
Hit and Bandwidth Optimal Caching
for Wireless Data Access Networks

by

Mursalin Akon

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2011

c© Mursalin Akon 2011

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

For many data access applications, the availability of the most updated information
is a fundamental and rigid requirement. In spite of many technological improvements,
in wireless networks, wireless channels (or bandwidth) are the most scarce resources and
hence are expensive. Data access from remote sites heavily depends on these expensive
resources. Due to affordable smart mobile devices and tremendous popularity of various
Internet-based services, demand for data from these mobile devices are growing very fast.
In many cases, it is becoming impossible for the wireless data service providers to satisfy the
demand for data using the current network infrastructures. An efficient caching scheme
at the client side can soothe the problem by reducing the amount of data transferred
over the wireless channels. However, an update event makes the associated cached data
objects obsolete and useless for the applications. Frequencies of data update, as well
as data access play essential roles in cache access and replacement policies. Intuitively,
frequently accessed and infrequently updated objects should be given higher preference
while preserving in the cache. However, modeling this intuition is challenging, particularly
in a network environment where updates are injected by both the server and the clients,
distributed all over networks.

In this thesis, we strive to make three inter-related contributions. Firstly, we propose
two enhanced cache access policies. The access policies ensure strong consistency of the
cached data objects through proactive or reactive interactions with the data server. At
the same time, these policies collect information about access and update frequencies of
hosted objects to facilitate efficient deployment of the cache replacement policy. Secondly,
we design a replacement policy which plays the decision maker role when there is a new
object to accommodate in a fully occupied cache. The statistical information collected by
the access policies enables the decision making process. This process is modeled around
the idea of preserving frequently accessed but less frequently updated objects in the cache.
Thirdly, we analytically show that a cache management scheme with the proposed replace-
ment policy bundled with any of the cache access policies guarantees optimum amount of
data transmission by increasing the number of effective hits in the cache system. Results
from both analysis and our extensive simulations demonstrate that the proposed policies
outperform the popular Least Frequently Used (LFU) policy in terms of both effective hits
and bandwidth consumption. Moreover, our flexible system model makes the proposed
policies equally applicable to applications for the existing 3G, as well as upcoming LTE,
LTE Advanced and WiMAX wireless data access networks.

iii

Acknowledgements

I would like to express my deep and sincere thanks to my supervisors Dr. Xuemin
(Sherman) Shen and Dr. Ajit Singh, for being my supervisors. Their versatile knowledge
have been a great value for me. Their guidance, supports, and encouragements at both
professional and personal level, throughout my study at the University of Waterloo, made
them more than my gurus.

My cordial thanks to my thesis committee members for their time and efforts. My
sincere thanks to Dr. Ehab Elmallah for his detail and important comments, and editorial
checking of the entire thesis draft. I owe my sincere gratitude to Dr. Liping Fu and Dr.
Pin-Han Ho for their very useful comments. I warmly thanks to Dr. Sagar Naik for his
helpfulness and for always keeping his door open for ideas and suggestions.

My warm thanks are due to my colleagues at the Broadband Communications Research
(BBCR) group and Network Programming Lab (NPL). Their constant feedbacks, supports
and encouragements are noteworthy. Besides, discussions and talks on diversified areas of
communication and computer networks kept me up-to-date about cutting edge researches.
I am very happy and satisfied for being part of the two best LABs at the University of
Waterloo campus.

My sincere thanks to Mr. Islam for being a good friend and an excellent research
collaborator.

I would like to thank Natural Sciences and Engineering Research Council (NSERC) of
Canada for providing financial supports.

My loving thanks go to my parents, my wife and my kids. Without their their encour-
agements and understanding, it would be impossible for me to complete this thesis.

Finally, I am truly grateful to the great Almighty for everything good in my life. All
praises are for him.

Some of the contents presented in this thesis have been published in [28]. A written
permission from the publisher is not required to include those contents in this thesis.

iv

Dedication

For my parents.

v

Contents

List of Figures x

Nomenclature xi

1 Introduction 1

1.1 Caching in Computing Environment . 1

1.2 Motivation . 2

1.3 Problems . 3

1.4 Outline . 4

1.5 Thesis Contributions . 5

2 Related Works 6

2.1 ccache . 6

2.2 Dynamic Programming . 6

2.3 Harvest . 7

2.4 Adaptive Web Caching . 7

2.5 Summary Cache . 8

2.6 EA-based Placement . 8

2.7 E-MACSC . 9

2.8 P2P Client Cache . 10

2.9 SPACE . 10

2.10 Policies for Strong Consistency . 12

vi

mmakon
Text Box
Table of Contents

2.10.1 Invalidation Report . 12

2.10.2 Poll-Each-Read (PER) and Call-Back (CB) 13

2.11 Update-based Cache Replacement . 13

3 Preliminaries 15

3.1 System Model . 15

3.2 Performance Metrics . 19

3.3 Notations . 19

3.4 Primitives for the Proposed Policies . 20

3.5 Working Steps of the Access Policies . 20

3.6 Working Steps for Update-oriented Replacement Policy (URP) 23

3.7 Cache Content Invariants . 25

3.8 Simulation Model for Performance Evaluation 26

3.8.1 Performance Metrics . 26

3.8.2 Simulation Setup . 27

4 Server Injected Updates 28

4.1 The Update Process . 28

4.2 The Update-oriented Replacement Policy (URP) 28

4.3 Quantitative Analysis . 29

4.4 Performance Evaluation . 31

4.4.1 Objects with No updates . 32

4.4.2 Impact of Number of Objects and Cache Size 32

4.4.3 Impact of Zipf Ratio . 36

4.4.4 Impact of Number of Mobile Stations 36

4.4.5 Impact of Message Size . 45

4.4.6 General Observations . 45

vii

5 Client Injected Updates 47

5.1 The Update Process . 47

5.2 The Update-oriented Replacement Policy (URP) 48

5.3 Quantitative Analysis . 48

5.4 Performance Evaluation . 52

5.4.1 Impact of Objects Population . 52

5.4.2 Impact of Cache Size . 52

5.4.3 Impact of Objects with No updates 55

5.4.4 Impact of Zipf Ratio . 55

5.4.5 Impact of Number of Mobile Stations 63

5.4.6 Other Observations . 63

6 Conclusion 66

6.1 Contribution . 66

6.2 Future Works . 67

Bibliography 71

Appendices 72

A Allowing Updates from Both the Server and Clients 73

A.1 The Update Process . 73

A.2 The Update-oriented Replacement Policy (URP) 73

A.3 Quantitative Analysis . 74

B Cost Optimality of the Proposed Policies 77

C Long Term Optimality of the Proposed Policy 79

D Long Term Cost Optimality of the Proposed Policies 81

E Probability of No Updates 83

Table of Contents

viii

List of Figures

3.1 A Wireless Data Access Network . 16

3.2 The Software Architecture . 17

3.3 Step sequences for RAP access policy . 22

3.4 Step sequences for PAP access policy . 23

4.1 Performance of URP and LFU for readonly objects (K = 50) 33

4.2 Performance of URP and LFU for readonly objects (K = 60) 34

4.3 Performance of URP and LFU for readonly objects (K = 70) 35

4.4 Performance of URP and LFU for different number of objects (λ = 0.40) . 37

4.5 Performance of URP and LFU for different number of objects (λ = 0.60) . 38

4.6 Performance of URP and LFU for different cache sizes (λ = 0.50) 39

4.7 Performance of URP and LFU for different cache sizes (λ = 0.60) 40

4.8 Performance of URP and LFU for different Zipf ratios (λ = 0.50) 41

4.9 Performance of URP and LFU for different Zipf ratios (λ = 0.60) 42

4.10 Performance of URP and LFU different number of mobile stations (λ = 0.40) 43

4.11 Performance of URP and LFU different number of mobile stations (λ = 0.50) 44

4.12 Cost of URP and LFU for different message sizes 46

5.1 Performance of URP and LFU for different object population (λ = 0.40) . 53

5.2 Performance of URP and LFU for different object population (λ = 0.60) . 54

5.3 Performance of OUR and LFU for different cache sizes (λ = 0.50) 56

5.4 Performance of OUR and LFU for different cache sizes (λ = 0.60) 57

5.5 Performance of URP and LFU for objects with no update (K = 50) 58

ix

5.6 Performance of URP and LFU for objects with no update (K = 60) 59

5.7 Performance of URP and LFU for objects with no update (K = 70) 60

5.8 Performance of OUR and LFU for different Zipf ratios (λ = 0.50) 61

5.9 Performance of OUR and LFU for different Zipf ratios (λ = 0.60) 62

5.10 Performance of OUR and LFU different number of mobile stations (λ = 0.40) 64

5.11 Performance of OUR and LFU different number of mobile stations (λ = 0.50) 65

C.1 Replacement in OUR and other policies . 79

x

Nomenclature

PAP : Proactive Access Policy
RAP : Reactive Access Policy
URP : Update-based Replacement Policy
LFU : Least Frequently Used
LRU : Least Recently Used
IR : Invalidation Report
LTE : Long Term Evolution
WiMAX : Worldwide Interoperability for Microwave Access
GF : Gain Factor

µj
i : Access rate to object i at client j

µA

i :
∑

j µj
i

µi : µA

i or
∑

j µj
i

µj :
∑

i µ
j
i

λj
i : Update rate to object i at client j

λS

i : Update rate to object i at client j

λA

i :
∑

j λj
i

λi : µA

i + µS

i

xi

Chapter 1

Introduction

This chapter starts with an introduction to the problem of caching in computing environ-
ment in Section 1.1. We then describe the thrust behind further researches in caching in
wireless environment in Section 1.2. The problems associated with this type of caching are
given next. The chapter is concluded with an outline of the rest of the thesis and a list of
expected contributions.

1.1 Caching in Computing Environment

The concept of caching is being used in computing environment to solve variety of problems.
Traditionally, a cache is a component (either in software or in hardware) to transparently
improve performance by storing recurring data objects such that future requests for these
objects can be quickly served. A cached object might be a previously computed value or
a copy of an object stored elsewhere. If a requested object is contained in the cache, the
object is served by fetching from the cache. Such an event is called a cache hit. Otherwise,
a cache miss takes place and the requested object values have to be recomputed or be
retrieved from the original source. Typically, a cache miss results in a much expensive
process (in terms of resources) than a cache hit.

A hardware cache in Central Processing Unit (CPU) is used to reduce the average time
to access memory. The cache is a smaller but faster memory and is employed to store copy
of data from the main memory. Modern CPUs are typically equipped with three caches:
to speedup fetching executable instructions an instruction cache; to speedup data access
a data cache; and to facilitate faster translation of virtual addresses to physical address a
translation lookaside buffer (TLB) cache.

Unlike CPU caches, a variety of software components manage caches. One example

1

is disk cache or page cache. Disk cache is a buffer1, kept in the main memory, for faster
data access. Disk cache is typically managed by the operating system (i.e., kernel) and
is transparent to applications. Disk seek and read time is magnitudes of longer than
the read time from the main memory and this is the main motivation of employing disk
cache, which contributes towards significant improvements in speed and responsiveness
of a computing device. Many modern disks provide an extra level of cache hierarchy by
integrating hardware caches within the disks.

Web browser is another example where software-based cache is used. The purpose of
Web-caching is to increase responsiveness of the browser by serving previously stored Web
pages. Web-caching may be implemented at the browser, at the proxy, or even at the
server gateways. As will be discussed later on, in detail, caching in network environment
often helps in reducing bandwidth requirements and lessen server load.

The concept of caching is heavy used in domain name system (DNS) [43] servers,
network file systems, search engines and databases.

