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Abstract

Visual Dialog involves “understanding” the di-

alog history (what has been discussed previ-

ously) and the current question (what is asked),

in addition to grounding information in the

image, to generate the correct response. In

this paper, we show that co-attention mod-

els which explicitly encode dialog history out-

perform models that don’t, achieving state-of-

the-art performance (72 % NDCG on val set).

However, we also expose shortcomings of the

crowd-sourcing dataset collection procedure

by showing that history is indeed only required

for a small amount of the data and that the

current evaluation metric encourages generic

replies. To that end, we propose a challeng-

ing subset (VisDialConv) of the VisDial val set

and provide a benchmark of 63% NDCG.

1 Introduction

Recently, there has been an increased interest in vi-

sual dialog, i.e. dialog-based interaction grounded

in visual information (Chattopadhyay et al., 2017;

De Vries et al., 2017; Seo et al., 2017; Guo et al.,

2018; Shekhar et al., 2018; Kottur et al., 2019;

Haber et al., 2019). One of the most popular test

beds is the Visual Dialog Challenge (VisDial) (Das

et al., 2017), which involves an agent answering

questions related to an image, by selecting the an-

swer from a list of possible candidate options. Ac-

cording to the authors, nearly all interactions (98%)

contain dialog phenomena, such as co-reference,

that can only be resolved using dialog history,

which makes this a distinct task from previous Vi-

sual Question Answering (VQA) challenges, e.g.

(Antol et al., 2015). For example, in order to an-

swer the question “About how many?” in Figure

1, we have to infer from what was previously said,

that the conversation is about the skiers.
∗
This work was carried out during the internship at Adobe

Research.

A group of skiers racing up a 
mountain
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About how many?

Current Question

Q1 Is 1 winning?
A1 no.
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Figure 1: Visual Dialog task according to (Das et al.,

2017) as a ranking problem, where for the current ques-

tion (blue), the agent ranks list of 100 candidate an-

swers (yellow). Relevance weights for each candidate

were collected via crowd-sourcing. Previous dialog his-

tory (red) together with the caption (green) forms the

contextual information for the current turn.

In the original paper, Das et al. (2017) find that

models which structurally encode dialog history,

such as Memory Networks (Bordes et al., 2016)

or Hierarchical Recurrent Encoders (Serban et al.,

2017) improve performance. However, “naive” his-

tory modelling (in this case an encoder with late

fusion/concatenation of current question, image

and history encodings) might actually hurt perfor-

mance. Massiceti et al. (2018) take this even fur-

ther, claiming that VisDial can be modeled without

taking history or even visual information into ac-

count. Das et al. (2019) rebutted by showing that

both features are still needed to achieve state-of-the-
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art (SOTA) results and an appropriate evaluation

procedure has to be used.

In this paper, we show that competitive results on

VisDial can indeed be achieved by replicating the

top performing model for VQA (Yu et al., 2019b)

– and effectively treating visual dialog as multiple

rounds of question-answering, without taking his-

tory into account. However, we also show that

these results can be significantly improved by en-

coding dialog history, as well as by fine-tuning

on a more meaningful retrieval metric. Finally,

we show that more sophisticated dialog encodings

outperform naive fusion on a subset of the data

which contains “true” dialog phenomena according

to crowd-workers. In contrast to previous work on

the VisDial dataset, e.g. (Kottur et al., 2018; Agar-

wal and Goyal, 2018; Gan et al., 2019; Guo et al.,

2019; Kang et al., 2019), we are the first to conduct

a principled study of dialog history encodings. Our

contributions can thus be summarized as follows:

• We present SOTA results on the VisDial

dataset using transformer-based Modular Co-

Attention (MCA) networks. We further show

that models encoding dialog history outper-

form VQA models on this dataset.

• We show that curriculum fine-tuning (Bengio

et al., 2009) on annotations of semantically

equivalent answers further improves results.

• We experiment with different dialog history

encodings and show that early fusion, i.e.

dense interaction with visual information (ei-

ther via grounding or guided attention) works

better for cases where conversational histori-

cal context is required.

• We release a crowd-sourced subset contain-

ing verified dialog phenomena and provide

benchmark results for future research.

2 Visual Dialog Models

In this section, we extend Modular Co-Attention

Networks, which won the VQA challenge 2019

(Yu et al., 2019b) and adapt it to visual dialog. Dif-

ferent from previous co-attention networks (Kim

et al., 2018; Nguyen and Okatani, 2018), MCA

networks use guided attention to model dense re-

lations between the question and image regions

for better visual grounding. In the following, we

explore MCA networks with different input encod-

ings following a ‘[model]-[input]’ convention to

refer to our MCA model variants; see Figure 3

for an overview. Whenever unspecified, images

are represented as a bag of bottom-up features, i.e.

object level representations (see Section 3).

2.1 Modular Co-Attention networks

The MCA module with multi-modal fusion as de-

picted in Figure 2, is common to all our architec-

tures. Inspired by the transformers (Vaswani et al.,

2017), the MCA network (Yu et al., 2019b) is a

modular composition of two basic attention units:

self-attention and guided attention. These are ar-

ranged in an encoder-decoder composition in the

MCA module (Figure 2), which performed best for

VQA (Yu et al., 2019b).

2.1.1 Self-Attention and Guided-Attention

The Self-Attention (SA) unit in transformers

(Vaswani et al., 2017) is composed of a multi-

head attention layer followed by a feed-forward

layer. When applied to vision, the SA unit can be

viewed as selecting the most relevant object-level

image features for the downstream task. Specifi-

cally, the scaled dot product attention takes as input

key, query and value (usually same modality’s em-

bedded representations) and outputs a self-attended

vector (Eq.1). Multi-head attention provides mul-

tiple representation spaces to capture different lin-

guistic/grounding phenomena, which are otherwise

lost by averaging using a single head.

