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Abstract 

During history match reservoir models are calibrated 
against production data to improve forecasts reliability. Often, 
the calibration ends up with a handful of matched models, 
sometime achieved without preserving the prior geological 
interpretation. This makes the outcome of many history 
matching projects unsuitable for a probabilistic approach to 
production forecast, then motivating the quest of 
methodologies casting history match in a stochastic 
framework.  

The Ensemble Kalman Filter (EnKF) has gained popularity 
as Monte-Carlo based methodology for history matching and 
real time updates of reservoir models. With EnKF an 
ensemble of models is updated whenever production data are 
available. The initial ensemble is generated according to the 
prior model, while the sequential updates lead to a sampling of 
the posterior probability function.  

This work is one of the first to successfully use EnKF to 
history match a real field reservoir model. It is, to our 
knowledge, the first paper showing how the EnKF can be used 
to evaluate the uncertainty in the production forecast for a 
given development plan for a real field model. The field at 
hand was an on-shore saturated oil reservoir. Porosity 
distribution was one of the main uncertainties in the model, 
while permeability was considered a porosity function.    

According to the geological knowledge, the prior 
uncertainty was modeled using Sequential Gaussian 
Simulation and ensembles of porosity realizations were 
generated. Initial sensitivities indicated that conditioning 
porosity to available well data gives superior results in the 
history matching phase. Next, to achieve a compromise 
between accuracy and computational efficiency, the impact of 
the size of the ensemble on history matching, porosity 
distribution and uncertainty assessment was investigated. In 
the different ensembles the reduction of porosity uncertainty 

due to production data was noticed. Moreover, EnKF 
narrowed the production forecast confidence intervals with 
respect to estimate based on prior distribution. 

 
Introduction 

Reservoir management of modern oil and gas fields 
requires periodic updates of the simulation models to integrate 
in the geological parameterization production data collected 
over time. In these processes the challenges nowadays are 
many. First, a coherent view of the geomodel requires 
updating the simulation decks in ways consistent with 
geological assumptions. Second, the management is requiring 
more and more often a probabilistic assessment of the 
different development scenarios. This means that cumulative 
distribution functions, reflecting the underlying uncertainty in 
the knowledge of the reservoir, for key production indicators, 
e.g. cumulative oil production at Stock Tank condition (STC), 
along the entire time-life of the field, are expected outcomes 
of a reservoir modeling project. Moreover, production data are 
nowadays collected with increasing frequencies, especially for 
wells equipped with permanent down-hole sensors. Decision 
making, based on most current information, requires frequent 
and rapid updates of the reservoir models.    

The Ensemble Kalman Filter (EnKF) is a Monte-Carlo 
based method developed by Evensen1 to calibrate 
oceanographic models by sequential data assimilation. Since 
the pioneering application on near-well modeling problems by 
Naevdal et al.2, EnKF has become in the reservoir simulation 
community a popular approach for history matching and 
uncertainty assessment3-7. This popularity is motivated by key 
inherent features of the method.  

EnKF is a sequential data assimilation methodology, and 
then production data can be integrated in the simulation model 
as they are available. This makes EnKF well suited for real-
time application, where data continuously collected have to be 
used to improve the reliability of predictive models.  

EnKF maintains a Gaussian ensemble of models aligned 
with the most current production data by linear updates of the 
model parameters. In that way the statistical properties of the 
Gaussian ensemble, that is to say mean, variance and two-
point correlations are preserved.    

Because EnKF does not need either history matching 
gradients or sensitivity coefficients, any reservoir simulator 
with restarting capabilities can be used in an EnKF workflow, 
without modifying simulator source code. This represents an 
obvious advantage with respect to methods like the 



Randomized Maximum Likelihood (RML) method8,9, which 
requires a simulator with adjoint gradient capabilities11. 

These reasons motivate the interest on EnKF in the 
Upstream Industry. Nonetheless, only a few real applications 
were published before this work12,13. Skjervheim et. al.12 
compared results on using EnKF to assimilate 4D seismic data 
and production data, and obtained results that slightly 
improved the base case used for comparison. Haugen et al., 
see Ref. 13, report that the EnKF was used to successfully 
history match the simulation model of a Northern sea field, 
with substantial improvement compared to the reference case. 

In this paper we applied EnKF to history match the Zagor 
simulation model, quantifying also the reduction of 
uncertainty due to the assimilation of the production data.  
Different ensembles were used to investigate the connection 
between the effectiveness of EnKF and the size of the 
statistical samples. Next, we used one of the ensembles 
updated with EnKF to assess the uncertainty in the production 
forecasts. To our knowledge, this is the first paper where 
EnKF was used on a real reservoir from history match to 
uncertainty analysis of production forecasts.  