1.2 Motivation

Extraordinary advances in computing electronics and wireless communications promise
flexibility to our daily lives. Traditional cellular devices was mostly used for voice commu-
nication, whereas, digital organizer devices was for storing details about personal contacts
and schedules. In contrast, modern mobile devices, such as smart phones, personal digital
assistants (PDAs) and other handheld computers, and deployed high bandwidth 3G (and
expected 3.5G and 4G) cellular networks and wireless LANs create the platform for ubiq-
uitous mobile computing. These technologies have made many necessary and entertaining
mobile IP-based applications possible. Mobile IP telephony, mobile TV, video on demand,
video conference, tele-medicine, instant messaging, mobile online banking, stock market
tracking, online multi-player games are examples of such applications. Online social net-
working, such as, Facebook [16], Qzone [33], MySpace [30], Twitter [40]; video sharing sites,
such as Youtube [50], Youku [49]; image and file hosts, such as Skydrive [44], Flickr [47],
Picasa [19], Photobucket [32], Dropbox [15] have changed the way people communicate and
store their multimedia and other documents. These applications and services consume so
much bandwidth, burdening the communication infrastructures, that the service provides
have no choice but look for alternate methodologies and user incentive mechanisms [2–4].
As prices of advanced mobile devices become more affordable and more users subscribe for
wireless data access services, the problem of bandwidth is simply going to get worse.

1The terms ”buffer” and ”cache” are often used in close contexts. In this thesis, we consider a buffer as a
temporary storage/memory location for further processing. A cache buffer is a temporary storage/memory
blocks where cached contents are preserved.

2

In a mobile information retrieval system, databases and files are hosted at remote
servers, conventionally connected on the wired networks. Each database or file server
hosts a number of objects, made available to be accessed by the mobile users. Obviously,
whenever a mobile user accesses a data object from the remote server, all the communica-
tions have to pass through the wireless network. In spite of the advancements in wireless
technologies, wireless bandwidth is the most scarce and the most expensive resource in a
wireless data network. A client has to be very economic about the bandwidth consump-
tion and make the best effort towards higher utilization. Many data access applications
adaptively adjust the quality of service depending on the network state. For example, a
mobile Internet browser may retrieve images whose quality is adjusted to the available
bandwidth. However, developing such network aware applications is not trivial [14]. Be-
sides, these adaptive applications do not focus on reducing bandwidth consumption, rather
try to maximize the consumption depending on the wireless channel and other conditions.
Many applications can reduce bandwidth consumption by caching recurrently accessed ob-
jects locally. Note that, cache oriented solutions are not orthogonal to developing network
aware applications, rather in most cases cache can be deployed irrespective of network
awareness.

Caching contributes in three ways to improve the performance of the data access ap-
plications and the network systems. Firstly, the average access latency is reduced as many
data objects are delivered from the local cache, instead of fetching them from the remote
server. Secondly, without cache, at each access, an object has to be fetched from the
server and the object has to be passed through the network from the server to the client.
Thus caching reduces the network load. Reduced network load decreases the cost of data
access. Thirdly, as the server gets fewer request from a client, the server becomes more
scalable without additional computing and network resources. An interesting side effect
of employing cache is that by cutting down the number of communication transmissions,
caching not only salvages on expensive wireless access but also saves power and prolongs
battery life2.

1.3 Problems

The goal of deploying a cache may vary from one application to another. While deploying
a cache, an application needs to decide about policies to handle different aspects. A set
of selected policies to manage a cache for a particular application is termed as a cache
scheme. In this research, we are interested in two policies of a cache scheme – a cache
access ; and a replacement policy. A cache access policy describes two important jobs of a

2It is worth noting that transmission over wireless data network consumes a good amount of power [31].
However, reducing power consumption is not the main focus, but is an attractive by product of this research.

3

cache mechanism – firstly, how a client and a server utilize the cache and; secondly, how
consistency between the original data items at the server and copies at the client caches
are maintained. In distributed environment, the second task is often very complicated and
termed as cache consistency or invalidation policy, if investigated from data consistency
or data invalidation perspective, respectively.

For many data access applications, existence of a more recent update renders all older
copies of the data object invalid. These applications must have access to the most recent
updated data. This kind of consistency is called the latest value consistency [9, 42], and a
cache, satisfying the latest value consistency, is said to be strongly consistent [9,25]. With
the latest value consistency requirement, when a data object is updated, all the cached
copies become obsolete and can not be used to server application requests. In this case,
a client has to retrieve the data item from the server. Several strongly consistent cache
consistency policies for wireless data access have been proposed, such as Invalidation Report
(IR) [5, 8–11,18, 21–24,26, 39, 45, 48, 51], Poll-Each-Read [25] and Call-Back [20, 25, 29, 48]
policy.

The other aspect of a cache mechanism, the replacement policy, comes into play when
the cache is full and an accessed object has to be accommodated. Here, one or more cached
objects may have to be evicted to make room for the newly arrived object. Most research
works have considered Least Recently Used (LRU) [5, 8–11, 18, 21–23, 25, 39, 45, 48, 51] or
Least Frequently Used (LFU) [35] replacement policies for wireless data access. Note that,
a cache mechanism may perform differently with different combinations of access and
replacement policies, and therefore, a system developer has to be prudent in choosing the
appropriate replacement and access policies.

1.4 Outline

The remainder of this thesis is organized into five chapters. Chapter 2 and 3 present
the related research works, and the system model and the preliminaries for our problem,
respectively. In Chapter 4 and 5 describes our research works on optimal cache policies
and their evaluations. In the former chapter we concentrate on systems where update
events take place at the server only. In contrast, in the later chapter, all update events are
considered to take place at the clients. Finally, we conclude the thesis in Chapter 6, where
we present the research issues we are currently investigating or intend to investigate in the
future.

4

1.5 Thesis Contributions

In this thesis, we put forward a strongly consistent cache scheme for wireless clients scat-
tered over a network spanning multiple wireless cells, where data updates may originate
from any of the clients or the server. We strive to make three major contributions -

1. Firstly, we propose two strongly consistent cache access policies - Proactive Access
Policy (PAP), and Reactive Access Policy (RAP).

2. Secondly, we introduce an replacement policy, called Update-oriented Replacement
Policy (URP). Our access policies are designed keeping the replacement policy in
mind. The access policies collect different access and update related information to
facilitate the working requirements of the cache replacement policy. In turn, the
replacement policy aims towards higher effective hits.

3. Thirdly, we analytically prove that our replacement policy ensures the optimal per-
formance. As a result, this research provides the upper boundary for the worst case
performance of any caching scheme and a foundation for average case performance
comparison.

The design goals of the proposed cache mechanism are - (1) to increase the effective
hit ratio, and (2) to reduce transmission cost (i.e., bandwidth consumption) by the appli-
cations. Extensive simulations are performed to validate our proposals and claims.

5

Chapter 2

Related Works

Many interesting research works have been done and published on caching in software
systems. In this section, we present a brief study on the prominent works in this area.

2.1 ccache

The development of ccache evolved around the idea of compiler cache [41]. It is a software
development tool that caches output of a C or C++ compilation process and saves the
information so that the recurring instance of the same compilation process can be avoided
and the results can be taken from the cache. In a development environment, it is a common
practice for developers to do a clean build of a project. However, to perform a clean
build, developers, at first, throw away all the information from the previous compilations –
typically using the command make clean. By using the ccache tool, recompilation process
becomes significantly faster. The basic idea is to detect re-compilation of the exact same
code and then reuse the previously produced output. The detection is done by hashing
different kinds of information that is unique for a compilation of a given code (often, in a
file). The tool limits (user configurable) cache size, by simply removing older cached files.

2.2 Dynamic Programming

Dynamic programming is a very important category of computer algorithms [13]. Dy-
namic programming is applied to solve optimization problems where subproblems share
sub-subproblems. In a variation of dynamic programming algorithms the concept of mem-
oization is used to get rid of inefficiency of recurring computation of same subproblems. A
memoized algorithm keeps a table consisting of an entry for each subproblem. The table

6

act as a computation cache. When a subproblem is encountered for the first time, a miss
happens. The result for the subproblem is computed and stored in the corresponding table
entry and the entry is marked in a way to indicate that the computation for the entry is
done. Each recurring attempt of reevaluating the subproblem results in hits and simply
needs to read the value from the related table entry. In a typical memoized dynamic pro-
gramming algorithm, the table is considered to be large enough to hold solutions to all
possible subproblems. Thus, cache eviction is not an issue here. Besides, as a table entry
never changes after assigning a computed value, no cache coherency problem arises.

2.3 Harvest

Harvest [6] is a information discovery and access system. In Harvest, the difficulty of
locating relevant information and bottlenecks of servers arising from popular content is
addressed. Harvest uses an indexing scheme to search through crawled Web-pages, docu-
ments, and softwares available on the Web. To provide scalable access support, it adopts
replications of indexes among hierarchically organized servers and caching of retrieved
objects. This work assumes significantly large cache buffer which is, in this case, the sec-
ondary storages or disks. Simple purging of older object is used to make space for newer
objects. Here, no consistency mechanism is required, as each replicated Harvest server act
individually to serve their clients and no guarantee for the most updated information is
provided. It is worth mentioning that Squid [38], the most famous Web proxy server till
now, is an implementation of this research.

2.4 Adaptive Web Caching

The work on adaptive Web caching by Michel et al. is one of the earliest works to address
the exponential growth of the Web [52]. This work was motivated by the performance lim-
itation and administrative difficulties faced by Harvest (and, hence Squid) cache hierarchy
and their administrators, respectively. Rather than a static hierarchy (as in Harvest), this
works proposes to organize cache servers into a mesh represented by a multicast group.
Thus, this work assumes availability of multicast as the method of efficient group orga-
nization and communication. Searching in between cache servers is performed by prefix
matching of requested URL in a mapping table. The approach is similar to routing in IP
networks, where packet is forwarder by prefix matching of network address in the routing
table.

The work puts forward the idea of mesh organized Web cache servers, but it does not
address the limitation arising from server capacities. For example, a server may not have

7

large storage to cache a smaller URL prefix, whereas storing a longer URL prefix may
simply waste space. To better utilize cache space and for flexibility, a server may opt to
host several longer URL prefixes. Furthermore, though significant research has been done
on enabling multicast, till date, IP or other form of multicast has not been well adopted
by industries or consumers.

2.5 Summary Cache

The collaboration among Web cache servers is severely constrained by the volume of infor-
mation a server has to transmit to other servers to report the URL prefixes, the server is
hosting. Moreover, caching longer URL prefixes results in larger URL prefix to server map,
requiring longer search (i.e., CPU) time and more memory. To alleviate the problem, Fan
et al. propose to use Bloom filter to share summery of a server content [17] with others.

In this solution, k independent hash functions, denoted as h1, h2, . . . , hk, are used.
These hash functions map the input URL prefix to an integer in the range of 1 to m. The
bloom filter is a simple bit vector of size m, initialized all bit with 0. For a given URL
prefix A, hi(A)-th bit of the filter is turned to 1 for 1 6 i 6 k. This hash processing is
performed for all the cached URL prefixes. Instead of transmitting all the URL prefixes (or
their MD5 [27] or similar hash table), a bloom filter is transmitted to inform collaborators
about cached content of a server.

Searching in a Bloom filter starts with hashing a given URL prefix with the k hash
functions and later checking all the bits positions returned by the hash functions. If all
the bits are set to 1, the server, who created the filter, is considered to host the requested
URL prefix. Though this solution of using Bloom filter never gives false negative results,
but may suffer from false positives. It is shown that the probability of a false positive is

(1− (1− 1/m)n k)
k
≈
(

1− ekn/m
)k

, where n is the number of URL prefixes in a filter. By
carefully choosing m and k, the probability of false positive can be significantly reduced.
It is shown that the approach reduces bandwidth consumption by 50% and CPU time by
30% to 95%.

2.6 EA-based Placement

Co-operative caching is often benefitted by the gain attained from the inter cache commu-
nication time over the fetch time from the server. Serving a missing objects from another
cache in a collaborative way is the main focus for most of the researches. EA-based place-
ment [34] is the first work to consider a placement scheme considering contentions at indi-
vidual caches and limiting replications among a client group. Without proper placement

8

policy, an object is replicated in an uncontrolled way and all the caches in the group/system
may possess replicas of the same object. Uncontrolled replication wastes disk space. With
a proper placement scheme, greater number of different objects can be placed in the col-
laborative caches. This way the hit ratio is increased. In this research, a group of caches
is proposed to be considered as a global resource and an expiration age-based estimation
used to determine contention.