Att(Q,K, V ) = softmax(QK
T

√
dK

)V

MHAtt(Q,K, V ) = Concat(head1, . . . headn)WO

headi = Att(QW
Q

i ,KW
K
k , V W

V
i )

(1)

The Guided-Attention (GA) unit conditions the

attention on different sequences. The key and value

come from one modality, while the query comes

from a different modality similar to the decoder

architecture in Transformers (Vaswani et al., 2017).

Similar to Eq. 1, the GA unit outputs features

fi = Att(X,Y, Y ) where X ∈ R
m×dx comes from

one modality and Y ∈ R
n×dy from the other. Resid-

ual connection (He et al., 2016) and layer normal-

ization (Ba et al., 2016) are applied to the output of

both the attention and feed-forward layers similar

to (Vaswani et al., 2017; Yu et al., 2019b) in both

the SA and GA units.

2.1.2 Modular Co-Attention Module

The following description of the MCA module is

based on the question and the image, but can be
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Figure 2: Modular Co-Attention (MCA) module with MCA-I (Section 2.1) as an example.

extended analogously to model the interaction be-

tween the question and history. First, the input (i.e.

the question) is passed through multiple multi-head

self-attention layers L, in order to get self-aware

representations before acting as conditional signal

to different modalities (visual or contextual history)

similar to the auto-encoding procedure of Trans-

formers. Then the final representation X
L

is used

as the input for GA units to model cross-modal

dependencies and learn the final conditioned repre-

sentation Y
L

.

2.1.3 Multi-modal fusion

The learned representations X
L

∈ R
m×d

and

Y
L
∈ R

n×d
contain the contextualized and con-

ditioned representations over the word and image

regions, respectively. We apply attention reduction

(Yu et al., 2019b) with a multi-layer perceptron

(MLP) for X
L

(analogously for Y
L

). We obtain

the final multi-modal fused representation z:

α
x
= softmax(MLP

x(XL))

x̃ =

i=1

∑
m

α
x
i x

L
i

z = LayerNorm(WT
x x̃ +W

T
y ỹ)

(2)

where α
x

= [αx
1 . . . α

x
m] ∈ R

m
are learned

attention weights (same process for α
y

and ỹ) and

Wx ∈ R
d×dz , Wy ∈ R

d×dz are linear projection

matrices (dimensions are the same for simplicity).

We call this model MCA with Image compo-

nent only; (MCA-I), since it only encodes the

question and image features and therefore treats

each question in Visual Dialog as an independent

instance of VQA, without conditioning on the his-

torical context of the interaction.

2.2 Variants with Dialog History

In the following, we extend the above framework

to model dialog history. We experiment with

late/shallow fusion of history and image (MCA-I-

H), as well as modelling dense interaction between

conversational history and the image representation

(i.e. MCA-I-VGH, MCA-I-HGuidedQ).

History guided Question (MCA-I-HGuidedQ):

The network in Figure 3a is designed to model co-

reference resolution, which can be considered as

the primary task in VisDial (Kottur et al., 2018).

We first enrich the question embedding by condi-

tioning on historical context using guided attention

in the MCA module. We then use this enriched (co-

reference resolved) question to model the visual

interaction as described in Section 2.1.

Visually grounded history with image represen-

tation (MCA-I-VGH): Instead of considering

conversational history and the visual context as

two different modalities, we now ground the history

with the image first, see Figure 3b. This is similar

in spirit to maintaining a pool of visual attention

maps (Seo et al., 2017), where we argue that differ-

ent questions in the conversation attend to different

parts of the image. Specifically, we pass the history

to attend to object-level image features using the

MCA module to get visually grounded contextual

history. We then embed the question to pool the rel-

evant grounded history using another MCA module.
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Figure 3: All models incorporating dialog history described in Section 2.2

In parallel, the question embedding is also used to

ground the current visual context. At the final step,

the respective current image and historical compo-

nents are fused together and passed through a linear

layer before decoding. Note, this model is generic

enough to potentially handle multiple images in a

conversation and thus could be extended for tasks

e.g. conversational image editing, which is one of

the target applications of visual dialog (Kim et al.,

2017; Manuvinakurike et al., 2018a,b; Lin et al.,

2018; El-Nouby et al., 2018).

Two-stream Image and History component

(MCA-I-H): Figure 3c shows the model which

maintains two streams of modular co-attention net-

works – one for the visual modality and the other

for conversational history. We follow a similar ar-

chitecture for the visual component as MCA-I and

duplicate the structure for handling conversational

history. At the final step, we concatenate both the

embeddings and pass them through a linear layer.

2.3 Decoder and loss function

For all the models described above, we use a dis-

criminative decoder which computes the similar-

ity between the fused encoding and RNN-encoded

answer representations which is passed through a

softmax layer to get the probability distribution

over the candidate answers. We train using cross

entropy over the ground truth answer:

L(θ) = 1

N

N=100

∑
n=1

ynlogP (xn, θ) (3)

N denotes the number of candidate answers

which is set to 100 for this task, yn is the (ground

truth) label which is 0 or 1 during the training pro-

cedure, or a relevance score of the options during

fine-tuning (casting it as multi-label classification).

3 Implementation

We use PyTorch
1

(Paszke et al., 2017) for our exper-

iments
2
. Following Anderson et al. (2018), we use

bottom-up features of 36 proposals from images

using a Faster-RCNN (Ren et al., 2015) pre-trained

on Visual Genome (Krishna et al., 2017) to get a

bag of object-level 2048-d image representations.

Input question and candidate options are tokenized

to a maximum length of 20 while the conversa-

tional history to 200. Token embeddings in text

are initialized with 300-d GloVe vectors (Penning-

ton et al., 2014) and shared among all text-based

encoders. The RNN encodings are implemented us-

ing LSTMs (Hochreiter and Schmidhuber, 1997).