The paper proceeds as follows. The next section is 
dedicated to the discussion of the EnKF methodology, 
including its mathematical background and some remarks on 
the current limitations. Then the Zagor reservoir model is 
described. That includes the geological parameterization used 
in this work and the presentation of the different ensembles 
utilized in the application. The results of the application are 
presented in two subsequent sections. The first is dedicated to 
history matching and the second dedicated to the assessment 
of the uncertainty in the production forecasts. Finally, 
conclusions based on our results are drawn and some 
perspectives for future works are given. 

 
The Ensemble Kalman Filter  

The EnKF is a statistical methodology suitable to solve 
inverse problem, especially in cases where observed data are 
available sequentially in time.  

Assuming that the evolution of a physical system can be 
approximated by a numerical model, typically by the 
discretisation of a partial differential equation, a state vector 
can be used to represent the model parameters and 
observations. Using multiple realizations of the state vector 
one is able to explicitly express the model uncertainty. The 
EnKF can describe the evolution of the system by updating the 
ensemble of state vectors whenever an observation is 
available.  

In reservoir simulation, EnKF can be applied to integrate 
production data by updating sequentially an ensemble of 
reservoir models during the simulation. Each reservoir model 
in the ensemble is kept up-to-date as production data are 
assimilated sequentially. 

In this context every reservoir state vector comprises three 
types of parameters: static parameters, dynamic parameters 
and production data.  

The static parameters are the parameters that in traditional 
history matching do not vary with time during a simulation, 
such as permeability (K) and porosity (φ).   

The dynamic parameters include the fundamental variables 
of the flow simulation. These are, for black oil models, the cell 
pressure (p), water saturation (Sw), gas saturation (Sg) and 
solution gas-oil ratio (RS). In addition to the variables for each 

cells one add observations of the production data in each well. 
Production data usually include simulated data corresponding 
to observations such as well production rates, bottom-hole 
pressure values, water cut (WCT) and gas oil ratio (GOR) 
values. Thus, using the notation by X. H. Wen and W. H. 
Chen6, the ensemble of state variables is modelled by multiple 
realizations:  
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where  is the  ensemble member of the state vector at 
time ,  and  are the static and dynamic variables 
respectively, and  is the production data vector. 
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The EnKF evolves the ensemble of state variables in time 
assimilating the most current observations of production data 
by updating both static and dynamic part of all the realizations 
to honour the observations. This means that an ensemble of 
updated reservoir models is always available and statistics 
about the model uncertainty can be explicitly expressed. 

In particular the filter consists of two processes for each 
time step: the forecast process, based on the current state 
variable, and the analysis process, including data assimilation 
and updating of the state variables. In the forecast step each 
model is simulated until the next observation date.  

The state variables are advanced in time as: 
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where F is the forward model, yf

k,j the j-th state vector after 
running the k-th forecasting step and Ne is the number of 
ensemble members. The superscript f denotes forecast, 
meaning that the values are output from the simulator before 
Kalman Filter updating. Let Hk be a matrix operator that 
relates the state vector to the production data. The production 
data are part of the state vector as shown in Eq. (1), so  is 
in the form: 
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where 0 is a )( ,,, kdkykd NNN −×  matrix with all 0’s as its 
entries; I is an kdkd NN ,, ×  identity matrix. Let  be the 
covariance matrix of the measurement noise with 
dimension

kdC ,

kdkd NN ,, × , which is diagonal if the production data 

errors are independent. The matrix  defines the covariance 

for the state variables at time  that can be estimated from 

the ensemble of forecasted results ( ) using the standard 

statistical method: 
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where  is the jf
jkY ,

th ensemble member of forecasted state 

vector at time  with dimension of . kt kyN ,
f
kY  is the mean of 

the state variable which is a vector of dimension . kyN ,

Then the Kalman gain Kk can be computed as: 
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Under the assumption that  is Gaussian distributed, a 
variance minimizing scheme is used to update the state vector 
according to the observed production data, . In particular, 

by using the Kalman gain  as weighting matrix, the state 
variables become  

jky ,
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The last equation shows that the updating of the forecast 

vector, denoted by the superscript u, depends on the difference 
between simulated and observed production data; the larger 
the difference, the larger update will be applied to the initial 
state vector.  
The covariance matrix, after being updated, can be assessed 
as: 
 f

kykk
u

ky CHKIC ,, )( −=  (7) 
   

 
Figure 1: Description of the overall workflow of the EnKF where 
md is the model state vector (pressure, saturation, etc.) and 
ms  is the model parameter vector (porosity and permeability). 