In this scheme, When a new object arrives, all existing objects whose sizes are equal to
the new object are listed and LRU is applied on the list. If this list is empty, the process
falls back to original LRU eviction policy. Besides, each object is assigned an expiration
age at each client. The age is computed as the difference between the time the object is
removed (i.e, evicted or moved to another cache) and last accessed, multiplied by the object
size. Let denote this matric for the object D at client i as EA(Di). The average expiration
age of the removed objects at a client within a predefined time windows is defined as the
expiration age of a client. When a cache miss happens and the requested object is fetched
from another client cache, among the two participants whoever has larger expiration age
caches the objects to serve future requests. This way, the policy maintains only one copy
of an object in the cache, and at the same time, strives to preserve objects for longer time.

An EA-based scheme does neither make any effort to increase utility of idle caches, nor
try to preserve an object in the local cache until there is no other option but evict the
object. Like other works, this Web-cache scheme does not utilize update information.

2.7 E-MACSC

The goal of E-MACSC [46] is different from most of the researches in the domain of caching.
This scheme dynamically adjust cache size to match a given a hit ratio. The idea is to get
the most utility out of the available memory while satisfying certain performance require-
ments. Access to online objects follow Zipf-like distribution and popularity distribution
(PD) can be approximated with a straight line on a log scale plot. E-MACSC proposes
to map this distribution to a bell shaped distribution by placing the most popular object
at the center of the bell shape and alternate the other objects on two sides. With time,
the depth of the curve representing the bell shaped distribution may change. After i-th
sample, E-MACSC proposes to change cache size as follows:

CSi = CSi−1 ∗

(

SDi

SDi−1

)

where, CSt and SDt are the cache size after and standard deviation of object popularity
during the t-th sampling period.

9

2.8 P2P Client Cache

In recent years, peer-to-peer (P2P) computing has been getting popular and the concept
is applied to increasing number of applications, including caching. In [53], three kinds of
cache organizations are considered. Firstly, a hierarchy of caches exists in an organization
where the leafs of the hierarchy are the browser caches and rest are proxy cache servers.
Secondly, the browser caches of an organization forms a network of P2P cache using an
addressing technique known as Pastry [36]. Thirdly, the proxy servers forms a cooperative
cache using Adaptive Web caching [52] or similar approach.

An object is first searched for browser cache, then in the Pastry network. If both fails,
the request is forwarded to the local proxy server, which first try to locate the object within
the organization and if that also fails, the object is searched in the cooperative network of
the proxies.

This scheme uses a hierarchical greedy-dual approach, called Hier − GD, for replace-
ment. If a new object is fetched at A, the following attempts are made to accommodate
the object:

Step 1: If there is sufficient space at A, the object is stored locally.

Step 2: If previous step fails, use Pastry to determine the browser B, assigned to store the
object. If B has sufficient space, store the object at B.

Step 3: If all above fail, remove the object with the lowest utility from A and store the new
object locally.

Note that in the third step the lowest utility object is simply removed without con-
sidering possibility of relocation. A message is sent to the proxy server informing the
identification of the browser finally hosting the new object. This way, other clients in the
same organizational network and proxies from other organization can locate an object.

In this work, the reason behind emphasizing on storing an object locally is not clear.
In a moderate to heavily busy system, the functionalities provided by the Pastry network
are of no use, and all the requests for intra-organization hosted objects have to go through
the proxy servers.

2.9 SPACE

SPACE [1] is a collaborative caching scheme for tightly coupled network stations to enhance
filesystem performance. The authors argue that it is significantly faster to retrieve an object

10

from primary memory of a peer station, located in the same network, than to retrieve the
object even from the local secondary storage. This work proposes to use bloom filter [17] to
disseminate cache information among all the clients. This way, each peer cache is informed
about contents of all other peers. When an object is not locally available, it is straight
forward to find other peers hosting the same object.

When an individual cache becomes busy, this work proposes to utilize idle caches, and
when a majority of the caches in the network becomes busy, duplicate copies of the same
object are eliminated. To perceive this goal, when an object is fetched from the data server,
the object is tagged as original. Replicas of the original objects do not have that tag. The
working strategy of the scheme ensures that no more than one copy of an object is tagged
as original1. To accommodate a new object, a cache tries the following steps in decreasing
order of preference.

• If the cache has free buffer available, the new object is stored locally.

• The non-original object with the lowest utility is evicted to make space and the new
object is stored.

• The original object with the lowest utility is evicted to make space and the new
object is stored. This step is executed, if and only if the new object is a new object.

This scheme uses a slightly modifies LRU strategy to compute utility of a cached object.
By evicting a non-original objects first, the scheme eliminates replicas of original objects
from a busy cache. However, it gives higher chances to the original objects to survive in the
network of caches. To prevent an individual busy cache from eliminating original objects,
the scheme takes fewer more steps in decreasing order of preference:

• If another peer hosts a non-original replica of the to-be eliminated object, the other
peer is requested to mark the replica as original.

• If there exits a peer with empty buffer, the original object is forwarded to that peer
for preservation.

• If there exists a peer with non-original objects, the original object is forwarded to
that peer with a request to evict one of the non-original objects and preserve the
forwarded one.

1In fact, if more than one peer caches fetch the same object almost simultaneously, there may exist
multiple original copies of the same object, but the scheme heals from this unwanted situation by itself
within two protocol cycles.

11

To eliminate transmission of two bloom filters – one for original and one for non-original
object, the scheme proposes to increase object ID space by one bit to indicate originality
of an object. Then the content of a cache is encoded into a single bloom filter using the
new address space and is broadcasted to other peers.

The scope of SPACE is limited to closely tight computers connected through high speed
data networks. The sole goal is to increase file system performance through collaboration
among caches. For updates, SPACE assume existence of a distributed consistency policy
without considering the effects of updates on the cache contents.

2.10 Policies for Strong Consistency

For many data driven applications, exitance of more recently updated data, renders all older
copy of the data invalid or useless. These application must always have access to the most
recently updated data. This kind of consistency is known as the latest value consistency
and the data satisfying the latest value consistency is known as strongly consistent [9]. In
this section, we focus on representative works on latest value consistency policies, designed
for wireless networks.

2.10.1 Invalidation Report

The policy of invalidation report (IR) has been utilized in several cache management
schemes for mobile networks [5, 8–11, 18, 21–23, 39, 45, 48, 51]. In this policy, the server
periodically broadcast an invalidation report in which the modified data objects are listed.
Instead of querying the server directly about updated objects, the clients wait for the next
IR message. After receiving an IR-message, a client invalidates all the updated objects.
IR-based consistency policy is very scalable as a new client can simply join the network
and wait for the next IR message to make the cache consistent.

In spite of its popularity, IR-based schemes suffer from some major constraints. First,
these schemes have to endure long query response time. When an object is requested from
the cache, the cache has no choice but wait for the next IR message to ensure validity of the
cached copy. This way, the average time to response to a query is increased by half of the
inter IR broadcast period. Second, an efficient implementation of IR-based scheme would
require a cross layer support to achieve the desired performance. Cross layer support in
network software architecture is yet to be available in consumer products. Third, IR-based
cache schemes assume the wireless channel to be a broadcast channel and the server to be
available locally. In today’s ubiquitous wireless data access networks, the service area is
divided into many cells and subscribers/users are distributed all over the service area. At

12

the same time, for practical and architectural reasons, the servers are located on a wired
network, outside the control of the wireless service providers.

2.10.2 Poll-Each-Read (PER) and Call-Back (CB)

The Poll-Each-Read (PER) [25] and Call-Back (CB) [20, 25, 29, 48] policies for cache con-
sistency are extended from the similar memory consistency policies in the domain of dis-
tributed computing and are tailored to suite for the wireless network applications. The
main motivation behind these ideas is to get around the limitations of the IR-based poli-
cies. To conserve bandwidth, in both of these policies, an updated data object is not
immediately delivered to the clients. In contrast, a valid object is forwarded only after
receiving a request for the object from the client applications.

In PER policy, a client verify the validity of the cached object with the server at each
access to the cached objects. If the server responds affirmatively, the object is served to
the application. Otherwise, the most updated object is fetched and then served to the
application. In CB policy, at each update of an object, the server broadcasts a message to
all the clients (or in case of unavailability of an efficient broadcast method, unicast messages
are sent only to the clients hosting copies of the updated object) requesting to invalidate
all the cached copies. Whatever contents, a client cache hosts, are considered to be valid
and is served to satisfy request from the applications without any further consultation with
the server.

2.11 Update-based Cache Replacement

Cache schemes, utilizing PER and CB policy for consistency, mostly use LRU and LFU
policies for cache replacement. Whenever a new object is fetched from the server and the
local cache is full, one data object from the local cache is evicted and the new object is
accommodated. Depending on the replacement policy, either the least recently used or
the least frequently used object is evicted. However, both LFU and LRU policies do not
consider invalidations of data objects while making eviction decision.

Whenever an object is updated, all the cached copies of the same object, located across
the network, become obsolete. Evidently, frequency of update, as well as access should play
key roles in deciding objects to evict. In [12], an update-based cache replacement policy
is proposed. This policy emphasizes on access and update frequencies while making the
eviction decision. The policy computes Access to Update Difference (AUD) of an object by
deducting update frequency from access frequency. The object with the least AUD among
the cached and the newly fetched object, is evicted.

13

To the best of our knowledge, this is the first work to acknowledge the effect of up-
date on cache performance. Though the idea is interesting, it is not supported with any
strong theoretical analysis. Moreover, the simulation results also show that the cache hit
performance heavily depends on the pattern of access and updates.

14

Chapter 3

Preliminaries

We start this chapter with a description of our system model followed by sections presenting
performance metrics and notations used in this thesis. Then, we present the preliminaries
for the access policies. In the subsequent sections, we present the basic working steps for
our proposed access and replacement policies. We close the chapter with a discussion on
cache content invariants and a description of the simulation model used for evaluating the
performance of the proposed policies.

3.1 System Model

Our system model is based on the wireless data access networks, already available in the
consumer market [37]. In these networks, service areas are divided into a number of location
areas (LA). An LA is further partitioned into a number of cells. Each cell has a base station
(BS). Many mobile stations (MSes) reside in a service area and each of them connects to the
closest BS. All the BSes within one LA are connected to a mobile switching center (MSC).
All the MSCs are finally connected to the public switched telephone network (PSTN).

An example wireless data access network is shown in Fig. 3.1. An MSC (via a gateway)
is connected to the Internet through either proprietary networks of the wireless career
or through PSTN. For practical reasons, data servers of the online service providers are
integrated to the Internet or to the service provider’s network through wired infrastructure.
As a result, any form of communication between a mobile device and a data server has to
pass through the wireless section of the network, located between the mobile device and the
corresponding BS. Notice that, existing 2G (such as, EDGE, CDMA2000 1xRTT), 3G (such
as, UMTS, WCDMA, CDMA2000 1xEV-DO), 3.5G and 3.7G (such as, HSDPA, IEEE
802.16e), under deployment 3.9G (such as, Long Term Evolution (LTE)) and expected 4G

15

Figure 3.1: A Wireless Data Access Network

16

Figure 3.2: The Software Architecture

(such as LTE Advanced, IEEE 802.16m) networks are practical examples of our system
model.

On their mobile devices (i.e., in mobile stations), users run different client applications.
A group of interrelated data access applications may want to use a cache for the reasons
described in the previous chapters. We consider applications for those strong consistency
of data is a working requirement. A cache consists of a buffer and a cache manager1. In
our model, a data server of a online service provider also plays an important role and
collaborates with the cache managers in improving the performance of the client caches,
scattered over the network (see Fig. 3.2). We made the design choice of leaving the network
infrastructure of the wireless carrier unchanged. We are motivated by the following facts:

• As a mobile wireless device roams around from a cell to another, cache, maintained
at a network infrastructure element, may have to be moved from one element to

1In the rest of the thesis, we use these terms mobile host, client (application), and user, interchangeably.
Unless specified precisely, a cache and cache manager is considered to be an integral part of a client.