1
https://pytorch.org/

2
Code available at https://github.com/

shubhamagarwal92/visdial_conv

https://pytorch.org/
https://github.com/shubhamagarwal92/visdial_conv
https://github.com/shubhamagarwal92/visdial_conv
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We use the Adam optimizer (Kingma and Ba, 2015)

both for training and fine-tuning. More training de-

tails can be found in Appendix A.

4 Task Description

4.1 Dataset

We use VisDial v1.0 for our experiments and eval-

uation.
3

The dataset contains 123K/2K/8K dialogs

for train/val/test set respectively. Each dialog is

crowd-sourced on a different image, consisting of

10 rounds of dialog turns, totalling approx. 1.3M

turns. Each question has also been paired with a list

of 100 automatically generated candidate answers

which the model has to rank. To account for the

fact that there can be more than one semantically

correct answer (e.g. “Nope”, “No”, “None”, “Can-

not be seen”), “dense annotations” for 2k/2k turns

of train/val of the data have been provided, i.e. a

crowd-sourced relevance score between 0 and 1 (1

being totally relevant) for all 100 options.

4.2 Evaluation protocol

As the Visual Dialog task has been posed as a

ranking problem, standard information retrieval

(IR) metrics are used for evaluation, such as Re-

call@{1,5,10} to measure performance in the top N

results (higher better), mean reciprocal rank (MRR)

of the Ground-Truth (GT) answer (higher better),

and Mean rank of the GT answer (lower better).

Normalized Discounted Cumulative Gain (NDCG)

is another measure of ranking quality, which is

commonly used when there is more than one cor-

rect answer (provided with their relevance).

4.3 Training details

Sparse Annotation Phase: We first train on

sparse annotations, i.e. only 1 provided ground-

truth answer, which is available for the whole train-

ing set. Here the model learns to select only one

relevant answer.

Curriculum Fine-tuning Phase: Dense annota-

tions, i.e. crowd-sourced relevance weights, are

provided for 0.16% of training set, which we use to

fine-tune the model to select multiple semantically

equivalent answers. This acts like a curriculum

learning setup (Elman, 1993; Bengio et al., 2009),

3
Following the guidelines on the dataset page we report

results only on v1.0, instead of v0.9. VisDial v1.0 has been
consistently used for Visual Dialog Challenge 2018 and 2019.

where selecting one answer using sparse annotation

is an easier task and fine-tuning more difficult.
4

4.4 Baselines

MCA-I-HConcQ and MCA-H: MCA-I-

HConcQ is a naive approach of concatenating

raw dialog history to the question while keeping

the rest of the architecture the same as MCA-I.

MCA-H on the other hand considers this task as

only conversational (not visual) dialog with MCA

module on history instead of image.

RvA: We reproduce the results of Niu et al.

(2019)’s Recursive Visual Attention model (RvA),

which won the 2019 VisDial challenge. Their

model browses the dialog history and updates the

visual attention recursively until the model has suf-

ficient confidence to perform visual co-reference

resolution. We use their single model’s open-

source implementation and apply our fine-tuning

procedure on the val set in Table 1. When report-

ing on the test set results in Table 2, we use the

leaderboard scores published online which con-

tains further unpublished enhancements based on

ensembling (MReaL-BDAI).

5 Results

In the following, we report results on the VisDial

v1.0 val set, (Table 1), as well as the test-std set,
5

(Table 2). For measuring significance (reported

on p ≤ 0.05), we use Kruskal-Wallis (Kruskal

and Wallis, 1952) and Wilcoxon signed rank test

(Wilcoxon, 1992) with Bonferroni correction (Bon-

ferroni, 1936). We report results in terms of NDCG,

which is the main metric of the challenge.

MCA-I-H is our best performing model. It

achieves state-of-the-art performance: It outper-

forms the RvA baseline by almost 5 NDCG points

on the val set and by over 7 points on the test set.

On the official challenge test set, MCA-I-H ranks

2
nd

: it improves over 7 NDCG over the best single

model but loses by 2 points against a 6-strong RvA

ensemble model (2019 winning entry).

4
While ‘instance-level’ curriculum learning is defined in

terms of ‘harder dialogs’, in our work, we used ‘dataset/task-
level’ curriculum finetuning. Our suggested method is a com-
bination of curriculum learning and fine tuning (pre-training
and adjusting to a specific downstream task). As such, we use
the term ‘curriculum fine-tuning’ i.e. adaptation by NDCG
aware curriculum during fine-tuning.

5
We only report results for our best preforming models as

the number of allowed submissions to the challenge is limited.
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Model
Sparse annotation Phase Curriculum Fine-tuning

NDCG ↑ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓ NDCG ↑ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓

RvA (Challenge winners; single model) 55.86 64.42 50.71 81.50 90.15 4.06 67.90 51.92 36.57 70.69 83.61 5.85

MCA-H 51.67 59.65 45.21 77.01 86.79 4.92 64.06 38.16 22.86 54.99 71.24 9.19

MCA-I 59.94 59.67 45.95 76.15 86.24 5.24 70.82 37.34 21.22 56.13 72.74 9.23

MCA-I-HConcQ 60.65 64.08 50.83 80.74 89.62 4.22 70.81 40.75 24.53 60 75.11 8.13

MCA-I-HGuidedQ 60.17 64.36 50.99 80.95 89.93 4.17 71.32 44.1 28.44 61.74 76.53 7.83

MCA-I-VGH 62.44 61.25 47.5 78.16 87.8 4.74 72.0 40.22 24.38 58.8 73.77 8.44

MCA-I-H 60.27 64.33 51.12 80.91 89.65 4.24 72.22 42.38 26.94 60.17 75.2 8.2

MCA-I-H-GT 60.27 64.33 51.12 80.91 89.65 4.24 72.18 46.92 32.09 63.85 78.06 7.37

Table 1: Results on VisDial v1.0 val set. Here ‘I’ denotes image modality while ‘H’ refers to the use of dialog

history. Our baseline models are defined in Section 2.1 and 4.4. MCA variants with dialog history follow the same

order as Section 2.2. MCA-I-H-GT refers to the model with corrected dense annotations (see Section 6.2)

Model NDCG ↑ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓

RvA 55.59 63.03 49.03 80.40 89.83 4.18

MS-D365-AI (Ensemble-2
nd

) 64.78 54.23 42.88 65.38 76.12 6.50

MReaL-BDAI (Ensemble-1
st

) 74.57 53.37 40.96 66.45 79.70 6.60

MCA-I 70.97 35.65 19.32 54.57 71.39 9.51

MCA-I-VGH 71.33 38.92 22.35 58.42 74.5 8.69

MCA-I-H 72.47 37.68 20.67 56.67 72.12 8.89

Table 2: Evaluation on test-std set with results from

the online leaderboard. Winners are picked on NDCG.

