ambient pressure changes, the bubble radius

increases more upon expansion than it decreases upon contraction due the nonlinearity of the

pressure-volume relation. (A contributing factor is the nonlinearity of the Rayleigh-Plesset equation

equation governing the radial motion, which is neglected here.) Thus, the surface area when the
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bubble expands and absorbs gas from the surroundings is larger than when it contracts and loses gas.

Second, upon expansion, the diffusion boundary layer at the bubble surface is stretched and thins,

which increases the inward-directed mass flux while, when it contracts, the boundary layer thickens

and the outward-directed mass flux decreases. In the limit considered here this second process, as

well as inertia, is negligible and the phenomenon rests solely on the difference in the surface areas

upon expansion and contraction of the bubble.

We focus on the threshold conditions separating bubble growth from dissolution and consider

sinusoidal ambient pressure oscillations writing

p∞(t) = p0
∞(1 − P∗ sin ωt), (18)

with P∗ being the dimensionless pressure amplitude. A length Re useful to characterize the bubble

size can be defined by

4

3
πR3

ep
0
∞ =

〈mg〉
Mg

RGT , (19)

in which 〈mg〉 is the average mass of gas in the bubble, which is a constant in steady threshold

conditions. We set

t∗ = ωt , R∗ =
R(t)

Re

, p∗
∞(t∗) =

p∞(t)

p0
∞

, ρsf
∗ =

ρ
sf
g

ρsat

, (20)

with ρsat = K(T )p0
∞. In dimensionless form the mass transfer equation (13) is

dmg∗

dt∗
=

3

π
d

√
πD/ω

Re

R2
∗

[

ρi
g∗ − ρ

sf
g∗(0)

√
t∗

+
√

πD/ω

Re

ρi
g∗ − ρ

sf
g∗(t)

R∗
−

∫ t∗

0

dρ
sf
g∗(τ∗)

dτ∗

dτ∗√
t∗ − τ∗

]

,

(21)

in which mg∗ = mg/〈mg〉 and d is the solubility parameter defined earlier in (3). An important

parameter appearing in this equation is

� =
Re√

πD/ω
, (22)

which is the ratio of of the average bubble radius to the diffusion penetration length. The bubble

internal pressure is nondimensionalized in the same way:

p∗
g =

pg

p0
∞

= p∗
∞ +

α

R∗
= p∗

∞ +
β

�R∗
, (23)

where

α =
2σ

p∞
0 Re

, β =
2σ

p∞
0

√
πD/ω

. (24)

We thus see that the problem contains five parameters, namely ρi
g∗, �, P∗, d, and α (or β). At

threshold conditions, any one of them will be a function of the remaining four.

Threshold conditions for rectified diffusion are identified by the requirement that no net mass

transfer occurs over a complete cycle of pressure oscillations:

∫ t∗+2π/ω

t∗

R2
∗

[√
πD/ω

Re

ρi
g∗ − ρ

sf
g∗(t)

R∗
−

∫ t∗

0

dρ
sf
g∗(τ∗)

dτ∗

dτ∗√
t∗ − τ∗

]

dt = 0. (25)

Here we have omitted the transient term proportional to t−1/2 in (21), the effect of which decreases

with time.

064202-6



HISTORY EFFECTS ON THE GAS EXCHANGE BETWEEN A . . .

FIG. 1. Dimensionless rectified diffusion threshold amplitude P∗ vs dimensionless bubble radius

Re/
√

πD/ω for different values of the liquid undersaturation ρi
g/ρsat, surface tension effects not included.