17

another. This process results in significant overhead and delay. Contrary, a cache at
a mobile device is not influenced by the mobility of the user.

• Different online applications have different data semantics. It is really difficult to
understand all the data semantics of fast evolving online applications.

• Beside data semantics, intermediate processing units may also have to understand
the semantics of the communications between the clients and the server for efficient
deployment of a cache. In many cases, these semantics are not even publicly available.

• A work around to the above problem is to allow the online service providers to add
the correct data and communication semantics to the proper network components of
the carriers. However, in most cases, online service providers and wireless carriers
are different organizations, and online service providers do not have any control or
access to the network components of the wireless carriers.

• Even if an understanding between online-service providers and carriers can be estab-
lished (through proper standard interfaces), often communication between applica-
tions on mobile devices and online service providers are end-to-end encrypted. Thus,
to allow the wireless carriers to understand the exact communication between the
client and the online service providers, a new privacy and encryption model has to
be investigated.

• Besides, a change to the wireless infrastructures is extra ordinarily expensive and
often a very slow process to be universally adopted.

All accesses to the data objects, hosted by the data servers of the online service
providers, take place at the mobile stations only2. Updates to the data object occur at two
different places - (1) at the server, (2) at the clients. We assume that the access and update
events are Poisson processes. In this thesis, we consider that communication scheduling,
channel condition tracking, packet scheduling, error and flow control are performed by the
lower layers of the communication stack and are the out of the scope of this thesis. Rather,
we focus on reducing consumption of the amount of bandwidth a cache requests from the
lower layers to serve a data object to the applications.

2Though the solution, proposed in this thesis, is equally implementable for non-mobile stations (i.e.,
wired part of the Internet), non-mobile stations are not counted towards the working steps of the solution.
If non-mobile stations are also included in the solution, the entire system (including mobile and non-mobile
stations) will ensure hit and bandwidth optimality, but may not be optimal for mobile stations only.

18

3.2 Performance Metrics

We have two major design goals - (1) increase the number of effective hits and (2) reduce
the communication cost. To better understand these goals, we first define the following
concepts. When an access takes place two situations may arise a cache hit or a cache miss.
A cache miss happens when the accessed data object is not in the cache. Otherwise, a
cache hit is considered to take place. However, not all cache hits contribute towards serving
a data object from the cache. Cache hits are further classified into two groups - valid cache
hit and invalid cache hit. A cached object becomes invalid when an updated version of the
object is available. Invalid cache hits are due to invalid cached objects. Given that the
cached object is the most recent version, a hit on the object results in a valid cache hit.
Effective hit ratio is the ratio of a valid cache hit over all accesses.

According to our system model, the wireless channel bandwidth between the mobile
devices and corresponding base stations is the most expensive resource. Hence, measuring
cost involves the amount of average bandwidth, consumed by a cache to serve a requested
data object to the applications.

3.3 Notations

Before describing the proposed policies, we introduce several notations to make the concepts
clear. Let the number of distinct and equal size objects hosted by the server be N . The
i-th hosted object is identified as Oi, where i = 1, . . . , N . Let the maximum number of
objects a client can locally cache be K. Let µj

i (t) and λj
i (t) be the access and update rates,

respectively, of Oi at client j up to time t. We denote µj
i and λj

i as the expected access
and update rates at the client j for object Oi, respectively. With sufficiently large value
of t, µj

i (t) and λj
i (t) approach to expected access and update rate µj

i and λj
i , respectively.

Formally, µj
i = limt→∞ µj

i (t) and λj
i = limt→∞ λj

i (t)
3. Let the rate of update to object Oi

from the server be λS

i (t) and λS

i be the expected rate.

Let µA

i (t) and λA

i (t) be the total access and update rate, respectively, for object Oi

up to time t from all the clients. Expected access and update rate for object Oi over all
clients are defined as µA

i = limt→∞ µA

i (t) and λA

i = limt→∞ λA

i (t), respectively. Obviously,
µA

i (t) =
∑

j µj
i (t) and λA

i (t) =
∑

j λj
i (t). Let λi(t) = λA

i (t) + λS

i (t) be the global update
rate up to time t. Similarly, λi is defined. The global access rate up to time t, µi(t) is same
as µA

i (t). The expected metric µi is also defined accordingly. Similarly, µj(t), µj , λj(t) and
λj are defined as

∑

i µ
j
i (t), limt→∞ µj(t),

∑

i λ
j
i (t), limt→∞ λj(t), respectively.

3Depending on the characteristics of the concerned application, µ
j

i and λ
j

i are computed as statistical
or time-based average.

19

3.4 Primitives for the Proposed Policies

Through the proposed access policies, we ensure that the objects, served to the applications,
are the copies of the most recent version of the objects. Beside serving requested objects,
these policies also handle updates injected by the clients or server, and collect access and
update related information to facilitate working requirements of the replacement policy.
Our access and replacement policies use following abstract4 primitives:

add(obj): Add obj to the local cache. The prerequisite of this primitive is the availability
of at least one free memory block in the cache buffer.

evict(id): Evict the object in the cache buffer with identification – id. The post condition
of this primitive is one more free memory block in the cache buffer.

replace(obj): Overwrite an older copy of locally cached obj object with the most recent
version of obj.

modify(prof): Depending on policies in place, access and update related profiles per
object (and per client) are maintained. Each profile keeps access and/or update rates of
the hosted objects and may contain information about availability of objects at different
clients. This primitive modifies part of the profiles, indicated by prof.

find replaced(rp): Find the identification of the object to evict, using the given replace-
ment policy, identified by rp.

3.5 Working Steps of the Access Policies

In this section, we describe the working steps of our proposed access policies – (1) Reactive
Access Policy (RAP) and (2) Proactive Access Policy (PAP). Like the PER and CB policies
described in Chapter 2, RAP and PAP are also inspired by the memory consistency policies
in distributed memory management.

In Reactive Access Policy (RAP)

In RAP, the clients are reactive in verifying the consistency of the associated data object
at each access. In this policy, the server is the most resourceful and knowledgable entity
in the system. It maintains per client per data object access and update profiles. It also
keeps track of identities of objects, hosted by each client. The working steps of RAP is
shown in Fig. 3.3.

4Efficient implementation details are left for the application designers and developers.

20

When a client makes a request for an object, in some cases, a copy of the object is avail-
able in the local cache. An event of access to such an object begins with a verification step,
where the cache manager sends a query to the server (in a VERIFY message) requesting
a check on validity of the cached copy. When the cached copy is consistent with the most
recent version of the object, the server confirms the validity with an acknowledgement (as
an ACK message). Otherwise, the server forwards a copy of the most recent version of the
object (with a REPLACE message) and the cache manager replaces the older copy with
the most recent version, received from the server. Fig. 3.3(a) illustrates the entire process.

In the other cases, no copy of the requested object is available in the local cache (as
shown in Fig. 3.3(b)). Obviously, the client has to make a request to the server to fetch the
object (in a REQUEST message). The server considers two different scenarios. First, if
the client cache has enough buffer to accommodate at least one more object, the requested
object is simply forwarded (in an ADD message) to client to be added to its cache buffer.
Second, due to unavailability of sufficient space, a replacement decision has to be made.
The server, the most knowledgeable entity in the system, makes the replacement decision
and forwards the identification of the object to replace with a copy of the requested object
(in an EVICT message).

In Proactive Access Policy (PAP)

In PAP, as the server informs its clients about all the updates in proactive manner, each
client precisely knows which locally cached objects are consistent. Thus, unlike RAP, at
a request from an application, the cache manager does not need to consult the server to
verify consistency. In this policy, the cache manager is responsible to make the replacement
decision. To facilitate this decision making process, the manager maintains access and
updates profile for all the cached objects. Note that, the update messages from the server
can be transmitted as unicast messages. This form of communication is supported by all
networks captured by our system model. However, the inefficiency of unicast messages
can be overcome, if IP multicast is supported by the underlying networks. An alternate
solution is to make the intermediate components (such as, gateways) of the network of the
wireless carrier aware of the cache systems. This way, the intermediate components can
take the advantage of supported broadcast channel and send a single message per affected
cells for each update. Note that, involving intermediate components have other challenges,
as described in Section 3.1.

When a consistent copy of a requested object resides in local cache, the object is served
without any further processing. Otherwise, a sequence of steps are taken to satisfy the
request (as shown in Fig. 3.4). A request to fetch the object is sent to the server (in a
REQUEST message). The server fetches the object along with the relevant access and
update profiles (in an ADD message). If the cache manager finds that the local cache

21

(a) Requested object is locally cached

(b) Requested object is not locally cached

Figure 3.3: Step sequences for RAP access policy

22

Figure 3.4: Step sequences for PAP access policy

is full, it makes a replacement decision before accommodating the newly received object.
It must be noted that whenever the policy decides to replace an object (either due to
replacement or update), the associated profiles are forwarded to the server.

3.6 Working Steps for Update-oriented Replacement

Policy (URP)

The working steps for replacement (i.e., find replaced primitive, as shown in Fig. 3.3
and 3.4) in URP is shown in Algorithm 1. The algorithm takes three inputs - (1) the gain
factor computation policy (compute gf), (2) the set of (attributes of the) currently cached
objects (C), and (3) the accessed object (Oa). Note that, the last two inputs are implicit
and hence omitted in primitive description or in Fig. 3.3 and 3.4. The gain factor of an
object gives the utility of preserving an object in a cache. Computation of gain factor varies
from one policy to another. This algorithm, at first, finds the object with the minimum
gain factor (GF) (Or) over all the cached and accessed objects (line 1− 6). If Or and Oa

are not the same (from Fig. 3.3 and 3.4), Or is evicted from and Oa is saved to the cache.
Otherwise, the cache is kept intact and Oa is not saved. Note that, we consider replacement
and eviction to be different activities – replacement takes place whenever the cache is full
and a new object is introduced to the cache. A replacement results in an eviction, only

23

when an in cache object is removed to accommodate with the newly introduced object. In
summary, the replacement policy decides whether to replace an in cache object with a new
object. If a replacement is necessary, the policy also decides about the in cache object to
be replaced.

Algorithm 1: find replaced - the replacement algorithm for client i

input : compute gf is the gain factor computation policy
input : C is a reference to the set of currently cached objects
input : Oa is the accessed object
// Cached object with the lowest GF

MinGF ← +∞;
foreach Oj ∈ (C ∪ {Oa}) do

GF j
i ← compute gf(i, j);

if MinGF > GF j
i then

MinGF ← GF j
i ;

r ← j;

// r is the data object to be replaced

return r;

Note that Algorithm 1 is presented here just for better clarity. An implementation,
may not follow the sequential operation shown here. Implementation wise, the proposed
cache scheme may have similar data structures and operations of the popular LFU scheme.
A simple implementation would maintain the cache content and other related information
in a linked-list and would evaluate Algorithm 1 at each replacement. In another imple-
mentation, the cache content is maintained as a min-priority queue where priority of a
cache content is same as the GF value of the content. However, as GF value changes at
each replacement the priority queue also needs to readjusted. To facilitate faster search
in cache, a variant of binary search tree (BST) can be implemented with proper reference
to the cache content. At each access, a search in the BST takes O(n) time. The former
way to implement cache content incurs no additional cost at the access, but the later way
incurs O(1) additional operation5. A deletion of an object (at an eviction or invalidation)
would require O(lgn) time to rearrange the BST. The former implementation would need
O(n) and later O(lgn) additional operations. Finally, to find the object to evict, the former
implementation would take O(n) and the later O(lgn) operations.

5We assume Fibonacci Heap as the choice to implement priority queue among many others. We also
assume that compute gf is a constant operation. In later chapters, we will find that compute gf is in deed
a constant operation.