  
Using the updated covariance matrix, the state vector of 

each realization in the ensemble should reflect the most 
current observations ( ), then the procedure can be applied 
again till the next time step when new observations are 
available for assimilation.  

kd

Based on our assumption that is Gaussian distributed, 
the validity of Eq. (5) and Eq. (6) relies only on the 
assumptions that the model error and observation error are 
independent and also both model and observation errors are 
uncorrelated in time; a linear relationship between data and 
model is not required. This means that even if the forward 
model is highly non-linear, the EnKF preserves the spatial 
correlations of the updated models, based on the initial 
variogram, and the original geological interpretation is 
retained. 

y

The EnKF workflow is outlined in Figure 1. It is not 
intended in this paper to give a thorough discussion of the 
foundation of the methods. The interested readers may refer to 
the recent book by G. Evensen17.  
 
The Zagor Reservoir  

The EnKF methodology was applied to history match the 
Zagor Field simulation model, using for this purpose different 
statistical ensembles. One of these ensembles was then used to 
evaluate the uncertainty in production forecast associated to 
given development projects. 

The Zagor field is an on-shore oil field located in West 
Africa. The field consists of a 32 ft thick sand body limited on 
top by a shale cap. A saddle in the structure separates the East 
side of the reservoir, well known because of the large number 
of drilled wells, from the less known West side. The reservoir 
was originally in saturated conditions, with a primary gas cap 
on top of a thin oil rim in the East portion, while in the West 
portion a gas-water contact was established by geophysical 
consideration, see Figure 2. The field is bounded by faults on 
North, East and South, while an edge aquifer acts on the West 
flank. Eight appraisal wells plus two production wells were 
drilled in the field. Gas-oil and water-oil contacts were 
originally at 8947.3 ft and 9116.3 ft TVD, respectively. 

According to log data and inter well correlations, seven 
geological layers were identified. The seven layers were made 
of good quality sands with porosity log values ranging from 
10% to 24%. No flow barriers for vertical flow were 
recognized.  

 The field was simulated using a black-oil model. The 
fluids can be characterized by means of an oil gravity of 
37°API, an oil formation volume factor of 1.5 RB/STB, an oil 
viscosity of 0.28 cp and an undersaturated compressibility of 
1.35x10-5 psia-1. The initial bubble point pressure was 3885 
psia, corresponding to a gas-oil ratio (GOR) of 1Mscf/STB in 
the oil rim. The simulation grid consisted of 156x77x10 corner 
point geometry cells, with a lateral spacing of 385 feet x 385 
feet. As regards the thickness of the cells a value of 3 feet, 
with some small variation between layers, represents the 
average cell thickness. Notably, the simulation layering results 
from a refinement of some layers: geological layer 2, 5 and 7 
were split into sub-layers. A total of 25669 cells were active in 
the simulation.  
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Figure 2: Zagor field original phase distribution. 
 

The relative permeability functions of the oil-water and 
gas-water systems are shown in Figure 3. 
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Figure 3: Oil-water, left, and gas-oil relative permeability, 
right.  

 
Definition of Baseline Geological Model 

The key issue in the geological parameterization was the 
definition of porosity values in the simulation grid. A baseline 
geological model was defined by using log porosity values 
available in the ten wells drilled in the field. These values 
were utilized to condition a sequence of seven maps, one per 
geological layer. Kriging was used to propagate the wells 
porosity values throughout the whole reservoir, with standard 
deviation derived on a layer basis according to the available 
log data. A Kriged porosity map for a representative layer is 
shown in Figure 4.  

Both the geological and the simulation grid had the same 
lateral spacing. Then, porosity values generated in the 
geological model could be copied from the geological grid to 
the simulation grid.  

According to the geological analysis of core and log data, a 
deterministic functional dependency between permeability and 
porosity was assumed10. This, together with a vertical to 
horizontal permeability ratio of 1, led to the definition of the 
static parameters of the simulation grid. Initial saturation 
values were set according to relative permeability end-points. 
 
Generation of Gaussian Ensembles 

EnKF updates sequentially ensemble of Gaussian models. 
In this work, ensembles of simulation models were obtained 
by generating a sequence of porosity fields at the simulation 
model scale. For this purpose the Sequential Gaussian 
simulation (SGSim) algorithm14 was used to generate porosity 
fields, suitable for numerical simulation. Each porosity field 
was assumed to be correlated using an isotropic bi-

dimensional variogram with a range of 4000 m. Different from 
the study performed in Ref.13, the porosity distribution was 
constrained at the observed porosities in the appraisal wells.  