Before turning to the results it is useful to note that, as a consequence of the equation of state,

[1 − P∗ sin t∗ + α/R∗(t∗)]R3
∗(t∗)

1 + α
=

mg(t)

〈mg〉
. (26)

According to this relation, the bubble radius responds to both the external pressure and changes in

the bubble contents. Consider the beginning of a pressure cycle in which the pressure falls. Until the

pressure inside the bubble becomes close to the saturation value corresponding to the gas content

of the liquid, gas keeps diffusing out of the bubble and the radius expands less than it would in

the absence of diffusion. When the ambient pressure is low enough, gas starts diffusing into the

bubble and the radius starts expanding more than it would without diffusion. This expansion period

which, due to the area effect mentioned before, is crucial for rectified diffusion, becomes longer as

the pressure amplitude is increased. When the ambient pressure starts rising, the increased mass of

gas in the bubble limits the bubble compression and, therefore, decreases the mass loss. Since these

effects depend on diffusion, which is a slow process, one may expect their influence to decrease as

frequency is increased. These considerations help to interpret the results that we now describe. For

definiteness we present numerical results for the case of air and water at 22 ◦C, for which d = 0.02.

We begin by neglecting surface tension effects so that, with d fixed, the free parameters reduce

to 3, namely the water super- or undersaturation ρi
g/ρsat, the dimensionless radius Re/

√
πD/ω, and

the dimensionless pressure amplitude P∗. Figure 1 is a graph of the threshold amplitude P∗ vs the

parameter Re/
√

πD/ω for different values of the undersaturation ρi
g/ρsat. It is clear from (26) that,

in the absence of surface tension, the radial oscillations become larger as P∗ approaches 1. This

circumstance makes a precise determination of the threshold numerically delicate in this range and,

for this reason, our exploration of the parameter P∗ does not extend all the way to 1. This difficulty

becomes more acute with increasing ρi
g as then the amplitude of the mass fluxes also becomes very

large. The range of the horizontal axis is limited by the requirement that Re be smaller than
√

πD/ω

for the present approximations to be justified, as discussed in Sec. II.

The results of Fig. 1 conform with the analysis provided before in connection with (26). The

threshold amplitude increases with increasing undersaturation (i.e., decreasing gas content in the

liquid) and also increases as the frequency decreases due to the increasing importance of diffusive

effects.
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FIG. 2. Dimensionless oscillation amplitude of the mass of gas in the bubble vs the dimensionless bubble

radius Re/
√

πD/ω for different liquid undersaturations as in Fig. 1, surface tension effects are not included.

Additional insight into these results is provided by Figs. 2 and 3. The former shows the

amplitude of the mass oscillations �mg = mg, max − mg, min normalized by 〈mg〉, while the latter

is the nondimensional radius excursion, �R/Re, with �R = Rmax − Rmin, both as functions of

the parameter Re/
√

πD/ω. Each line corresponds to one value of ρi
g/ρsat. As expected, the mass

amplitude rapidly increases as the frequency is decreased, reaching 100% of the mean value in the

parameter range covered by the figure. Balancing the increasing mass losses taking place at low

frequency requires an increased mass inflow, which in turns requires a large area increase and a

significant radial amplitude. Conversely, as the frequency increases, mass losses are reduced, the

radial amplitude becomes more tightly connected with the ambient pressure oscillations, and the

radial oscillation amplitude decreases.

FIG. 3. Dimensionless oscillation amplitude of the bubble radius vs the dimensionless bubble radius

Re/
√

πD/ω for different liquid undersaturations as in Fig. 1, surface tension effects are not included.
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FIG. 4. Dimensionless oscillation amplitude of the mass of gas in the bubble vs dimensionless amplitude

of the radial oscillations for different values of the liquid undersaturation ρi
g/ρsat as in Fig. 1. The pressure

amplitude increases from the lower left to the upper right, surface tension effects not included.