24

3.7 Cache Content Invariants

During a cache access, if the accessed object is not available at the local cache, the object is
fetched from the server. When the local cache is full and a new object is introduced (due to
access), a replacement decision has to be made. The employed replacement policy makes
the final decision about preserving the new object. In case the new object is preserved,
another object from the local cache is evicted to make space for the new object. To
facilitate the analysis, let us number all replacements in the sequence they take place in
time. The earliest replacement is identified as the first replacement, the next one as the
second replacement and so on. Let denote the sets consisting of all cached objects before
and after the t-th replacement with C(t) and C ′(t), respectively.

Definition: The guaranteed effective hits is the worst case effective hits resulting from
cache hits to the in cache objects only.

An update may invalidate in cache objects and create free space in the cache buffer.
This way, due to availability of free buffer, a cache may accommodate a new object after
a cache miss without evicting any in cache object. In the worst case, these new objects
have such access and update patterns that they do not contribute towards increasing the
number of effective cache hits. Even though these objects are not proving any utility, they
are accommodated in the cache, because of the available space.

Let the probability of guaranteed effective hits after the t-th replacement for RAP
and PAP be PRAP (t) and PPAP (t), respectively, under an arbitrary replacement policy.
Similarly, the expected cost of accessing an object resulting from the t-th replacement
are denoted as CRAP (t) and CPAP (t), accordingly, under any replacement policy. We
use PRAP+URP (t), PPAP+URP (t), CRAP+URP (t) and CPAP+URP (t) to denote the relevant
metrics due to the t-th replacement when URP is exercised. Let Oa(t) and Or(t) denote
the accessed and replaced objects at the t-th access, respectively. Let OURP (t) denote
the replaced object when URP is used. The cost of transmission of an object, a request
(or verification) message, and an acknowledge message are denoted with the notations
Cobj , Creq, and Cack, respectively. In this research, we leave out the costs of transmitting
replacement decisions or cost of piggy backing profile information with a large message,
such a message with a data object. These information incurs very negligible message
overheads.

The following invariants hold at the t-th replacement event,

Oa(t) /∈ C(t) (3.1)

Or(t) ∈ C(t) ∪ {Oa(t)} (3.2)

25

C ′(t) = (C(t) ∪ {Oa(t)}) \{Or(t)} (3.3)

Similarly, for URP policy,

OURP (t) ∈ C(t) ∪ {Oa(t)} (3.4)

C ′(t) = (C(t) ∪ {Oa(t)}) \{OURP (t)} (3.5)

3.8 Simulation Model for Performance Evaluation

To evaluate the performance of our proposed policies, we have developed a discrete event
simulator in written in C++. Based on the prior discussion, we have also evaluated the
performance of the access policies combined with the popular Least Frequently Used (LFU)
replacement policy [7]. We have collected information related to different performance
metrics, discussed in subsection 3.8.1, from the simulations and summarized in subsequent
parts of this thesis. Our simulation environment is described in subsection 3.8.2. When we
present simulation results, if applicable, we simultaneously present results from theoretical
analysis.

3.8.1 Performance Metrics

We consider two performance metrics - effective hits and cost per access. Let na,j be the
total number of accesses to object Oj from all the clients. Let nmiss denote the total
number of cache misses and invalid cache hits. Let na be the total number of accesses to
all the objects from all the clients, i.e, na =

∑N
j=1 na,j . We compute the effective hit ratios

as follows:

PRAP = 1−
nmiss

na
= PPAP (3.6)

In our simulations, we don’t compute the cost of piggy backing information. For exam-
ple, when access or update rates are sent with other large message load (such as an object),
the cost of transmitting access or update rates is ignored. We also keep aside the cost of
forwarding updates from the clients, because irrespective of the choice of the access policy,

26

this cost is fixed. Finally, the costs per access for RAP and PAP are computed according
to (3.7) and (3.8), respectively.

CRAP =
1

na

[(na − nmiss)× (Creq + Cack) + nmiss × (Creq + Cobj)] (3.7)

CPAP =
1

na

[nmiss(Creq + Cobj)] (3.8)

3.8.2 Simulation Setup

In data access applications, popularity of different objects are different. Researches have
shown that user interest in different online objects follow Zipf-like distributions [7, 25].
In our simulations, we assume Zipf-like distributions for object access or update pattern,
and at an access or update event, an object with rank i is accessed or updated with the
probability pi, defined as,

pi = [iα(

N
∑

j=1

1

jα
)]−1

where α > 0 and is called the Zipf ratio. Note that, when α = 0, pi = 1/N , for all i, and
all objects are chosen with the same probability of 1/N . Let αa and αu be the Zipf ratio
for access and update events, respectively. We uniquely rank each object within the range
from 1 to N to find its access and update probability. Note that rank of the object Oi may
not be related to the object identifier i, as well, rank for access and update may be distinct.
By default, we consider that Creq and Cack have the same value of Cmsg. Unless mentioned
otherwise, the value of Cmsg, Cobj and µ are 60, 600, and 1, respectively. Note that, if
transmitting an object is not much costlier than transmitting a simple message, using
cache is not worthwhile. In fact, in such case, using cache results in more communication
and computation cost and unnecessary space (for cache buffer) consumption. We consider
that 20 mobile users are in our network.

27

Chapter 4

Server Injected Updates

In this chapter, we discuss the access and replacement policies for applications where the
updates are injected from the server only. In the first two sections, we discuss the steps
for the access and update policies. Optimality of a caching scheme with these access
and update policies is proven in the next section. We end this chapter by presenting our
simulation results.

4.1 The Update Process

PAP and RAP policy differs in the process of notifying the clients about the update events.
PAP follows a proactive approach for notification, where as, RAP is reactive. Whenever
the server receives an update, in PAP, the server notifies all the clients hosting a copy
of the same object about the availability of a newer version. This way, a client is able
to remove locally cached invalid objects. Notice that in order to notify the clients about
the update events, the server has to maintain a profile indicating cache contents of all its
clients. In contrast, in RAP, a client checks for consistency of a requested object with the
server in proactive manner and the server simply waits for such queries.

4.2 The Update-oriented Replacement Policy (URP)

In this subsection, we present Update-oriented Replacement Policy (URP) for cache system
with updates injected from the server only. The policy uses both update and access fre-
quencies gathered through the access policies to achieve superior guaranteed performance.
We use gain factor (GF) of an object to determine which object should be given preference

28

in preserving in the cache. We define GF for the object Oi at client j up to time t according
to (4.1). The logic behind this definition of GF is elaborated in the next section.

GF j
i (t) =

(µj
i (t))

2

µj
i (t) + λS

i (t)
(4.1)

Similarly, long term GF is defined as,

GF j
i = lim

t→∞
GF j

i (t) = lim
t→∞

(µj
i (t))

2

µj
i (t) + λS

i (t)
=

(µj
i)

2

µj
i + λS

i

(4.2)

The algorithmic form of GF computation (gf server injected) is shown in Algorithm 2.
In both PAP and RAP, as shown in Fig. 3.3 and 3.4, and in Algorithm 1, gf server injected
is considered to be the argument to the find replaced primitive.

Algorithm 2: gf server injected - GF Computation in algorithmic form

input : i is the objects identifier
input : j is the client identifier
output: Gain factor for requested object i at client j

return
(µj

i)
2

µj
i +λS

i

;

4.3 Quantitative Analysis

In this section, we analyze cache schemes with PAP and RAP for data access, and URP
for replacement. Based on the behavior of URP policy, we conclude the following theorem.

Theorem 1 URP policy maximizes the probability of guaranteed effective hits at each re-
placement when either PAP or RAP is employed for data access and all updates are injected
by the server.

Proof: To prove the theorem, we must show that the probability of guaranteed effective
hits after t-th replacement obtained by replacing OURP (t) with Oa(t) is larger than or equal
to the same probability obtained by replacing Or(t) with Oa(t).

Since access event is a Poison process, at any access, the probability of the accessed
object being a given object Oi, 1 6 i 6 N , at client j is

pj
a,i =

µj
i

∑

i µ
j
i

=
µj

i

µj
(4.3)

29

The probability of Oi being accessed before an update taking place is1,

pj
u,i =

µj
i

µj
i + λS

i

(4.4)

Note that pj
u,i also represents the probability that Oi is locally accesses before the object

become invalid. Therefore, from (3.3), (4.3), and (4.4), no matter what replacement policy
is used, we have,

PPAP (t) = PRAP (t)

=
∑

∀i|Oi∈C′(t)

pj
a,ip

j
u,i

=
∑

∀i|Oi∈C(t)∪{Oa(t)}\{Or(t)}

pj
a,ip

j
u,i

=
∑

∀i|Oi∈C(t)∪{Oa(t)}\{Or(t)}

µj
i

µj

µj
i

µj
i + λS

i

=
∑

∀i|Oi∈C(t)∪{Oa(t)}\{Or(t)}

(µj
i)

2

µj(µj
i + λS

i)

=
∑

∀i|Oi∈C(t)∪{Oa(t)}

(µj
i)

2

µj(µj
i + λS

i)
−

(µj
r)

2

µj(µj
r + λS

r)

(4.5)

So, the equality when the URP is exercised can be driven as follow:

PPAP+URP (t) = PRAP+URP (t) =
∑

∀i|Oi∈C(t)∪{Oa(t)}

(µj
i)

2

µj(µj
i + λS

i)
−

(µj
URP)2

µj(µj
URP + λS

URP)
(4.6)

According to the definition of the URP policy when all updates are injected only by
the server, we have,

(µj
URP)2

µj
URP + λS

URP

≡ min
∀i|Oi∈C(t)∪{Oa(t)}

(µj
i)

2

µj
i + λS

i

6
(µj

r)
2

µj
r + λS

r

(4.7)

1The detail derivation of the equation is shown in Appendix E

30

Therefore, we conclude,

PPAP+URP (t) = PRAP+URP (t) =
∑

∀i|Oi∈C(t)∪{Oa(t)}

(µj
i)

2

µj(µj
i + λS

i)
− min

∀i|Oi∈C(t)∪{Oa(t)}

(µj
i)

2

µj(µj
i + λS

i)

>
∑

∀i|Oi∈C(t)∪{Oa(t)}

(µj
i)

2

µj(µj
i + λS

i)
−

(µj
r)

2

µj(µj
r + λS

r)
= PPAP (t) = PRAP (t)

(4.8)

From the above derivation, it is conspicuous that at each replacement, the probability
of effective hits while using URP is greater than or equal to the same metric while using
any other replacement policy. Thus, we conclude that URP maximizes the probability of
guaranteed effective hits at each replacement for both RAP and PAP access mechanism
when all the updates are injected from the server.�

Corollary 1 In a cache system when updates are injected only from the server, URP
minimizes the expected cost of data access at each replacement for both RAP and PAP
access mechanism.

The corollary is proved in Appendix B. Based on the characteristics of URP discussed
above, we further propose the following Theorem:

Theorem 2 In a cache system if all the updates are injected only from the server, in the
long run, URP guarantees optimal effective cache hits for both RAP and PAP.

Detail proof is presented in Appendix C. We can also assert that,

Corollary 2 In a cache system when updates are injected only from the server, URP
minimizes the expected cost of data access in the long run for both RAP and PAP access
mechanism.

Proof of the corollary is presented in Appendix D.

4.4 Performance Evaluation

In this section, we present different results available from our extensive simulations. Our
simulation environment has already been described in Section 3.8.

31

4.4.1 Objects with No updates

Fig. 4.1-4.3 show the effective hits and expected cost for URP and LFU scheme when no
update to any object take place, i.e., λS

i for all i is 0. In all the simulations, the server
is populated with 500 objects. In this case, URP j

i is determined by µj
i and consequently,

while accommodating new objects in the cache, both URP and LFU choose the same
objects for eviction. Thus both the policies result in same performance. In addition, we
have the following observations:

• All combinations of access and replacement policies enjoy higher number of effective
hits and lower cost when the objects are for read only and no update takes place (i.e.,
λ = 0). Static databases, audio and video files sharing in wireless environment are examples
of this kind of application.

• LFU performance is also optimal where no update takes place in the caching system.