The stochastic modeling was used to generate 135 porosity 
fields, to be used in the following application of EnKF 
methodology. Three ensembles were used: a small size 
ensemble, consisting of 50 models, a medium size ensemble, 
consisting of 100 models, and a – relatively – large size 
ensemble of 135 models. These three ensembles are referred 
hereafter as A, B and C, with 50, 100 and 135 members 
respectively.  

The availability of differently sized ensembles allowed for 
evaluating the impact of the size of the ensemble of models. In 
previous studies on updating reservoir simulation models 
using ensemble Kalman filter, the number of ensemble 
members used varies from 40 (Ref.7) to 400 (Ref. 6). Since 
the first paper in this area2, it has been quite common to work 
with 100 ensemble members. The selection of this ensemble 
size was based on reported experience from large-scale 
problems within atmospheric sciences15. For a 2-D synthetic 
2-phase five spot example, where the permeability field was 
estimated6, it was concluded that a relatively large ensemble is 
required to accurately estimate the uncertainty of the estimated 
fields, but that a smaller ensemble suffice to create reservoir 
models that match the up-to-date production data only. 
Simultaneous estimation of permeability and porosity fields 
where considered on a small size reservoir engineering model 
(PUNQ-S3), and it was concluded that solutions with a 
reasonable history match were obtained with only 40 
ensemble members7. Although the dimension of the PUNQ-S3 
model is small compared to realistic field models (at least one 
order of magnitude), it has been reported that an ensemble 
with 100 members is sufficient, to obtain solutions with a 
reasonable history match, for field cases having the same 
order of grid cells as the model used in the present study (see 
Ref. 13). A more thorough study of the effect of the ensemble 
size16 concluded that a modest size is required to get models 
that provide history matched solution, but that a much larger 
ensemble size is required in order to quantify the uncertainty 
in the estimated static fields. This study was performed on a 
simplified model (the heat-equation) and should have bearing 
for reservoir simulation models also. Another study using the 
PUNQ-S3 model18 showed that 100 ensemble members was 
not enough to get constant uncertainty in the production 
forecasts. Nonetheless, further studies are required to conclude 
on the exact ensemble sizes required. We will see that the 
results obtained here are in accordance with the previous 
findings. 

 
History Matching the Zagor Field by Using ENKF 

The EnKF workflow described previously, equations (1) to 
(7), was coded in a flexible Matlab toolbox, then implemented 
to history match the Zagor reservoir model. In our case, the 
state vectors (cf. Equation 1) were composed of: porosity 
values as static variables, cell pressure, water saturation, gas 
saturation and solution gas-oil ratio as dynamic variables. The 
production data vector comprised the wells production rates, 
bottom-hole pressures, water cuts (WCT) and gas-oil ratios 
(GOR). In the history matching phase the three differently 
sized ensembles A, B, and C were used. This allowed for 
analysing the impact of the ensemble size on the history 
match. In the next section, available production data are first 

Figure 4: Kriged porosity map in a representative layer of the 
Zagor field. Red means high porosity values (up to 25%), violet 
means very low (down to 2.5%) values. 

 



reviewed and the errors used to define misfits between 
simulation and observations are discussed. 
 
Production Data for EnKF Based History Matching 

The Zagor field was brought on stream for production by 
means of two vertical wells, namely well A1 and A2, 
completed in the oil rim. The history matching period covers 
approximately three years. In this period only Stock Tank 
condition (STC) gas, oil and water rates were collected. The 
history phase was simulated by using daily STC oil rates, 
averaged on monthly basis, as well targets. Monthly averaged 
GOR and WCT data were used as calibration data in the 
matching. GOR and WCT history data for both wells are 
shown in Figure 5 and Figure 6, respectively. It is worth 
noticing that well A2 produced under anhydrous conditions 
for most of the history period.  
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Figure 5: GOR measured data for well A1 (triangle) and A2 (circle). 
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Figure 6: WCT measured data for well A1 (triangle) and A2 (circle). 

 
The reliability of the observed data was an issue. 