A cross-plot of the quantities of the previous two figures is provided in Fig. 4, in which each line

is the dimensionless amplitude of the mass oscillations, �mg/〈mg〉, vs the nondimensional radius

excursion �R/Re, for fixed ρi
g/ρsat. The range of the curves is the same as in the previous three

figures, with P∗ increasing and the frequency decreasing as the lines are traversed from the lower left

to the upper right. Again we see that, at the higher frequencies, the amplitude of the mass oscillations

is small while that of the radial oscillations remains substantial. As the frequency decreases and the

pressure amplitude increases, the amplitude of the mass oscillations increases substantially, more

as the gas content of the liquid becomes greater. In considering these results it should be kept in

mind that, unless � is very small, the first and last terms in the bubble mass equation (13) tend to

lose accuracy as �R/R approaches or exceeds 1, as explained in Sec. II. A more precise calculation

should include the effect of convection, which would preclude the possibility of an analytic solution

comparable to (13) and, therefore, the explicit identification of history effects.

Figure 5 is a graph of 〈R〉/Re vs Re/
√

πD/ω. The dependence on frequency tends to become

weaker as frequency increases because, with the decreasing amplitude of mass fluxes, relatively

small-amplitude oscillations are sufficient to provide the area changes necessary to preserve the

mean bubble mass so that a small amount of nonlinearity (which is responsible for the difference

between 〈R〉 and Re) is sufficient. This regime is achieved later, of course, as the undersaturation

increases and ρi
g/ρ

0
sat becomes smaller. The fact that 〈R〉/Re > 1 in this parameter range suggests

that the nature of the oscillations is such that the bubble radius is larger than Re during a substantial

fraction of the oscillation period. The trend is reversed at low frequencies, where 〈R〉/Re < 1. Here

the compressive phase is longer than the expansion phase, but the mass gained during the latter

balances that lost during the former. These considerations are illustrated in Fig. 6 in which R/Re

is plotted over a complete cycle for several values of ρi
g/ρsat, Re/

√
πD/ω and P∗. The solid line,

for Re/
√

πD/ω = 0.065, ρi
g/ρsat = 0.8, and P∗ = 0.858, is typical of the radius response at low

frequency. One observes a marked asymmetry with respect to the maximum, with a compression

phase much longer than the expansion phase due to the slowness of mass diffusion out of the bubble.

On Fig. 5 this situation corresponds to the decreasing part of the curves on the left. The asymmetry is

much less marked for the larger frequency examples for Re/
√

πD/ω = 0.36. The dashed line is for

ρi
g/ρsat = 0.8 and P∗ = 0.74 and the dash-dotted line is for ρi

g/ρsat = 0.5 and P∗ = 0.93. The liquid

is very undersaturated in the last case and the amplitude necessary to ensure threshold conditions
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FIG. 5. Dimensionless mean bubble radius over a complete oscillation period vs the dimensionless bubble

radius Re/
√

πD/ω for different liquid undersaturations as in Fig. 1, surface tension effects not included.

is correspondingly larger. These curves are strikingly different from those found when the bubble

inertia is important, in which case the expansion phase is usually much longer than the contraction

phase.

It is also of interest to consider the relative magnitude of the second and third terms in (13) in

the course of an oscillation. A few examples are shown in Figs. 7(a) to 7(d). Here the solid line

is the quasisteady term (ρi
g − ρ

sf
g )/R while the dashed line is the memory integral; both terms

are nondimensionalized by division by ρsat/Re. When the parameter � = Re/
√

πD/ω, which is

essentially the Péclet number, is small [Figs. 7(a) and 7(b)], the history term is smaller than the

FIG. 6. Dimensionless bubble radius vs time over one complete period of the ambient pressure oscillations.