• With increment of αa, number of effective hits also increases. The higher αa is, the
smaller set of objects is accessed more frequently, resulting in fewer misses.

• Larger cache helps alleviating cache misses. However, this behavior is clearly visible
when αa is smaller. With larger αa, most of the access are due to fewer objects and hence,
increasing cache size results in very little additional benefit.

4.4.2 Impact of Number of Objects and Cache Size

In this subsection, we present the effect of number of objects (N) and cache size (K) on
cache performance. In Fig. 4.4 and 4.5, the performance of PAP/RAP+URP is compared
with PAP/RAP+LFU for different object set sizes. The values for the parameters αa,
αu and K in these simulations are 0.20, 0.60 and 20, respectively. We have the following
observations:

• Number of effective hits for all combinations of access and replacement policies de-
creases with the increment of database size. However, in all cases, URP replacement policy
shows better results.

• Given a fixed size cache, as the object set size increases, the chance of hit reduces,
irrespective of the replacement policy. However, the gain of using URP becomes prominent
with larger set sizes.

• PAP+URP policy gives the best performance in terms of cost per access and PAP+LFU
closely follows. Provided that Cobj ≫ Cmsg, according to (3.7), the difference between
PAP+URP and PAP+LFU is dominated by nmiss. Hence, with smaller miss rate, the gap
between URP and LFU policies dilutes.

32

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

RAP/PAP+URP (Simulation)
RAP/PAP+URP (Theory)

RAP/PAP+LFU (Simulation)
E

ff
ec

ti
ve

h
it

s

αa
(a) Number of Effective Hits

 100

 200

 300

 400

 500

 600

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

RAP+URP (Simulation)
RAP+URP (Theory)

RAP+LFU
PAP+URP (Simulation)

PAP+URP (Theory)
PAP+LFU

C
os

t
p
er

ac
ce

ss

αa
(b) Communication Cost

Figure 4.1: Performance of URP and LFU for readonly objects (K = 50)

33

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

RAP/PAP+URP (Simulation)
RAP/PAP+URP (Theory)

RAP/PAP+LFU (Simulation)
E

ff
ec

ti
ve

h
it

s

αa
(a) Number of Effective Hits

 100

 200

 300

 400

 500

 600

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

RAP+URP (Simulation)
RAP+URP (Theory)

RAP+LFU
PAP+URP (Simulation)

PAP+URP (Theory)
PAP+LFU

C
os

t
p
er

ac
ce

ss

αa
(b) Communication Cost

Figure 4.2: Performance of URP and LFU for readonly objects (K = 60)

34

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

RAP/PAP+URP (Simulation)
RAP/PAP+URP (Theory)

RAP/PAP+LFU (Simulation)
E

ff
ec

ti
ve

h
it

s

αa
(a) Number of Effective Hits

 100

 200

 300

 400

 500

 600

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

RAP+URP (Simulation)
RAP+URP (Theory)

RAP+LFU
PAP+URP (Simulation)

PAP+URP (Theory)
PAP+LFU

C
os

t
p
er

ac
ce

ss

αa
(b) Communication Cost

Figure 4.3: Performance of URP and LFU for readonly objects (K = 70)

35

• With any of the replacement policies, PAP access policies cost less than RAP. How-
ever, URP policies reduce cost per access further as compared to LFU.

Fig. 4.6 and 4.7 shows different performance characteristics for different cache sizes.
For these simulations, the values for the parameters αa, αu and N are chosen as 0.01, 0.60
and 400, respectively. From the figures, we deduce following arguments:

• In opposed to the previous case, as cache size increases, the number of effective
hits also increases for all combinations of policies. However, like the previous case, URP
performs better in all cases.

• Due to increasing number of hits, the cost per access also declines with larger cache
for both the policies. However, the cost of PAP is reduced at a higher rate than that’s of
RAP.

• As cache size increases, each additional extra cache buffer adds fewer additional
effective hits. Hence, a designer must compromise between the cost of adding extra cache
buffer and cache performance.

4.4.3 Impact of Zipf Ratio

Fig. 4.8 and 4.9 show the effect of update Zipf ratio on the performance of both URP and
LFU policies with the simulation parameters αa, K and N set to be 0.01, 50 and 500,
respectively. We observe that:

• With different Zipf ratios, performance of URP is consistently better than that of
LFU in terms of both number of hits and cost per access.

• The over all effective hits falls and cost increases as update Zipf ratios increases.

4.4.4 Impact of Number of Mobile Stations

Number of mobile stations has significant effect on what GF values different objects get.
In the way GF is computed (as shown in (4.2)), λS

j is a global metric and is not affected by

the number of mobile stations. On the other hand, µj
i for all i are affected by the number of

mobile stations, provided that µA

i for the entire system is given. As the number of mobile
stations increases, the difference between GFs of different items become less distinct and
GFs are mainly determined by λ. An update event has more severe adverse effect as the
number of mobile stations increases. Fig 4.10 and 4.11 shows results with parameters αa,
αu, K, and N valued at 0.01, 0.06, 50, and 500, respectively. As shown in the figures, with
more MSes the hit rate decreases at a faster rate and hence, cost per access increases.

36

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 400 500 600 700 800 900 1000

Number of objects (N)

RAP/PAP+URP (Simulation)
RAP/PAP+URP (Theory)

RAP/PAP+LFU
E

ff
ec

ti
ve

h
it

s

(a) Number of Effective Hits

 620

 625

 630

 635

 640

 645

 650

 655

 400 500 600 700 800 900 1000

Number of objects (N)

RAP+URP (Simulation)
RAP+URP (Theory)

RAP+LFU
PAP+URP (Simulation)

PAP+URP (Theory)
PAP+LFU

C
os

t
p
er

ac
ce

ss

(b) Communication Cost

Figure 4.4: Performance of URP and LFU for different number of objects (λ = 0.40)

37

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 400 500 600 700 800 900 1000

Number of objects (N)

RAP/PAP+URP (Simulation)
RAP/PAP+URP (Theory)

RAP/PAP+LFU
E

ff
ec

ti
ve

h
it

s

(a) Number of Effective Hits

 620

 625

 630

 635

 640

 645

 650

 655

 400 500 600 700 800 900 1000

Number of objects (N)

RAP+URP (Simulation)
RAP+URP (Theory)

RAP+LFU
PAP+URP (Simulation)

PAP+URP (Theory)
PAP+LFU

C
os

t
p
er

ac
ce

ss

(b) Communication Cost

Figure 4.5: Performance of URP and LFU for different number of objects (λ = 0.60)

38

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 20 30 40 50 60 70 80 90 100

Cache size (K)

RAP/PAP+URP (Simulation)
RAP/PAP+URP (Theory)

RAP/PAP+LFU

E
ff
ec

ti
ve

h
it

s

(a) Number of Effective Hits

 560

 580

 600

 620

 640

 20 30 40 50 60 70 80 90 100

Cache size (K)

RAP+URP (Simulation)
RAP+URP (Theory)

RAP+LFU
PAP+URP (Simulation)

PAP+URP (Theory)
PAP+LFU

C
os

t
p
er

ac
ce

ss

(b) Communication Cost

Figure 4.6: Performance of URP and LFU for different cache sizes (λ = 0.50)

39

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 20 30 40 50 60 70 80 90 100

Cache size (K)

RAP/PAP+URP (Simulation)
RAP/PAP+URP (Theory)

RAP/PAP+LFU

E
ff
ec

ti
ve

h
it

s

(a) Number of Effective Hits

 560

 580

 600

 620

 640

 20 30 40 50 60 70 80 90 100

Cache size (K)

RAP+URP (Simulation)
RAP+URP (Theory)

RAP+LFU
PAP+URP (Simulation)

PAP+URP (Theory)
PAP+LFU

C
os

t
p
er

ac
ce

ss

(b) Communication Cost

Figure 4.7: Performance of URP and LFU for different cache sizes (λ = 0.60)

40

 90000

 100000

 110000

 120000

 130000

 0.4 0.5 0.6 0.7 0.8 0.9 1

RAP/PAP+URP (Simulation)
RAP/PAP+URP (Theory)

RAP/PAP+LFU (Simulation)

E
ff
ec

ti
ve

h
it

s

αu
(a) Number of Effective Hits

 570

 580

 590

 600

 610

 620

 0.4 0.5 0.6 0.7 0.8 0.9 1

RAP+URP (Simulation)
RAP+URP (Theory)

RAP+LFU
PAP+URP (Simulation)

PAP+URP (Theory)
PAP+LFU

C
os

t
p
er

ac
ce

ss

αu
(b) Communication Cost

Figure 4.8: Performance of URP and LFU for different Zipf ratios (λ = 0.50)

41

 90000

 100000

 110000

 120000

 130000

 0.4 0.5 0.6 0.7 0.8 0.9 1

RAP/PAP+URP (Simulation)
RAP/PAP+URP (Theory)

RAP/PAP+LFU (Simulation)
E

ff
ec

ti
ve

h
it

s

αu
(a) Number of Effective Hits

 570

 580

 590

 600

 610

 620

 0.4 0.5 0.6 0.7 0.8 0.9 1

RAP+URP (Simulation)
RAP+URP (Theory)

RAP+LFU
PAP+URP (Simulation)

PAP+URP (Theory)
PAP+LFU

C
os

t
p
er

ac
ce

ss

αu
(b) Communication Cost

Figure 4.9: Performance of URP and LFU for different Zipf ratios (λ = 0.60)

42

 106000

 108000

 110000

 112000

 114000

 116000

 118000

 120000

 122000

 20 25 30 35 40

Number of mobile stations

RAP/PAP+URP (Simulation)
RAP/PAP+URP (Theory)

RAP/PAP+LFU
E

ff
ec

ti
ve

h
it

s

(a) Number of Effective Hits

 575

 580

 585

 590

 595

 600

 605

 20 25 30 35 40

Number of mobile stations

RAP+URP (Simulation)
RAP+URP (Theory)

RAP+LFU
PAP+URP (Simulation)

PAP+URP (Theory)
PAP+URP

C
os

t
p
er

ac
ce

ss

(b) Communication Cost

Figure 4.10: Performance of URP and LFU different number of mobile stations (λ = 0.40)

43

 103500

 104000

 104500

 105000

 105500

 106000

 106500

 107000

 107500

 108000

 108500

 20 25 30 35 40

Number of mobile stations

RAP/PAP+URP (Simulation)
RAP/PAP+URP (Theory)

RAP/PAP+LFU
E

ff
ec

ti
ve

h
it

s

(a) Number of Effective Hits

 588

 590

 592

 594

 596

 598

 600

 602

 604

 20 25 30 35 40

Number of mobile stations

RAP+URP (Simulation)
RAP+URP (Theory)

RAP+LFU
PAP+URP (Simulation)

PAP+URP (Theory)
PAP+URP

C
os

t
p
er

ac
ce

ss

(b) Communication Cost

Figure 4.11: Performance of URP and LFU different number of mobile stations (λ = 0.50)

44

4.4.5 Impact of Message Size

Finally, we investigate the impact of different message sizes, i.e., Cmsg. We consult two
cases when: (1) K = 50 and N = 500 and (2) K = 100 and N = 400. For both the cases,
values of λ, αa and αu are set to 0.40, 0.01 and 0.60. The results are presented in Fig. 4.12.
From both the results, it is evident that cost per access for URP increases at a faster rate
than PAP as the ratio of Cmsg to Cobj increases.

4.4.6 General Observations

We have the following general observations while preparing and running the simulator, and
evaluating the results:

• Cases where cache suffer from a higher number of misses, or cases where there are
fewer to no misses, the temporal objects introduced in between two consecutive cache
replacements result in fewer extra cache hits. Thus, in those cases, the difference between
theory and simulation subsides.

• Cases where cache suffers from a higher number of misses, the benefit of URP becomes
more visible. As the system approaches to a system with readonly objects (i.e., objects
with no updates), both LFU and URP approaches same (and optimal) performance.