According to the asset engineers, low GOR values were less 
reliable than high GOR values. Moreover, increasing GOR 
trends are more reliable than oscillating GOR values. This 
makes GOR values available for well A2 less reliable than the 
corresponding values for well A1. In addition, the decrease of 
well A2 GOR from a value of 4 MScf/STB to a plateau value 
of 1.5 MScf/STB in the last months of the history period was 
deemed pretty unreliable. As regards WCT, see Figure 6, very 

low – less than 0.025 – values in the time-period between day 
851 and day 954 for well A1, were considered unreliable.  

The engineering interpretation of the production data was 
used, see Table 1, to define the errors or prior standard 
deviations required to weight the observations. 

 
 A1 A2 

GOR 

0.4 MScf/STB for GOR 
values ≥ 6 MScf/STB,  
0.2 MScf/STB for lower 
values 

0.6 MScf/STB for 
GOR values gathered 
till day 882, 600% for 
later time values. 

WCT 

0.05 for values outside 
low-reliability time 
window,  
600% inside 

0.0025 all the data 

Table 1: errors used to weight the observations available for the 
Zagor field. 

 
Comparative Analysis of EnKF History Matching 
Results 

EnKF was applied to history match the three available 
ensembles A, B, and C. The integration proceeded for 33 
assimilation time periods, with the usual sequence of forecast 
and analysis steps.  

The result of EnKF integration can be evaluated in many 
ways. In real-time problems it is interesting to investigate the 
effectiveness of EnKF primarily by looking at the evolution of 
the forecasted quantities  along integration. This approach 
is effective because in a real-time application the main interest 
is the improvement in short-term predictive value of the 
ensemble. Similar considerations hold for ocean modelling.  

f
jky ,

In this application, the effectiveness of EnKF calibration 
was first evaluated by using the porosity fields given by the 
last assimilation step to simulate the history period from day 1 
to day 1065. The results of these simulations could then be 
compared with the results of the simulation based on the 
original porosity fields.  

Figure 7 to Figure 9 show Well A1 GOR computed by 
means of EnKF porosity (blue) and by original porosity (red) 
for the different ensembles A, B, and C, respectively. 
Observed data are included in the pictures.   

 



Figure 7: Well A1 GOR values: observed (bullets), computed by 
using the original ensemble A (red) and computed by using the 
last EnKF updated ensemble A (blue). The time unit in abscissa 
is one month. 

 
Figure 8: Well A1 GOR values: observed (bullets), computed by 
using the original ensemble B (red) and computed by using the 
last EnKF updated ensemble B (blue). The time unit in abscissa is 
one month. 

 
Figure 9: Well A1 GOR values: observed (bullets), computed by 
using the original ensemble C (red) and computed by using the 
last EnKF updated ensemble C (blue). The time unit in abscissa is 
one month.  

 
At a glance, the results shown in the three previous 

pictures gave qualitative indications about the effectiveness of 
EnKF as a history matching tool. The assimilation process was 
able to move the envelope of the simulated data towards the 
observed data trend, narrowing at the same time the spread of 
the simulated values. Similar conclusions could be drawn by 
looking at the corresponding plots for well A2 GOR and WCT 
and well A1 WCT.   

The evaluation on history match performances could be 
made more quantitative by computing the ensemble averaged 
objective function J defined as 
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Where oi and σi are respectively the observed values – 

GOR and WCT for the two wells – and the standard deviation 
for observation i, while cij is the value, given by the simulation 
of the j-th ensemble member, corresponding to the observation 
oi. The standard deviations were defined according to Table 1.  

In Figure 7-9, the ensembles average objective functions 
values were reported for the three ensembles before and after 
the EnKF integration.  

The table clearly indicates that the objective function was 
systematically decreased by EnKF, with some considerable 
improvement for larger ensembles.  

 
Avg. Objective Function J Ensemble 

Before EnKF  After EnKF 
A 1136.8 307.9 
B 1193.1 270.8 
C 1196.9 273.2  

Table 2: average objective function values for the three ensemble 
before and after EnKF integration. 
 
Statistical Analysis of Integrated Ensembles 

The EnKF is a Monte-Carlo based method, aimed at 
sampling the posterior probability and updating the covariance 
and the mean of the original ensemble. In this section the 
results of the EnKF integration are reviewed to analyse the 
modifications operated by EnKF on the statistical structure of 
the ensembles. Two statistical estimators were considered: 
ensemble mean and standard deviation.  

 
Ensemble Mean Updates 

The ensemble mean was defined by computing an average 
porosity field uo

s a
m /  , where 
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In equation (9) the mean field can be computed using the 

original ensemble (superscript o) or the ensemble after EnKF 
updates (superscript u), where a labels the ensemble (a=A, B, 
or C). 