Solid line: Re/
√

πD/ω = 0.065, ρi
g/ρsat = 0.8, and P∗ = 0.86; dashed line: Re/

√
πD/ω = 0.36, ρi

g/ρsat =
0.8, and P∗ = 0.74; dash-dotted line: Re/

√
πD/ω = 0.36, ρi

g/ρsat = 0.5, and P∗ = 0.93.
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FIG. 7. The normalized quasisteady (second) term of (13) (solid line) and the history term in the course

of one oscillation period at threshold conditions. The two panels in the first line are for � = 0.15, �R/R =
0.95, ρi

g/ρsat = 0.90, P∗ = 0.69, and � = 0.17, �R/Re = 2.0, ρi
g/ρsat = 0.70, P∗ = 0.92; those in the second

line for � = 0.43, �R/Re = 0.47, ρi
g/ρsat = 0.90, P∗ = 0.54, and � = 0.43, �R/Re = 1.03, ρi

g/ρsat = 0.70,

P∗ = 0.82.

quasisteady term, as expected. As � increases [Figs. 7(c) and 7(d)], the relative magnitude of the

history effect increases, again as expected. It was argued in Sec. II that the expression for the history

effect given in (13) gradually loses accuracy as �R/Re increases. However, it can be noted in

Figs. 7(c) and 7(d), for the same values of � but �R/Re = 0.47 and 1.03, that the relation between

the two terms is comparable, which suggests a limited influence of the magnitude of �R/Re. The

difference in the vertical scales is mostly due to the different liquid saturation as can be seen by

comparing with the figures in the first line.

These results are strongly dependent on the history effect as shown by comparing Fig. 1, obtained

from the full equation (21), with Fig. 8; this latter figure has been generated by omitting the history

term so that (25) is replaced by

∫ t∗2π/ω

t∗

R∗
[

ρi
g∗ − ρsf

g∗(t)
]

dt∗ = 0. (27)

The lines are essentially horizontal, suggesting an independence of the threshold amplitude from

frequency, except at very low frequency. This trend can be readily explained by recalling that at large

frequencies the alternating mass exchange with the liquid has a negligible effect on the oscillation
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FIG. 8. Dimensionless rectified diffusion threshold amplitude P∗ vs dimensionless bubble size Re/
√

πD/ω

for different values of the liquid undersaturation ρi
g/ρsat without history effects, surface tension not included.

amplitude. In these conditions, the area difference between contraction and expansion and, therefore,

the net mass inflow into the bubble, only comes to depend on the pressure amplitude. A certain degree

of undersaturation requires a corresponding net mass inflow and, therefore, a certain area change

and a certain pressure amplitude. This argument can be given a quantitative form by noting that,

in this limit, (31) can be approximated as

[1 − P∗ sin t∗]R3
∗(t∗) ≃ 1 . (28)

Thus, remembering also that ρ
sf
g∗ = 1 − P∗ sin t∗, (27) gives

ρi
g∗

∫ 2π/ω

0

[1 − P∗ sin t∗]−1/3dt∗ =
∫ 2π/ω

0

[1 − P∗ sin t∗]2/3dt∗, (29)

which can be solved to give P∗ vs ρi
g∗ independently of frequency. This relation is graphed in Fig. 9.

This exclusive dependence on pressure amplitude becomes less accurate as the mass fluxes become

larger with decreasing frequency.

We now turn to a consideration of the effects of surface tension, the most important of which—of

increasing importance as the bubble radius becomes smaller—is to inhibit the radial expansion. Thus

it may be expected that, as a consequence, the threshold for rectified diffusion will be generally larger

and exhibit a much stronger dependence on the radius than that shown in Fig. 1. This expectation is

borne out by Fig. 10, which is comparable to Fig. 1 except for the fact that the parameter β, defined

in (24), equals 0.1, rather than 0, and that the liquid gas content needs to be significantly increased

to allow for a threshold in the presence of the strong surface-tension-induced overpressure. To give

an idea of the orders of magnitude of actual physical quantities we may note that, for water and air,

with D = 2 × 10−9 m2/s and σ = 0.07 N/m, β = 0.1 corresponds to a frequency

ω

2π
=

1

2
D

(

βp∞
0

2σ

)2

≃ 10 Hz (30)

while Re/
√

πD/ω ∼ 0.3, for example, would correspond to Re ∼ 30 μm. It is not surprising to

see such a strong effect of surface tension for this small radius.