• It is difficult to synthetically generate access and update traces which satisfy all
the parameters and capture the worst case requirements. Hence, most of the traces are
generated with high update rates and update Zipf ratios to make them behave more closer
to the worst case scenarios. In all the simulations, the theoretical probability of hits are
computed at each replacement only. Thus, simulation results are in general slightly better
than the theoretical ones.

45

 550

 600

 650

 700

 750

 800

 850

 900

 50 100 150 200 250 300

RAP+URP
PAP+URP

C
os

t
p
er

ac
ce

ss

Cmsg
(a) Case 1

 550

 600

 650

 700

 750

 800

 850

 900

 50 100 150 200 250 300

RAP+URP
PAP+URP

C
os

t
p
er

ac
ce

ss

Cmsg
(b) Case 2

Figure 4.12: Cost of URP and LFU for different message sizes

46

Chapter 5

Client Injected Updates

In this chapter, we discuss the access and replacement for applications where the updates
are injected from the clients only. The organization of this chapter is similar to that’s of
the previous chapter. We start with a discussion on update and access processes. Next,
we analytically prove that if all the updates are injected only from the clients, a cache
scheme, with our proposed policies is optimal in terms of effective hits and bandwidth
consumption. In the final section of this chapter, we close our discussion by presenting the
simulation results.

5.1 The Update Process

When updates are injected by the server only, the access mechanism focuses only on the
consistency of data access. However, when updates are injected from the clients, the clients
also need to take the responsibility of forwarding the update. In the later case, for both
PAP and RAP, whenever a client initiates an update, the updated object is forwarded to
the server. At the same time, both policies may store the updated object in the local cache
in accordance with the replacement policy (described later). In PAP, as soon as an update
from a client is received, the server is proactive in notifying all other clients hosting the
same object about availability of the newer version. On the other hand, in RAP, a client
reactively queries with the server about injected updates to a cached object from other
clients, but only when the object is accessed.

47

5.2 The Update-oriented Replacement Policy (URP)

In this subsection, we present Update-oriented Replacement Policy (URP) for cache system
with updates injected only from the clients. Like the policies in the previous chapter, here
also both update and access frequencies are gathered through the access policies. We
continue to use the tems gain factor (GF) to maintain consistency in discussion. However,
we modify the definition of GF for the object Oi at client j up to time t as follows:

GF j
i (t) =

(µj
i (t) + λj

i (t))µ
j
i (t)

µj
i (t) + λA

i (t)
(5.1)

Similarly, long term GF is defined as,

GF j
i = lim

t→∞
GF j

i (t) = lim
t→∞

(µj
i (t) + λj

i (t))µ
j
i (t)

µj
i (t) + λA

i (t)
=

(µj
i + λj

i)µ
j
i

µj
i + λA

i

(5.2)

The algorithmic form of GF computation (gf ci) is shown in Algorithm 3. In both
PAP and RAP, whenever the primitive find replaced is invoked gf ci is considered to be
the argument to assist in the computation of GF of objects.

Algorithm 3: gf ci - GF Computation in algorithmic form

input : i is the objects identifier
input : j is the client identifier
output: Gain factor for requested object i at client j

return
(µj

i +λj
i)µ

j
i

µj
i
+λA

i

;

5.3 Quantitative Analysis

In this section, we analyze a cache scheme employing URP for replacement and RAP/PAP
for data access. We assume that all data update events are injected by the clients. Based
on the behavior of URP policy, we conclude the following theorem.

Theorem 3 URP maximizes the probability of guaranteed effective hits at each replace-
ment for both RAP and PAP access policies when all updates are injected by the clients
only.

48

Proof: To prove the theorem, we follow the similar approach of proving Theorem. 1.
We show that the probability of guaranteed effective hits after t-th replacement obtained
by replacing OURP (t) with Oa(t) is larger than or equal to the same probability obtained
by replacing Or(t) with Oa(t).

As event of access is a Poison process, the probability of accessing object Oi, 1 6 i 6 N ,
at client j, is

pj
a,i =

µj
i

∑N
i=1 µi,j

=
µj

i

µj
(5.3)

Since event of update is also a Poison process, the probability of accessing or updating
object Oi locally before being updated from any other client is1,

pj
u,i =

µj
i + λj

i

µj
i +
∑

j λj
i

=
µj

i + λj
i

µj
i + λA

i

(5.4)

Note that pj
u,i also represents the probability that Oi is locally accessed or updated be-

fore the object become invalid due to update from any other clients. Therefore, irrespective

1The detail derivation of the equation is discussed in Appendix E

49

of replacement policy in place, from (3.3), (5.3), and (5.4), we have,

PRAP (t) = PPAP (t)

=
∑

∀i|Oi∈C′(t)

pj
a,ip

j
u,i

=
∑

∀i|Oi∈C(t)∪{Oa(t)}\{Or(t)}

pj
a,ip

j
u,i

=
∑

∀i|Oi∈C(t)∪{Oa(t)}\{Or(t)}

µj
i

µj

µj
i + λj

i

µj
i + λA

i

=
∑

∀i|Oi∈C(t)∪{Oa(t)}\{Or(t)}

(µj
i + λj

i)µ
j
i

(µj
i + λA

i)µj

=
∑

∀i|Oi∈C(t)∪{Oa(t)}

(µj
i + λj

i)µ
j
i

(µj
i + λA

i)µj
−

(µj
r + λj

r)µ
j
r

(µj
r + λA

r)µj

=
1

µj

∑

∀i|Oi∈C(t)∪{Oa(t)}

(µj
i + λj

i)µ
j
i

µj
i + λA

i

−
(µj

r + λj
r)µ

j
r

µj
r + λA

r

=
1

µj

∑

∀i|Oi∈C(t)∪{Oa(t)}

GF j
i −GF j

r

(5.5)

When URP is utilized then, following equality can be driven in similar way:

PRAP+URP (t) = PPAP+URP (t) =
1

µj

∑

∀i|Oi∈C(t)∪{Oa(t)}

GF j
i −GF j

URP

 (5.6)

Following the working strategy of the URP policy, when all updates are injected only
from the clients, we can formulate,

GF j
URP ≡ min

∀i|Oi∈C(t)∪{Oa(t)}

(

GF j
i

)

(5.7)

50

Using (eq:11c) and (eq:12c), we conclude the following:

PRAP+URP (t) = PPAP+URP (t)

=
1

µj

∑

∀i|Oi∈C(t)∪{Oa(t)}

GF j
i − min

∀i|Oi∈C(t)∪{Oa(t)}

(

GF j
i

)

>
1

µj

∑

∀i|Oi∈C(t)∪{Oa(t)}

GF j
i −GF j

r

= PRAP (t) = PPAP (t)

(5.8)

From the above equality, it is evident that at each replacement, the probability of
effective hits is the highest when URP is used by comparing with the same metric when
another replacement policy is employed. This way, URP maximizes the probability of
guaranteed effective hits at each replacement for both RAP and PAP, when all updates
are injected only by the clients.�

With the above proof available, we can deduce the following corollary.

Corollary 3 When all the data updates are injected by the clients, URP minimizes the
expected cost of data access at each replacement for both RAP and PAP.

We prove the corollary in Appendix B. Based on the properties of our proposed policies,
proven above, we assert the following Theorem:

Theorem 4 In a cache system where all updates are injected from the clients, in the long
run, URP gives optimal guaranteed effective cache hits for both RAP and PAP.

Proof of the theorem is presented in Appendix C. Beside the above, we can also add
that,

Corollary 4 In a cache system where all updates are injected from the clients, in the long
run, URP guarantees optimal cost for both RAP and PAP.

Proof of the corollary is presented in Appendix D.

51

5.4 Performance Evaluation

We present different results available from our extensive simulations in this section. We use
the same simulation traces, we used for the simulations presented in the last chapter, except
one difference. In simulations for this chapter, all update events are distributed among the
clients, where as for previous chapter, all update events are considered take place at the
server. Though the observations from the simulation results of this and the previous
chapter are comparable, a detail discussion is presented for the sake of completeness.

5.4.1 Impact of Objects Population

In this subsection, we discus our study on the effect of object population size (N). In
Fig. 5.1 and 5.2, the performance of RAP/PAP+URP is compared with RAP/PAP+LFU
for different object population sizes. We consider the values for the parameters αa, αu

and K in these simulations to be 0.20, 0.60 and 20, respectively. We observe following
behaviors from these results.

• If the object population size increases as compared to the size of the cache buffer,
a smaller portion of the object population can be cached. Thus, irrespective of the re-
placement policy, the probability of effective cache hit reduces. However, in all cases, URP
shows better results.

• PAP+URP policy demonstrates the best performance among the four combinations.
However, for smaller object population PAP+LFU performs very closely. When N is
smaller, in both, a cache can accommodate all the higher utility objects irrespective of the
replacement. Similar argument is valid for RAP+URP and RAP+LFU policy.

• The gain of using URP becomes further evident with larger population sizes.

• Cost-wise, both PAP policy combinations perform better than RAP combinations,
and in each group URP demonstrates superior performance.

5.4.2 Impact of Cache Size

Performance characteristics for different cache sizes are shown in Fig. 5.3 and 5.4. For
these simulations, the values for the parameters αa, αu and N are chosen to be 0.01, 0.60
and 400, respectively. From the figures, we deduce following arguments:

• Increasing cache size has opposite effect of increasing object popularity – as cache size
increases, number of hits increases. Larger cache allows more objects to be in the cache,
at a given time, resulting in higher number of hits for all cache schemes.

52

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 400 500 600 700 800 900 1000

Number of objects (N)

RAP/PAP+URP (Simulation)
RAP/PAP+URP (Theory)

RAP/PAP+LFU
E

ff
ec

ti
ve

h
it

s

(a) Number of Effective Hits

 620

 625

 630

 635

 640

 645

 650

 400 500 600 700 800 900 1000

Number of objects (N)

RAP+URP (Simulation)
RAP+URP (Theory)

RAP+LFU
PAP+URP (Simulation)

PAP+URP (Theory)
PAP+LFU

C
os

t
p
er

ac
ce

ss

(b) Communication Cost

Figure 5.1: Performance of URP and LFU for different object population (λ = 0.40)

53

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 400 500 600 700 800 900 1000

Number of objects (N)

RAP/PAP+URP (Simulation)
RAP/PAP+URP (Theory)

RAP/PAP+LFU
E

ff
ec

ti
ve

h
it

s

(a) Number of Effective Hits

 620

 625

 630

 635

 640

 645

 650

 400 500 600 700 800 900 1000

Number of objects (N)

RAP+URP (Simulation)
RAP+URP (Theory)

RAP+LFU
PAP+URP (Simulation)

PAP+URP (Theory)
PAP+LFU

C
os

t
p
er

ac
ce

ss

(b) Communication Cost

Figure 5.2: Performance of URP and LFU for different object population (λ = 0.60)

54

• At the same time, URP demonstrate superior performance in all cases.

• With larger cache, the performance difference between URP and LFU diminishes.
Though their replacement criterion are different and preference ranks (GF for URP and
access frequency for LFU) for objects are also different, large cache allow the policies to
store wider preferences of objects and thus both the policies host a significant amount of
common contents.

• With increasing cache size, increasing number of hits helps in reducing the cost per
access for all combinations of cache policies.

• With increment of cache size, each additional extra cache buffer results in fewer
additional effective hits. Hence, a designer must find a trade off between the increment of
cache performance and the cost of adding extra cache buffer space.

5.4.3 Impact of Objects with No updates

Number of effective hits and cost per access for URP and LFU policy when no update to
any object take place, i.e., λj

i for all i, j is 0 are shown in Fig. 5.5, 5.6 and 5.7. In other
word, these objects are for read only. To gather these results, in all the simulations, an
object population size of 500 is considered. With no update events, GF j

i is determined by
µj

i (as can be determined from (5.2)) and as a result, while making a replacement (as well
as, eviction) decision, both URP and LFU choose the same object. Thus both the policies
result in exactly the same performance.

These results are in perfect match with the results for the same scenario presented in
Chapter 4.