The average porosity fields o
sm  are simply 

approximations of the Kriged baseline porosity field, as it can 



be noticed by comparing average porosity field for the original 
ensemble A (Figure 10) with the corresponding Kriged 
porosity map (Figure 4). 
 

 
Figure 10: Average original porosity for ensemble A in a 
representative layer. 

On the contrary, the porosity fields u
s a

m , with a=A, B, or 

C, are unbiased estimator of the mean of the posterior 
distribution function. In Figure 11, Figure 12 and Figure 13  
porosity maps for a representative layer are shown for 
ensembles A, B, and C, respectively.   

By analyzing these maps, in conjunction with the Kriged 
porosity map shown in Figure 10, it can be noticed that EnKF 
integration increased the average porosity in the West and 
South-East flanks. Some very high values – up to 42% - may 
be observed in the case of ensembles A and B. In the case of 
ensemble C, the porosity values span approximately the same 
range of the values in the original mean field, see Figure 11.  
The lack of porosity over-shooting might indicate that the 
larger ensemble led to more consistent results. Nonetheless, 
the over-shooting occurs mainly in the far West portion of the 
reservoir, far from the oil rim. Although not that much 
physical, overshooting did not bias oil in place computations 
but simply gave pressure support.  

 

 
Figure 11: Average porosity for ensemble A after EnKF 
integration in a representative layer. 
 

 
Figure 12: Average porosity for ensemble B after EnKF 
integration in a representative layer. 
 

 
Figure 13: Average porosity for ensemble C after EnKF 

he EnKF is a Monte Carlo methodology, aimed at sampling a 

integration in a representative layer. 
 
T
posterior probability distribution. Hence, from a theoretical 
point of view it is somehow inappropriate to look for a single 
model, able to represent the integrated ensembles. 
Nonetheless, for many practical reasons, in history matching 
projects it is often required to give a reference model, to be 
used for deterministic purposes like defining reserves, 
quantifying the net present value of the field or provide 
guidelines for a wells infilling program. In this framework, the 
best candidates to represent the integrated ensembles are the 

models defined by the ensemble means, that is to say 
um , 
As

u

Bsm , and 
u

Csm .  
 

 
Figure 14: Well A1. Measured GOR (blue crosses) values and 

Figure 14 shows GOR values computed on the basis of 

inte

simulated GOR values (lines). Dashed lines correspond to 
average porosity fields before EnKF integration, continuous lines 
correspond to average porosity fields after EnKF integration. 
Black, red and blue correspond to ensemble A, B, and C, 
respectively. 
 

grated porosity mean values 
um , s
A

um , and 
Bs

u

Csm , together with original porosity mean values
o

s
A

m , 

o

Bsm , and 
o

nsidered individually history matched 
models, suitable for deterministic-type purposes. 

 

Csm . This picture indicates that also the mean 
models can be co

Ensemble Standard Deviation Updates 
In this section the key issue is to evaluate how EnKF 

operated on the ensemble uncertainty in the porosity field. 



Geostatistics, or any kind of stochastic approach to reservoir 
characterization, is implemented to quantify the uncertainty 
due to the limited amount of information available on the 
reservoir. The purpose of any stochastic history matching 
workflow is then to make the model less uncertain. In the case 
of Zagor reservoir, the uncertainty in the parameterization 
could be quantified in terms of the variation of the standard 
deviation for the ensembles. 

 Likewise ensemble mean fields, see equation (9), a field 
porosity standard deviation sσ  could be defined by 
computing cell-wise standard deviations over the ensemble 
members. The update operated by EnKF on the standard 
deviation fields can be evaluated means of the maps shown 
from 

 by 
Figure 15 to Figure 17 for the same representative layer 

seen in Figures 11-13. The three figures are organised as 
follows: the standard deviation field for the original ensemble 
is shown in the top row, while the bottom row shows the 
standard deviation field for the integrated ensemble. The 
former plot reflects the prior uncertainty in the parameter 
estimation; the latter plot reflects the posterior uncertainty. It 
is worth noticing that prior uncertainty is low in the East part 
of the reservoir, where the wells intersect the reservoirs. Wells 
positions are defined in the maps by the white spots, 
corresponding to zero standard deviation values.  
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Figure 15: Ensemble A – Porosity standard deviation, in a 
representative layer, before (top row) and after EnKF (bottom row) 
assimilation. Red means values around 0.08, blue values close to 

undary of the reservoir, far from the wells. The EnKF 
upd

 the bottom row one it can be 
not

at already noticed for the smaller ensembles: 
unc

0. 
 