064202-12



HISTORY EFFECTS ON THE GAS EXCHANGE BETWEEN A . . .

FIG. 9. Dimensionless rectified diffusion threshold as a function of the liquid undersaturation ρi
g/ρsat as

given in (27) in the high-frequency limit without history effects or surface tension.

A direct comparison of the threshold with and without surface tension, β = 0.01 and β = 0, is

given in Fig. 11 for ρi
g/ρsat = 0.9. The smaller value of β as compared with Fig. 10 causes smaller

differences which, however, remain significant.

V. MASS TRANSFER IN A CONSTANT PRESSURE FIELD

We now turn to the case of a constant pressure field p∞, the original situation studied in Ref. [5].

Now it is convenient to use the initial bubble radius R(0) as scale and we set R∗(t) = R(t)/R(0).

FIG. 10. Dimensionless rectified diffusion threshold amplitude P∗ vs dimensionless bubble size

Re/
√

πD/ω for different values of the liquid undersaturation ρi
g/ρsat with surface tension effects included. The

parameter β = 2σ/(p∞
0

√
πD/ω) equals 0.1.
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FIG. 11. Comparison of the dimensionless rectified diffusion threshold amplitude P∗ vs the dimensionless

bubble size Re/
√

πD/ω with and without surface tension effects for ρi
g/ρsat = 0.9; the parameter β is defined

in (24).

The analog of (26) is now

[1 + α/R∗(t)]R3
∗(t)

1 + α
=

mg(t)

mg(0)
, (31)

with α given by (24).

Figure 12 shows the time to complete dissolution as a function of the gas content of the liquid for

three values of the parameter α, 1.42, 0.142, and 0.0142, which, in water at 22 ◦C, would correspond

to initial radii of 1, 10, and 100 μm. For dissolution to be possible it is necessary that ρi
g/ρsat < 1 + α

FIG. 12. Dimensionless time to complete dissolution of gas bubbles with different initial radii as a function

of the gas content of the liquid; the ambient pressure is constant. The dashed lines show the results when the

history term is omitted.
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FIG. 13. Fractional contributions of the three terms in (13) to the dissolution time of an air bubble in water

with an initial radius of 1 μm. In ascending order the lines show the contributions of the history term, of the

term proportional to t−1/2 and of the term inversely proportional to R. The dashed lines are the corresponding

contributions in the absence of history effects.

and the dissolution becomes markedly slower as the limiting value is approached until it diverges

when it is attained. The difference due to the removal of the history term (dashed line) is very

small and only visible for the smallest bubble. In the other cases, the effect of the surface-tension

overpressure is so small over the major fraction of the bubble lifetime that the two results with

and without memory effects are indistinguishable within the thickness of the lines. It is somewhat

surprising that the slight difference between the two theories is seen to increase with the degree of

saturation, as one would expect that faster dissolution would increase the significance of the memory

term. While this is true, the effect becomes secondary compared to the influence of the memory term

over the longer bubble lifetime produced by a greater amount of dissolved gas. Even so, the effect

remains small, mostly of the order of a fraction of a percent. Figure 13 shows the relative importance

of the three terms in (13). Figure 14 illustrates the effect of the memory term on the time to growth

up to 10 times the initial radius.

VI. A MULTICOMPONENT BUBBLE

As a last example of a situation in which the boundary condition at the bubble surface is time

dependent, we consider a bubble consisting of a mixture of two different gases, denoted by indices

a and b, each one with its own solubility and diffusivity. This problem has been considered in

Ref. [11] in the limit in which one of the gases is insoluble and in Ref. [17] under the assumption

of a constant dissolved gas mole fraction at the bubble surface; in neither work are history effects

considered. The latter authors compared the results of a numerical simulation, including convection

and the time dependence of the surface concentration and of the boundary, with their quasisteady

approximate solution, finding a reasonable agreement between them. In this analysis we neglect

surface tension and assume that the binary diffusivity in the gaseous phase is sufficiently rapid for

the two constituents to remain fully mixed in the bubble interior.