MReaL-BDAI (2019 winning entry) is an ensemble of

6 RvA models. Runner-up MS-D365AI (unpublished)

also used ensembling. Note all our submitted MCA

models use curriculum fine-tuning and no ensembling.

Compared to MCA-I, which treats the task as

multiple rounds of VQA, encoding history im-

proves results, but only significantly for MCA-

I-VGH in the sparse annotation phase. After

fine-tuning, MCA-I-VGH and MCA-I-H perform

equally. MCA-I-H implements a late/shallow fu-

sion of history and image. Architectures which

model dense interaction between the conversational

history and the image representations (i.e. MCA-

I-VGH, MCA-I-HGuidedQ) perform comparably;

only MCA-HConcQ performs significantly worse.

Note that MCA-I also outperforms the baselines

and current SOTA by a substantial margin (both in

the sparse annotation phase and curriculum fine-

tuning phase), while, counter-intuitively, there is

not a significant boost by adding conversational

history. This is surprising, considering that accord-

ing to Das et al. (2017), 38% of questions contain

a pronoun, which would suggest that these ques-

tions would require dialog history in order to be

“understood/grounded” by the model.

Furthermore, curriculum fine-tuning signifi-

cantly improves performance with an average im-

provement of 11.7 NDCG points, but worsens per-

formance in terms of the other metrics, which only

consider a single ground truth (GT) answer.

6 Error Analysis

In the following, we perform a detailed error analy-

sis, investigating the benefits of dialog history en-

coding and the observed discrepancy between the

NDCG results and the other retrieval based metrics.

6.1 Dialog History

We performed an ablation study whereby we did

not include the caption as part of historical context

and compare with the results in Table 1. The per-

formance dropped from (NDCG 72.2, MRR 42.3)

to (NDCG 71.6, MRR 40.7) using our best per-

forming MCA-I-H model after finetuning. Since

the crowd-sourced conversation was based on the

caption, the reduced performance was expected.

In order to further verify the role of dialog his-

tory, we conduct a crowd-sourcing study to under-

stand which questions require dialog history, in

order to be understood by humans. We first test our

history-encoding models on a subset (76 dialogs)

of the recently released VisPro dataset (Yu et al.,

2019a) which focuses on the task of Visual Pro-

noun Resolution.
6

Note that VisPro also contains

non-referential pleonastic pronouns, i.e. pronouns

used as “dummy subjects” when e.g. talking about

the weather (“Is it sunny?”).

We thus create a new crowd-sourced dataset
7
,

which we call VisDialConv. This is a subset of the

VisDial val-set consisting of 97 dialogs, where the

crowd-workers identified single turns (with dense

annotations) requiring historical information. In

particular, we asked crowd-workers whether they

could provide an answer to a question given an

image, without showing them the dialog history,

and select one of the categories in Table 4 (see

further details in Appendix B).

In order to get reliable results, we recruited 3

crowd-workers per image-question pair and only

kept instances where at least 2 people agreed. Note

that we only had to discharge 14.5% of the origi-

6
We use the intersection of dialogs in VisDial val set and

VisPro to create this subset.
7
Data collection code available at https://github.

com/shubhamagarwal92/visdialconv-amt

https://github.com/shubhamagarwal92/visdialconv-amt
https://github.com/shubhamagarwal92/visdialconv-amt


8188

Model
Sparse annotation Phase Curriculum Fine-tuning

NDCG ↑ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓ NDCG ↑ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓

VisPro subset dataset

MCA-I 59.80 57.88 45.39 72.24 82.76 5.84 69.82 36.2 20 54.08 70.92 10.02

MCA-I-HConcQ 61.08 61.79 48.95 77.5 86.58 4.72 68.44 38 22.24 55.79 71.71 9.17

MCA-I-HGuidedQ 61.35 60.13 47.11 75.26 86.18 5.23 68.29 36.59 21.05 53.29 70.13 9.76

MCA-I-VGH 61.68 59.33 46.18 75.53 86.71 5.07 68.97 39.21 23.68 57.11 70.53 8.83

MCA-I-H 61.72 59.62 45.92 77.11 86.45 4.85 70.87 39.8 25.39 55.13 70.39 9.42

VisDialConv (Crowd-sourced subset) dataset

MCA-I 52.07 55.55 41.65 72.47 83.81 5.92 58.65 36.2 20.52 53.3 68.25 10.32

MCA-I-HConcQ 54.84 62.06 47.42 80.1 88.87 4.37 61.42 37.92 21.86 55.67 73.3 9.01

MCA-I-HGuidedQ 53.81 62.29 48.35 80.1 88.76 4.42 62.92 38.07 22.58 54.74 70.82 9.5

MCA-I-VGH 55.48 58.45 44.54 74.95 86.19 5.18 60.63 38.1 22.89 53.71 70.31 9.49

MCA-I-H 53.01 61.24 47.63 79.07 87.94 4.77 59.89 39.73 25.15 56.49 71.86 9.53

Table 3: Automatic evaluation on the subsets of VisPro and VisDialConv dataset. We found history based MCA

models to outperform significantly compared to the MCA-I model. On VisDialConv, MCA-I-VGH still outperform

all other models in spare annotation phase while MCA-I-HGuidedQ performs the best after fine-tuning.