In the case of ensemble A, Figure 15, the uncertainty in the 
original ensemble – top row map – was spread toward the 
ob

ate after 33 time-steps reduced systematically the 
uncertainty, with some very high residual uncertainty – red 
spots – in the South-East flank.  

As regards ensemble B, see Figure 16, the effect of EnKF 
is similar to what already noticed for ensemble A. By 
comparing the top row map with

iced a reduction in the uncertainty in the areas far from the 
wells (both production and appraisal ones). However, in some 
zones of the reservoir standard deviation values are higher for 

integrated ensemble B than for integrated ensemble A. This, 
together with the analysis of the porosity overshooting for the 
two ensemble may indicate that the integrated ensemble A 
represents the posterior distribution better than integrated 
ensemble B.  

Moving the attention to the larger ensemble, that is to say 
ensemble C, the result of the integration is qualitatively 
similar to wh

ertainty reduced because of EnKF integration. Notably, the 
spatial distribution of the uncertainty after integration 
followed a trend going from ensemble A to C, from smaller to 
larger statistical samples. Areas close the West and South-East 
flanks became more uncertain going from smaller to larger 
statistical samples. 
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Figure 16: Ensemble B – Porosity standard deviation, in a 
representative layer, before (top row) and after EnKF (bottom row) 
assimilation. 
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Figure 17: Ensemble C Porosity standard deviation, in a 
representative layer, before (top row) and after EnKF (bottom row) 
assimilation. 



 
Production Forecasts Uncertainty 

To evaluate the uncertainty in the production forecasts, one 
A, could be run in of the ensembles, that is to say ensemble 

predictive mode to simulate 23 years of prediction. The 
prediction period was simulated by using a minimum tubing 
head target of 300 psia for both wells, with an abandonment 
constraint for economic reasons when WCT was higher than 
60%.   

The uncertainty in the predictions can be evaluated by 
means of the data reported in Figure 18. The standard 
deviations in the predicted cumulative oil production were 
reduced by EnKF application, with a final 40% reduction at 
the end of the 23rd year of forecast. 
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Figure 18: Cumulative field oil production standard deviation vs 
time for 23 years forecast. Red line corresponds to the original 
ensemble A predictions, blue corresponds to the integrated

d with the standard deviations shown 
 F r

 
ensemble A predictions. 
 

In Figure 19 average incremental cumulative oil 
roduction was combinep

in igu e 18. This figure indicates that the differences between 
original and integrated ensemble predictions are statistically 
significant.  
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Figure 19: Average FOPT in a 23 years forecast for the ensemble 
A. Red line corresponds to the original ensemble A predictions, 
blue corresponds to the integrated ensemble A predictions.

ity fields 
oil reservoir with almost three years of 

ensembles of 50, 100 
and 135 members, respectively. Although this work represents 

the

val

ocal overshooting due to integration in the case of 
ens
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per. 
 

g Monte Carlo methods 
ys. Res. Vol. 99, 

-10162, 1994. 

9. 
assessment methods”, SPE Journal, 8(2), 188-195, 2003.  

 
Standard deviations were used to define the error bars. 

 
Conclusions 

n this work EnKF was used to calibrate porosI
used to model an 
production. This confirmed the possibility to use EnKF for 
history matching real reservoir models.  

In addition, an analysis of the dependence of EnKF 
effectiveness on the number of fields included in the statistical 
ensembles was performed by using three 

 first attempt to investigate the connection between EnKF 
effectiveness and the size of the ensemble for a real problem, 
the limited number of ensembles considered did not give the 
chance to lead to some ultimate conclusion on key points like 
the number of fields required from a practical viewpoint. 
Nonetheless, some interim conclusions can be drawn. 

First, this analysis indicates that, from a history matching 
point of view, the quality of the calibration could be improved 
by using ensembles with 100 or 135 members. That was 
quantitatively confirmed by means of the objective function 

ues reported in Table 1, although the differences are not 
high.  

Second, as regards statistics for porosity fields, differences 
could be noticed among the three ensembles, namely A, B, 
and C, after EnKF integration. Mean porosity values indicated 
some l

emble A and, with less evidence, also in the case of 
ensemble B, while ensemble C was not affected by this 
problem. On the other side, investigations on porosity standard 
deviations fields after EnKF did not lead to clear conclusions. 
The expectation of having less uncertainty going from 
integrated ensembles A to C was not confirmed by visual 
inspections of the fields. 