The masses ma and mb of each component of the gas mixture are each determined by an

equation of the form (13), after which the bubble radius follows from Dalton’s law and the equation
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FIG. 14. Dimensionless time for growth up to 10 times the initial radius of an air bubble in water as a

function of the liquid supersaturation; the initial bubble radius is 1 μm. The dashed line is the result in the

absence of the history term in (13).

of state (10) as
(

4

3
πR3

)

(pa + pb) =
(

4

3
πR3

)

p∞ =
(

ma

Ma

+
mb

Mb

)

RGT . (32)

For a numerical example we consider the case of a bubble consisting of a mixture of nitrogen

(component a) and CO2 in water at 20 ◦C under a constant 101.3 kPa ambient pressure; at the initial

instant there are no gases dissolved in the water. The values of the parameter d defined in (3) are

da = 0.04 and db = 0.80, respectively, and the respective diffusivities Da = 1.88 × 10−9 m2/s and

Db = 1.92 × 10−9 m2/s. On the basis of the time scale for the dissolution of a monocomponent

bubble, it was shown in Sec. II that neglect of convection was legitimate for small d. For the present

case of a multicomponent bubble it is the less soluble gas which determines the dissolution time,

and therefore the fact that db is not small does not introduce a significant error. Figure 15 shows the

FIG. 15. Percent difference between the lifetimes of a nitrogen-CO2 bubble with and without history effects

vs the initial nitrogen mole fraction in the bubble (note the logarithmic scale).
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FIG. 16. Comparison of the lifetimes of a nitrogen-CO2 bubble with (solid line) and without history effects

vs the initial nitrogen mole fraction.

percent difference between the predicted lifetimes with and without the history effect as a function

of the nitrogen mole fraction xN2
initially present in the bubble. A maximum of about 4% is found

for xN2
≃ 2 × 10−3. Figure 16, in which the solid line includes the history effect, is a comparison

of the actual lifetimes in the range of small xN2
. The more significant differences are limited to

the range of small xN2
because CO2 dissolves much faster than nitrogen. Thus, when the nitrogen

amount is not small, the CO2 dissolves very quickly and the situation becomes similar to that of a

single-component nitrogen bubble except for a very short initial period.

VII. SUMMARY

Henry’s law dictates the concentration of dissolved gas at the surface of a gas bubble in a

liquid. When the bubble internal pressure changes, either in response to a varying ambient pressure,

because of surface tension in the presence of radius changes, or for other causes, the dissolved gas

concentration becomes time dependent and the history effects characteristic of all diffusive processes

appear. In order to focus on these effects, we have considered the limit in which the diffusive layer

is much thicker than the bubble radius and the frequency of the pressure variation is much slower

than the bubble resonance frequency. Not surprisingly we have found that when the dissolution or

growth take place under a constant ambient pressure, so that the sole agent of the internal pressure

variation is the changing radius, history effects are small. In the last example considered, in which

the bubble consists of the mixture of two gases, history effects can be somewhat larger but they

amount to a few percent at most.

When the internal pressure changes in response to variations of the ambient pressure, however,

the history effect on rectified diffusion can be more important. In this case, the different frequency

responses of the gas inflow or outflow and surface area increase or decrease during the pressure

cycle are important. Since the former is a relatively slow process, at low frequency there are large

mass exchanges with the liquid which require large expansions and contractions of the bubble.