Annotation Count Percentage

VQA turns 594 67.12%

History required 97 10.96%

Common Sense 94 10.62%

Guess 59 6.67%

Cant tell 34 3.84%

Not relevant 7 0.79%

Table 4: Results of crowd-sourcing study to understand

whether humans require dialog history to answer the

question. ‘VQA turns’ indicate that humans could po-

tentially answer correctly without having access to the

previous conversation while ‘History required’ are the

cases identified requiring dialog context. We also iden-

tified the cases requiring world knowledge/ common

sense, guessing and questions not relevant to the image.

nal 1035 image-question pairs, leaving us with 885

examples. The results in Table 4 show that only

11% required actual dialog historical context ac-

cording to the crowd-workers. Most of the time

(67% cases), crowd-workers said they can answer

the question correctly without requiring history.

The results in Table 3 are on the subset of 97

questions which the crowd-workers identified as

requiring history.
8

They show that history encod-

ing models (MCA-I-HGuidedQ / MCA-I-HConcQ

/ MCA-I-H / MCA-I-VGH) significantly outper-

form MCA-I, suggesting that this data cannot be

modelled as multiple rounds of VQA. It can also

be seen that all the models with dense (early) in-

teraction of the historical context outperform the

one with late interaction (MCA-I-H) in terms of

NDCG. Models with dense interactions appear to

be more reliable in choosing other correct relevant

answers because of the dialog context.

8
We took care to only include examples from Visdial val

set in both Vispro and VisDialConv subsets. Also note, there
are only 8 overlapping instances between Vispro and Visdial-
Conv subsets.

Our best performing model on VisDialConv is

MCA-I-HGuidedQ and achieves a NDCG value

of 62.9 after curriculum fine-tuning. However, on

the VisPro subset, we observe that MCA-I-H still

outperforms the other models. Interestingly, on this

set, MCA-I also outperforms other history encod-

ing models (except for MCA-I-H).

In sum, our analysis shows that only a small sub-

set of the VisDial dataset contains questions which

require dialog history, and for those, models which

encode history lead to better results. We posit that

this is due to the fact that questions with pleonastic

pronouns such as “Is it sunny/daytime/day. . . ” are

the most frequent according to our detailed analysis

in Appendix C about the dialog phenomena.

Relevance of GT
Train Val

Count Percent Count Percent

1 1057 52.85% 643 31.15%

0.8 - - 397 19.23%

0.6 - - 330 15.99%

0.5 526 26.30% - -

0.4 - - 281 13.61%

0.2 - - 227 11.00%

0 417 20.85% 186 9.01%

Total 2000 100% 2064 100%

Table 5: Relevance score (dense annotation) provided

for 2k/2k train/val QA turns. We find that 20% of

the ground truth answers were marked as irrelevant (0

score) and partially relevant (0.5 score) by the human

annotators for train set. This can be attributed to human

errors made while collecting the original data as well as

when crowd-sourcing the dense annotations.

6.2 Dense Annotations for NDCG

Here, we investigate the discrepancy between the

NDCG results and the other retrieval-based meth-

ods. First, we find that the annotation scales differs:

while there is a 3-way annotation on the train set,

the val set defines 6 possible relevance classes, see

Table 5. This affects the evaluation results of our
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Image Dialog MCA-I-H MCA-I-VGH

A bag of chips and a apple and orange.

NRel: 15

Q What kind of chips

are they?

A Chili cheese corn

chips.

Q Is the bag open or

still sealed?

A Sealed.

Q Is it next to the

apple and orange?

A Yes.

Q Are they all on a

table?

GT: Yes.

Rel: 1.0

♣ RGT:1 ; NDCG: 65.56

(1.0) Yes.

(1.0) Yes they are on a

table.

(0.0) Maybe , it’s a close

up.

(0.0) Can’t see a table.

(0.2) I think so, it is a

close up.

♦ RGT:2 ; NDCG: 69.94

(0.8) I think so.

(1.0) Yes.

(0.2) It appears to be.

(0.4) I would think so.

(0.2) I think so, it is a

close up.

♣ RGT:1 ; NDCG: 83.93

(1.0) Yes.

(1.0) Yes they are on a

table.

(0.0) Yes they are.

(0.0) Can’t see a table.

(0.2) I think so, it is a

close up.

♦ RGT:4 ; NDCG: 84.15

(0.8) I think so.

(0.8) They appear to be.

(0.4) Probably.

(1.0) Yes.

(1.0) Yes they are.

A remote controller is hidden in a console in-

side of an arm rest.

NRel: 8

Q Can you see the

remote?

A Yes i can.

Q What color is it?

A It is black.

Q Can you tell what

it is for?

A It appears to be a

phone.

Q What kind of

furniture is it in?

GT: Looks like a car

console.

Rel: 0.4

♣ RGT:1 ; NDCG: 63.19

(0.4) Looks like a car

console.

(0.4) It looks like a chair

on a train or a bus.

(0.0) There are tables.

(0.0) Looks like an outdoor

space.

(0.2) It’s a cubicle with

shelves.

♦ RGT:3 ; NDCG: 79.2

(0.4) I cannot tell.

(0.4) I can’t tell.

(0.4) Looks like a car

console.

(0.2) Not sure.

(0.4) Can’t tell.

♣ RGT:2; NDCG: 58.99

(0.0) A cell phone, i can’t

see it close up.

(0.4) Looks like a car

console.

(0.4) It looks like a chair

on a train or a bus.

(0.2) It’s a cubicle with

shelves.

(0.0) The picture does not

show 1.

♦ RGT:7 ; NDCG: 82.22

(0.4) I cannot tell.

(0.4) Can’t tell.

(0.4) I can’t tell.

(0.2) Not sure.

(0.0) The picture does not

show 1.