The possibility to use the integrated porosity ensembles to 
predict with less uncertainty the production of the field was 
proven in the case of ensemble A.  
 

knowledgments 
We acknowledge Eni Exploration and Production Division 

for the permission to publish this pa

References 
1. Evensen, G., “Sequential Data Assimilation with a non-

linear quasi-geostrophic model usin
to forecast error statistics”, J. Geoph
10143

2. Naevdal, G., Mannseth, T., and Vefring, E., “Near-Well 
Reservoir Monitoring Through Ensemble Kalman Filter”, 
SPE 75235, SPE/DOE Symposium on Improved Oil 
Recovery, Tulsa, Oklahoma, U.S.A., 13-17 April, 2002. 

3. Naevdal, G., Johnsen, L. M., Aanonsen, S. I., and Vefring, 
E., “Reservoir Monitoring and continuous model updating 
using ensemle Kalman filer”, paper SPE 84372, SPE 
Annual Technical Conference and Exhibition, Colorado, 
U.S.A., Denver, 5-8 October, 2003. 

4. Gu, Y., and Oliver D. S., “The Ensemble Kalman Filter for 
Continuous Updating of Reservoir Simulation Models”, 
Journal of Energy Resources Technology, Volume 128, 
Issue 1, pp. 79-87, March 2006. 

5. Zafari, M., and Reynolds, A., “Assessing the Uncertainty in 
Reservoir Description and Performance Predictions with 
the Ensemble Kalman Filter”, SPE 95750, SPE Annual 
Technical Conference and Exibition, Dallas, Texas, U.S.A., 
9-12 October, 2005. 

6. Wen X. H., and Chen W. H., “Real-Time Reservoir Model 
Updating Using Ensemble Kalman Filter”, SPE 92991, 
SPE Reservoir Simulation Symposium, Houston, Texas 
U.S.A., 31 January-2 February, 2005. 

7. Gu Y., and Oliver D. S., “History Matching of the PUNQ-
S3 reservoir model using the ensemble Kalman filter”, 
paper SPE 92867, SPE Annual Technical Conference and 
Exibition, Houston, 26-29 September, 2004. 

8. Oliver, D. S., “On Conditional Simulation to Inaccurate 
Data”, Math. Geology, 28(6), 811-817, 1996. 
Liu, N., and Oliver, D. S., “Evaluation of Uncertainty 



10. 
isk analysis”, 

11. 

-

12. 
ic data in 

13. atvik, L. J., Evensen., G., Berg, A., Flornes, 

14.  

15. 

e”, ECMOR X, Amsterdam, 2006. 

18. ., Berg, A. M., and 

onference 

 

 
 

Bianco, A., “Application of ensemble Kalman filter (EnKF) 
methodology for history matching and r
Master’s thesis, Imperial College, London, 2006. 
He, N., Reynolds, A. C., and Oliver. D. S., “Three-
dimensional reservoir description from multiwell pressure 
data and prior information”, Soc. Pet. Eng. J., pages 312
327, 1997. 
Skjervheim, J.-A., Evensen, G., Aanonsen, S. I., Ruud, B. 
O., and Johansen, T. A. “Incorporating 4D seism
reservoir simulation models using ensemble Kalman filter.” 
Paper SPE 95789, presented at SPE Annual Technical 
Conference and Exhibition, Dallas, Texas, U.S.A., 2005. 
Haugen, V., N
K., and Naevdal, G., “History Matching Using an 
Ensemble Kalman Filter on a North Sea Field Case”, SPE 
102430, SPE Annual Technical Conference and Exhibition, 
24-27 September, San Antonio, Texas, U.S.A., 2006. 
Deutsch, C. V., and Journel, A. G., “GSLIB Geostatistical
Software Library and User’s Guide”, Oxford University 
Press, 1998. 
Houtekamer, P. L. and Mitchell, H. L., “Data assimilation 
using an ensemble Kalman filter technique.” Monthly 
Weather Review, 126:796--811, 1998. 

16. Thulin, K., and Naevdal, G., “Ensemble Kalman Filter for 
Field Estimation – Investigations on the Effect of the 
Ensemble Siz

17. Evensen, G., “Data Assimilation – The Ensemble Kalman 
Filter”, Springer, 2006. 
Lorentzen, R. J., Nævdal, G., Vallès, B
Grimstad, A.-A., “Analysis of the ensemble Kalman filter 
for estimation of permeability and porosity in reservoir 
models”, SPE 96375, SPE Annual Technical C
and Exhibition, 9-12 October, Dallas, Texas, U.S.A., 2005. 

  