At higher frequency, changes in the surface area become the dominant effect and the oscillation

amplitude is smaller.
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APPENDIX: AN ESTIMATE OF THE ERROR IN (12)

In the convection-diffusion equation let

x =
r

R
, u(x,t) = x

(

ρg − ρi
g

)

, (A1)

to find

∂u

∂t
+

Ṙ

R

(

1

x3
− 1

)(

x
∂u

∂x
− u

)

=
D

R2

∂2u

∂x2
. (A2)

The second term in the left-hand side can be estimated as before and neglected at low frequency. In

terms of the new time variable

τ =
∫ t

0

dt ′

R2(t ′)
, (A3)

the equation then becomes (approximately)

∂u

∂τ
= D

∂2u

∂x2
. (A4)

Upon taking the Laplace transform and solving with the appropriate boundary condition we find

ũ(x,s) = ũ(x = 1,s)e−
√

s/D (x−1) , (A5)

from which

1

x

(

∂ũ

∂x
−

ũ

x

)

= −
sũ(x = 1,s)e−

√
s/D (x−1)

x
√

sD
−

ũ(x = 1,s)e−
√

s/D (x−1)

x2
. (A6)

Upon inverting the transform we find

1

x

(

∂u

∂x
−

u

x

)

= −
1

x

∫ τ

0

du(x = 1,θ )

dθ

e(x−1)2/4D(τ−θ)

√
π (τ − θ )

dθ

−
1

x

∫ τ

0

u(x = 1,τ − θ )
(x − 1)e(x−1)2/4Dθ

2
√

πDθ3
dθ . (A7)

We are interested in the value of this quantity at x = 1. For the first term we recall the boundary

condition (7) to find

du(x = 1,θ )

dθ
= δ(θ )

[

ρsf
g (0) − ρi

g

]

+ H (θ )
∂ρ

sf
g

dθ
, (A8)

from which

[

1

x

∫ τ

0

du(x = 1,θ )

dθ
e(x−1)2/4D(τ−θ) dθ

√
π (τ − θ )

]

x=1

= −
ρ

sf
g (0) − ρi

g√
πDτ

−
∫ τ

0

dρ
sf
g

dθ

dθ
√

πD(τ − θ )
.

(A9)
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For the second term we set

η =
x − 1

2
√

D(τ − θ )
, (A10)

to find

1

x

∫ τ

0

u(x = 1,τ − θ )
x − 1

2
√

πDθ3
e(x−1)2/4Dθdθ

=
1

x
√

π

∫ ∞

(x−1)/2
√

Dτ

u

(

x = 1,τ −
(x − 1)2

4Dη2

)

e−η2

dη . (A11)

Upon evaluating at x = 1 this is simply
[

1

x

∫ τ

0

u(x = 1,τ − θ )
x − 1

2
√

πDθ3
e(x−1)2/4Dθdθ

]

x=1

dθ = u(x = 1,τ ) = ρsf
g (τ ) − ρi

g . (A12)

In conclusion we have found
[

∂ρg

∂r

]

r=R

=
1

R

[

1

x

∂u

∂x
−

u

x2

]

x=1

= −
1

R

[

ρ
sf
g (0) − ρi

g√
πDτ

+ ρsf
g (τ ) − ρi

g +
∫ τ

0

dρ
sf
g

dθ

dθ
√

πD(τ − θ )

]

, (A13)

which differs from the earlier results only by the substitution of the original time variable t by the

modified time variable τ .

We note that, by the first mean value theorem, for some tm with 0 � tm � t ,

R
√

τ = R(t)

√

∫ t

0

dt ′

R2(t ′)
= R(t)

√

t

R2(tm)
. (A14)

If the radius is constant, this is just
√

t and (13) is recovered. The radius of a dissolving bubble in

a constant pressure field decreases very slowly for a dominant fraction of the bubble lifetime. In

this case, therefore, the difference between using t or τ will not be large. For an oscillating bubble

with a radius varying between Re − �R and Re + �R, identifying (A14) with
√

t introduces an

error bounded by (1 − �R/Re)/(1 + �R/Re) and (1 + �R/Re)/(1 − �R/Re), which will be small

provided �R/Re is small.
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