Figure 4: Top-5 ranked predictions (relevance in parentheses) of MCA-I-H and MCA-I-VGH after both sparse

annotation and curriculum fine-tuning phase. RGT defines the rank of Ground Truth (GT) predicted by the model.

We also calculate NDCG of rankings for current question turn. NRel denotes number of candidate answer op-

tions (out of 100) with non-zero relevance (dense annotations). Here ♣ and ♦ represents predictions after sparse

annotation and curriculum fine-tuning respectively.

model, for which we can’t do much.

Next, a manual inspection reveals that the rele-

vance weight annotations contain substantial noise:

We find that ground truth answers were marked as

irrelevant for about 20% of train and 10% of val

set. Thus, our models seem to get “confused” by

fine-tuning on this data. We, therefore, manually

corrected the relevance of only these GT answers

(in dense annotations of train set only, but not in

val set). Please see Appendix D for further details.

The results in Table 1 (for MCA-I-H-GT) show

that the model fine-tuned on the corrected data

still achieves a comparable NDCG result, but sub-

stantially improves stricter (single answer) metrics,

which confirms our hypothesis.

Finally, due to the noisy signal they receive dur-

ing fine-tuning, our models learn to select “safe”

answers
9
, such as “I can’t tell” (see examples in

9
We show the statistics of top-ranked predictions by our

MCA-I-H model on our VisdialConv subset (i.e. 97 dialogs
of the Visdial val set). Read as: (Response, count, %) (Yes,
14, 14%) (No, 11, 11.34%) (I cannot tell, 9, 9.27%) (Nope,
3, 3%) (Not that I see, 2, 2.06%) (Red and white, 2, 2.06%)
(Not sure, 2, 2.06%) (I can’t tell, 2, 2.06%). This shows that

Figure 4), which rank high according to (the more

forgiving) NDCG, but perform poorly for stricter

metrics like MRR and Recall.

7 Discussion and Related Work

Our results suggest that the VisDial dataset only

contains very limited examples which require di-

alog history. Other visual dialog tasks, such as

GuessWhich? (Chattopadhyay et al., 2017) and

GuessWhat?! (De Vries et al., 2017) take place

in a goal-oriented setting, which according to

Schlangen (2019), will lead to data containing more

natural dialog phenomena. However, there is very

limited evidence that dialog history indeed matters

for these tasks (Yang et al., 2019). As such, we see

data collection to capture visual dialog phenomena

as an open problem.

Nevertheless, our results also show that encoding

dialog history still leads to improved results. This

is in contrast with early findings that a) “naive”

encoding will harm performance (Das et al. (2017);

at least 13.3% of answers are non-commital (I cannot tell, Not
sure, I can’t tell).
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see MCA-I-HConcQ in Table 1), or that b) history

is not necessary (Massiceti et al., 2018).

Furthermore, we find that our model learns to

provide generic answers by taking advantage of

the NDCG evaluation metric. Learning generic

answers is a well-known problem for open-domain

dialog systems, e.g. (Li et al., 2016). While the

dialog community approaches these phenomena by

e.g. learning better models of coherence (Xu et al.,

2018), we believe that evaluation metrics also need

to be improved for this task, as widely discussed

for other generation tasks, e.g. (Liu et al., 2016;

Novikova et al., 2017; Reiter, 2018). As a first step,

BERT score (Zhang et al., 2019) could be explored

to measure ground-truth similarity replacing the

noisy NDCG annotations of semantic equivalence.

8 Conclusion and Future Work

In sum, this paper shows that we can get SOTA per-

formance on the VisDial task by using transformer-

based models with Guided-Attention (Yu et al.,

2019b), and by encoding dialog history and fine-

tuning we can improve results even more.

Of course, we expect pre-trained visual BERT

models to show even more improvements on this

task, e.g. Vilbert (Lu et al., 2019), LXMert (Tan

and Bansal, 2019), UNITER (Chen et al., 2019)

etc. However, we also show the limitations of this

shared task in terms of dialog phenomena and eval-

uation metrics. We, thus, argue that progress needs

to be carefully measured by posing the right task

in terms of dataset and evaluation procedure.
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A More implementation details

We built our implementation upon starter code in

PyTorch which the VisDial organisers kindly pro-

vided.
10

We follow the guidelines of Teney et al.

(2018) and used static 36 as the number of object

proposals in our experiments (though our model

can handle dynamic number of proposals).

We experimentally determined the learning rates

of 0.0005 for training MCA models and 0.0001

for fine-tuning and reducing it by 1/10 after every

7 and 10 epochs out of a total of 12 epochs for

training and 1/5 after 2 epochs for fine-tuning.

We use pytorch’s LambdaLR scheduler while

training and ReduceLROnPlateau for the fine-

tuning procedure. Dropout of 0.2 is used for regu-

larization and we perform early stopping and saved

the best model by tracking the NDCG value on val

set. Layer normalisation (Ba et al., 2016) is used

for stable training following (Vaswani et al., 2017;

Yu et al., 2019b). Attention reduction consisted of

2 layer MLP (fc(d)-ReLU-Dropout(0.2)-fc(1)).

We also experimented with different contextual

representations, including BERT (Devlin et al.,

2019); However we didn’t observe any improve-

ment, similar to the observation by (Tan and Bansal,

2019).

For the results on the validation set, only the

training split is used. To report results on test-std

set, both the training and val set are used for train-

ing. For curriculum fine-tuning we use multi-class

cross entropy loss where weighted by the relevance

score. All our MCA modules have 6 layers and 8

heads, which we determined via a hyper parameter

search. Table 7 shows more details.

Annotation Text

VQA turns I can confidently tell the correct answer just seeing

the image.

History required I want to know what was discussed before to an-

swer confidently. Cannot answer with just the

question and image. Need more information (con-

text) from previous conversation.

Common Sense I can answer it but by inferring using common

sense.

Guess I can only guess the answer.

Cant tell I can’t tell the answer.

Not relevant Not relevant question for this image.

Table 6: Mapping of human annotation with the actual

text shown to the user.

10
https://github.com/batra-mlp-lab/

visdial-challenge-starter-pytorch.

https://www.aclweb.org/anthology/J18-3002
https://www.aclweb.org/anthology/J18-3002
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1908.11279.pdf
https://arxiv.org/abs/1908.11279.pdf
https://arxiv.org/abs/1908.11279.pdf
https://papers.nips.cc/paper/6962-visual-reference-resolution-using-attention-memory-for-visual-dialog.pdf
https://papers.nips.cc/paper/6962-visual-reference-resolution-using-attention-memory-for-visual-dialog.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/viewPaper/14567
https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/viewPaper/14567
https://www.aclweb.org/anthology/C18-1104.pdf
https://www.aclweb.org/anthology/C18-1104.pdf
https://arxiv.org/abs/1908.07490.pdf
https://arxiv.org/abs/1908.07490.pdf
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https://arxiv.org/abs/1708.02711
https://arxiv.org/abs/1708.02711
https://arxiv.org/abs/1708.02711
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
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https://www.aclweb.org/anthology/D19-1516.pdf
https://www.aclweb.org/anthology/D19-1516.pdf
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Model
Training Curriculum Fine-tuning

NDCG MRR R@1 R@5 R@10 Mean NDCG MRR R@1 R@5 R@10 Mean

MCA-I-H (L6 H8) 60.27 64.33 51.12 80.91 89.65 4.24 72.22 42.38 26.94 60.17 75.2 8.2

MCA-I-H (L2 H4) 58.99 64.46 51.14 81.03 89.91 4.19 70.57 42.48 26.3 61.3 76.05 8.06

MCA-I-H (L6 H2) 60.13 60.63 46.7 77.55 87.47 4.8 70.42 39.17 23.3 57.64 73.48 8.69

Table 7: Hyper-parameter tuning for number of layers and number of heads. The results in the main paper are

reported with 6 Layers(L6) and 8 Heads (H8) for all MCA models.

B AMT Interface

Here, we provide more details on the crowd-

sourcing study described in Section 6.1. Figure

6 shows the instructions shown to the turkers. We

also setup a qualification test consisting of 2 test

images (in Figure 7) to assess whether turkers un-

derstood the task properly. This allowed us to have

an automated quality check for the annotations.

Each HIT consisted of 15 images. For the actual

task (e.g. Fig. 8), users were shown just the image

and the current question – without any previous

historical context – and asked to choose one of the

answers as shown in Table 6. Our AMT interface
11

used AWS boto3 library in python.

C Diversity and dialog phenomena in

VisDial dataset

We also did an analysis of the top-20 questions (Fig-

ure 9) and answers (Figure 10) in the training set.

‘Yes’/‘No’ binary answers form the major chunk

(19.15% and 21.2% respectively) of ground truth

answers. Color related answers (such as White,

Brown in the top-20 answers) form 4% of all the

ground truth answers. Numbered answers (such

as 0, 1, 2 ,3) form 1.3% while ‘Can’t tell’ form

another 1.2%.

As evident in the top-20 questions,

weather related questions (such as ‘Is it

sunny/daytime/day/night?’), color related

(‘What color is it/his hair/the table?’) and basic

conversational-starters (‘Can you see any people?’)

form the major portion.

We also tried to analyze the top-20 answers (Fig-

ure 11) which had non-zero relevance in the dense

annotations. Specifically, we took all 2k exam-

ple turns of training set with dense annotations for

each of 100 options. We find that generic answers

such as ‘Can’t tell’, binary answers ‘Yes/No’ and

their semantically equivalent answers ‘Not that i

can see’ are mostly given non-zero relevance by

crowd-workers.

11
We built upon the repo: https://github.com/

jcjohnson/simple-amt.

We tried to calculate the statistics of the pro-

nouns and ellipsis which we consider essential (but

not complete) phenomena in a dialog dataset. Fig-

ure 12 shows the number of pronouns in a dialog.

We find that major chunk consisted of 2-6 pro-

nouns in all the 10 questions across the dialog. We

tried to distinguish between the usage of ‘it’ as

pleonastic and non-pleonastic pronouns (discussed

in (Loáiciga et al., 2017)). For e.g. in the sentence:

‘It is raining’. Here, though, ‘it’ would be identi-

fied as a pronoun, but it doesn’t refer to anything.

Notice the drift in distribution of the number of pro-

nouns (All pronouns vs Non-pleonastic). We also

tried to identify the cases of ellipsis (methodology

explained further) and found that majority ques-

tions (82%) doesn’t contain any case of ellipsis in

the dialog. We define simple heuristics to identify

dialog phenomena. Specifically, our heuristics can

be listed as:

• We use constituency parser (Joshi et al., 2018)
12

to parse each question. If the parsed tree

doesn’t contain ‘Sentence’ as the root (‘S’,

‘SQ’, ‘SBARQ’, ‘SINV’), we consider it a

case of ellipsis.

• We use spaCy
13

to extract the pronouns in all

the questions of a dialog.

• To distinguish between different usage of ‘it’,

we mark all the co-occurrences of manually

defined weather identifiers (‘rainy’, ‘sunny’,

‘daytime’, ‘day’, ‘night’) as pleonastic.

• Though ‘other’ is a pronoun, it is not tagged

by standard taggers. We explicitly deal with

these cases to tag ‘other’ as a case of pronoun.

For e.g. ‘What about the other?’

D Corrected dense annotations

We maintain the whole relevance list, however we

change the relevance of only the ground truth (GT)

to 1 instead of 0/0.5 in the train annotations (only

943 values). This was done to avoid extra gradient

12
https://github.com/allenai/allennlp/

blob/master/allennlp/pretrained.py
13
https://spacy.io/usage/

linguistic-features

https://github.com/jcjohnson/simple-amt
https://github.com/jcjohnson/simple-amt
https://github.com/allenai/allennlp/blob/master/allennlp/pretrained.py
https://github.com/allenai/allennlp/blob/master/allennlp/pretrained.py
https://spacy.io/usage/linguistic-features
https://spacy.io/usage/linguistic-features
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Image Dialog MCA-I-H MCA-I-VGH

A surfer crouches as they ride a cresting wave.

NRel: 15

Q Is the photo in

color?

A Yes.

Q Any other people?

GT: No.

Rel: 0.8

♣ RGT:1 ; NDCG 83.32

(0.8) No.

(0.2) 0.

(1.0) Nope.

(0.8) No there’s not.

(0.4) Just the 1.

♦ RGT:2; NDCG 91.2

(1.0) Nope.

(0.8) No.

(0.8) Not that i can see.

(0.8) Not that i see.

(0.8) No there’s not.

♣ RGT:1 ; NDCG 74.98

(0.8) No.

(0.2) 0.

(1.0) Nope.

(0.2) 0 at all.

(0.8) Not that i can see.

♦ RGT:1 ; NDCG 85.24

(0.8) No.

(0.8) Not that i can see.

(0.8) Not that i see.

(0.8) No there’s not.

(1.0) Nope.

An apple and orange are sitting in a white box

with size measurements.

NRel: 4

Q What color is the

apple?

A It is red and

yellow.

Q What color is the

orange?

A It is dark orange.

Q What is the size of

the box?

A Can’t tell.

Q Where is the box?

GT: Can’t tell.

Rel: 1.0

♣ RGT:9 ; NDCG 0.0

(0.0) On the table.

(0.0) In a container by the

window.

(0.0) On table.

(0.0) Use no paper here.

(1.0) I cannot tell.

♦ RGT:5 ; NDCG 73.59

(1.0) I cannot tell.

(0.0) On the table.

(1.0) I can’t tell.

(0.6) Not sure.

(1.0) Can’t tell.

♣ RGT:9 ; NDCG 0.0

(0.0) On table.

(0.0) On the table.

(0.0) In a container by the

window.

(0.0) In a kitchen.

(1.0) I cannot tell.

♦ RGT:4 ; NDCG 98.84

(1.0) I cannot tell.

(1.0) I can’t tell.

(0.6) Not sure.

(1.0) Can’t tell.

(0.0) In a container by the

window.

A clock with a rose on its corner sits on the

wall.

NRel: 3

Q Is it a real rose?

A I don’t think so.

Q Is it an old

fashion clock?

A No, not really.

Q Is it a digital

clock?

A No.

Q Is it hanging on

the wall or leaning?

GT: It’s hanging.

Rel: 1.0

♣ RGT:1 ; NDCG: 81.55

(1.0) It’s hanging.

(0.0) Yes, it’s attached

to the side of the

building.

(0.0) Yes.

(0.0) It is cut out, but it

is definitely sitting

on something.

(0.0) It looks like.

♦ RGT:2 ; NDCG 51.45

(0.0) It looks like.

(1.0) It’s hanging.

(0.0) Can’t tell.

(0.0) Unclear.

(0.0) I think so.

♣ RGT:2 ; NDCG 51.45

(0.0) No it is not mounted

on the wall.

(1.0) It’s hanging.

(0.0) It is cut out, but it

is definitely sitting

on something.

(0.0) Yes, it’s attached

to the side of the

building.

(0.0) On the rail.

♦ RGT:3 ; NDCG 40.78

(0.0) No it is not mounted

on the wall.

(0.0) Not sure.

(1.0) It’s hanging.

(0.0) Can’t tell.

(0.0) I can’t tell.

Figure 5: Top-5 ranked predictions (relevance in parentheses) of MCA-I-H and MCA-I-VGH after both sparse

annotation and curriculum fine-tuning phase. RGT defines the rank of Ground Truth (GT) predicted by the model

and NDCG of rankings for current question turn. NRel denotes number of candidate answer options (out of 100)

with non-zero relevance (dense annotations). Here ♣ and ♦ represents predictions after sparse annotation and

curriculum fine-tuning respectively.

information that the model will receive because

of noise in the dataset, since these examples were

already seen during the spare annotation phase. Val

annotations remains unaffected for fair compari-

son. As expected, this simple correction increase

the ground truth related metrics such as R{1,5,10}
drastically.
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Figure 6: Instructions for the AMT task.

Figure 7: Qualification test consisting of 2 test images to allow the turkers to actually attempt the task
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Figure 8: Sample task.

Percent (of Train)

To
p-

20
 q

ue
s

is it sunny
is it daytime

is the photo in color
can you see the sky

are there any people
what color is it

any people
is it day or night

is it sunny out
is this in color

do you see any people
what color are the walls

can you see any 
is it a sunny day

any trees
how old is the man

are there trees
what is he wearing

what color is the table
what color is his hair

Unique ques

0.00% 10.00% 20.00% 30.00% 40.00%

Figure 9: Top-20 questions in the training set. Of all the questions in the training set, only 30% questions are

unique while weather related questions (like sunny, daytime, rainy) top the charts.
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blue

not really
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red
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i think so
green

Unique ans
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Figure 10: Top-20 answers in the training set. Yes/No forms a major chunk in top 20 answers.
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no
nope

yes
not that i can see

i think so
i can't tell
can't tell
not sure
yes it is

not really
maybe

0
yes, it is

i don't think so
appears to be

looks like it
not visible

white
i don't see any

it is

0.00% 5.00% 10.00% 15.00%

Figure 11: Top-20 answers with non-zero relevance in the dense annotations of training set. Generic and yes/no se-

mantically equivalent answers mostly constitute the list. Percentage is calculated out of total 3652 unique answers

which have non-zero relevance in train dense annotations set.
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Figure 12: Number of pronouns in 10 questions of a dialog.