5.4.4 Impact of Zipf Ratio

The effect of update Zipf ratio on the performance of both URP and LFU policies is shown
and compared in Fig. 5.8 and 5.9. The parameters αa, K and N are set to 0.01, 50 and
500, respectively, for these simulations. The results establish that:

• In these simulations, while computing Zipf ratios, we have considered that both access
and update ranks of object Oi are i. As a result, more frequent updates to more frequently
accessed objects results in fewer overall hits. Note that, if rank for access and update Zipf
ratio for all objects are arbitrary, the performance of the system may approach to a system
with no update at all (see subsection 5.4.3), depending on the values for Zipf ratios.

• As usual, cache schemes with URP demonstrate superior results.

55

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 20 30 40 50 60 70 80 90 100

Cache size (K)

RAP/PAP+URP (Simulation)
RAP/PAP+URP (Theory)

RAP/PAP+LFU

E
ff
ec

ti
ve

h
it

s

(a) Number of Effective Hits

 540

 560

 580

 600

 620

 640

 20 30 40 50 60 70 80 90 100

Cache size (K)

RAP+URP (Simulation)
RAP+URP (Theory)

RAP+LFU
PAP+URP (Simulation)

PAP+URP (Theory)
PAP+LFU

C
os

t
p
er

ac
ce

ss

(b) Communication Cost

Figure 5.3: Performance of OUR and LFU for different cache sizes (λ = 0.50)

56

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 20 30 40 50 60 70 80 90 100

Cache size (K)

RAP/PAP+URP (Simulation)
RAP/PAP+URP (Theory)

RAP/PAP+LFU

E
ff
ec

ti
ve

h
it

s

(a) Number of Effective Hits

 540

 560

 580

 600

 620

 640

 20 30 40 50 60 70 80 90 100

Cache size (K)

RAP+URP (Simulation)
RAP+URP (Theory)

RAP+LFU
PAP+URP (Simulation)

PAP+URP (Theory)
PAP+LFU

C
os

t
p
er

ac
ce

ss

(b) Communication Cost

Figure 5.4: Performance of OUR and LFU for different cache sizes (λ = 0.60)

57

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

RAP/PAP+URP (Simulation)
RAP/PAP+URP (Theory)

RAP/PAP+LFU (Simulation)
E

ff
ec

ti
ve

h
it

s

αa
(a) Number of Effective Hits

 0

 100

 200

 300

 400

 500

 600

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

RAP+URP (Simulation)
RAP+URP (Theory)

RAP+LFU
PAP+URP (Simulation)

PAP+URP (Theory)
PAP+LFU

C
os

t
p
er

ac
ce

ss

αa
(b) Communication Cost

Figure 5.5: Performance of URP and LFU for objects with no update (K = 50)

58

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

RAP/PAP+URP (Simulation)
RAP/PAP+URP (Theory)

RAP/PAP+LFU (Simulation)
E

ff
ec

ti
ve

h
it

s

αa
(a) Number of Effective Hits

 0

 100

 200

 300

 400

 500

 600

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

RAP+URP (Simulation)
RAP+URP (Theory)

RAP+LFU
PAP+URP (Simulation)

PAP+URP (Theory)
PAP+LFU

C
os

t
p
er

ac
ce

ss

αa
(b) Communication Cost

Figure 5.6: Performance of URP and LFU for objects with no update (K = 60)

59

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

RAP/PAP+URP (Simulation)
RAP/PAP+URP (Theory)

RAP/PAP+LFU (Simulation)
E

ff
ec

ti
ve

h
it

s

αa
(a) Number of Effective Hits

 0

 100

 200

 300

 400

 500

 600

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

RAP+URP (Simulation)
RAP+URP (Theory)

RAP+LFU
PAP+URP (Simulation)

PAP+URP (Theory)
PAP+LFU

C
os

t
p
er

ac
ce

ss

αa
(b) Communication Cost

Figure 5.7: Performance of URP and LFU for objects with no update (K = 70)

60

 90000

 100000

 110000

 120000

 130000

 140000

 0.4 0.5 0.6 0.7 0.8 0.9 1

RAP/PAP+URP (Simulation)
RAP/PAP+URP (Theory)

RAP/PAP+LFU (Simulation)

E
ff
ec

ti
ve

h
it

s

αu
(a) Number of Effective Hits

 550

 560

 570

 580

 590

 600

 610

 620

 0.4 0.5 0.6 0.7 0.8 0.9 1

RAP+URP (Simulation)
RAP+URP (Theory)

RAP+LFU
PAP+URP (Simulation)

PAP+URP (Theory)
PAP+LFU

C
os

t
p
er

ac
ce

ss

αu
(b) Communication Cost

Figure 5.8: Performance of OUR and LFU for different Zipf ratios (λ = 0.50)

61

 90000

 100000

 110000

 120000

 130000

 140000

 0.4 0.5 0.6 0.7 0.8 0.9 1

RAP/PAP+URP (Simulation)
RAP/PAP+URP (Theory)

RAP/PAP+LFU (Simulation)
E

ff
ec

ti
ve

h
it

s

αu
(a) Number of Effective Hits

 550

 560

 570

 580

 590

 600

 610

 620

 0.4 0.5 0.6 0.7 0.8 0.9 1

RAP+URP (Simulation)
RAP+URP (Theory)

RAP+LFU
PAP+URP (Simulation)

PAP+URP (Theory)
PAP+LFU

C
os

t
p
er

ac
ce

ss

αu
(b) Communication Cost

Figure 5.9: Performance of OUR and LFU for different Zipf ratios (λ = 0.60)

62

5.4.5 Impact of Number of Mobile Stations

In (5.2), given a system wide update rate, λA

i is a global metric and the number of mobile
stations has no effect on it. On the other hand, for a given µi and λi, µj

i and λj
i are affected

by the number of mobile stations. With increasing number of mobile stations, the variance
of GFs of different objects becomes smaller and λi turns out to be the main determining
factor. Fig 5.10 and 5.11 presents the simulation results for different number of mobile
stations. The simulation parameters αa, αu, K, and N are assigned values 0.01, 0.06, 50,
and 500, respectively. As shown in the figures, with more MSes the number of effective
hits decreases and the cost per access increases.

5.4.6 Other Observations

All observations presented in Subsection 4.4.6 are equally valid for cache systems where all
updates are injected from the clients. However, we have following additional observations:

• The numbers of effective hits presented in this chapter are higher (with the exception
of readonly object scenario) than the numbers for the corresponding scenarios presented in
the last chapter. When updates are injected from the server only, a update render all the
copies of the updated object obsolete. In contrast, update to higher utility (GF) object at
a client also inject the updated object into the client cache, increasing the chance of local
cache hit.

• For the same reason, discussed above, the expected cost for data access is also lower
for the cache systems discussed in this chapter.

63

 110000

 115000

 120000

 125000

 130000

 135000

 20 25 30 35 40

Number of mobile stations

RAP/PAP+URP (Simulation)
RAP/PAP+URP (Theory)

RAP/PAP+LFU
E

ff
ec

ti
ve

h
it

s

(a) Number of Effective Hits

 530

 540

 550

 560

 570

 580

 590

 600

 610

 20 25 30 35 40

Number of mobile stations

RAP+URP (Simulation)
RAP+URP (Theory)

RAP+LFU
PAP+URP (Simulation)

PAP+URP (Theory)
PAP+LFU

C
os

t
p
er

ac
ce

ss

(b) Communication Cost

Figure 5.10: Performance of OUR and LFU different number of mobile stations (λ = 0.40)

64

 110000

 115000

 120000

 125000

 130000

 135000

 20 25 30 35 40

Number of mobile stations

RAP/PAP+URP (Simulation)
RAP/PAP+URP (Theory)

RAP/PAP+LFU
E

ff
ec

ti
ve

h
it

s

(a) Number of Effective Hits

 530

 540

 550

 560

 570

 580

 590

 600

 610

 20 25 30 35 40

Number of mobile stations

RAP+URP (Simulation)
RAP+URP (Theory)

RAP+LFU
PAP+URP (Simulation)

PAP+URP (Theory)
PAP+LFU

C
os

t
p
er

ac
ce

ss

(b) Communication Cost

Figure 5.11: Performance of OUR and LFU different number of mobile stations (λ = 0.50)

65

Chapter 6

Conclusion

In this chapter, we summarize our contributions and present potential future works.

6.1 Contribution

In this thesis, we have proposed an optimal cache replacement policy, named Update-
oriented Replacement Policy (URP) for wireless data access applications. To maintain
strong consistency among copies of objects and facilitate working environment for URP,
we have also proposed two enhanced cache access policies – Proactive Access Policy (PAP),
and Reactive Access Policy (RAP). We have considered the impact of data updates injected
in the system. We have emphasized two kinds of update events - firstly, all updates
are injected by the server and secondly, all all updates are injected by the clients. In
Appendix A, we have extended the solutions to systems where updates are injected from
both the server and the clients.

The goal of the proposed policies is to make efficient use of the network bandwidth in
wireless environment, by increasing effective cache hits. We have proved that if PAP or
RAP is combined with URP, the cache system guarantees optimal number of effective cache
hits and optimal cost (in terms of network bandwidth) per data object access. Due to our
comprehensive system model, the proposed policies are equally applicable to existing 2G
and 3G, as well as upcoming Long Term Evolution (LTE), LTE Advanced and WiMAX
wireless data access networks.

66

6.2 Future Works

Our research in this thesis has been bounded by the mobile wireless data access networks.
We are planning to extend our focus to the optimal caching schemes for other types of
wireless network infrastructures, such as networks supporting limited broadcast, such as
WLANs. We are particularly interested in - (1) multi-hop wireless networks and (2) net-
works combining mobile and geographically static wireless network (such as network formed
by smartphones with 3G and WLAN capability).

Recently, we are also interested in investigating the problem of cooperative caching in
wireless networks. In this utopian system, the participants in the entire system collaborate
with each other to satisfy each others needs. Clients can be opportunistic in fetching
objects that are requested by other clients. At the same time, an idle client can assist
other neighboring busy clients to cache objects for future use.

Finally, We are actively looking forward to finding solution for data dissemination in
wireless networks using efficient data caches.

67

Bibliography

[1] Mursalin Akon, Towhidul Islam, Xuemin Shen, and Ajit Singh. SPACE: A lightweight
collaborative caching for clusters. Peer-to-Peer Networking and Applications, 3(2):80–
96, 2010.

[2] AT&T - News Room. AT&T launches pilot Wi-Fi project in Times Square, 2010.
http://www.att.com/gen/press-room?pid=4800&cdvn=news& newsarticleid=30838.

[3] AT&T - News Room. AT&T Wi-Fi handles more than 85 million total connections
in 2009, more than four times 2008, 2010.

[4] AT&T - News Room. AT&T Wi-Fi network usage soars to more than 53 million
connections in the first quarter, 2010.

[5] Daniel Barbará and Tomasz Imieliński. Sleepers and workaholics: caching strategies
in mobile environments. ACM SIGMOD Record, 23(2):1–12, 1994.

[6] C. Mic Bowman, Peter B. Danzig, Darren R. Hardy, Udi Manber, and Michael F.
Schwartz. The Harvest information discovery and access system. Computer Networks
and ISDN Systems, 28(1-2):119–125, 1995.

[7] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web caching and
zipf-like distributions: evidence and implications. In IEEE INFOCOM, volume 1,
pages 126–134, March 1999.

[8] Jun Cai and Kian-Lee Tan. Energy-efficient selective cache invalidation. Wireless
Networks, 5(6):489–502, 1999.

[9] Guohong Cao. Proactive power-aware cache management for mobile computing sys-
tems. IEEE Transaction on Computers, 51(6):608–621, 2002.

[10] Guohong Cao. A scalable low-latency cache invalidation strategy for mobile environ-
ments. IEEE Transactions on Knowledge and Data Engineering, 15(5):1251–1265,
2003.

68

http://www.att.com/gen/press-room?pid=4800&cdvn=news& newsarticleid=30838

[11] Boris Y. L. Chan, Antonio Si, and Hong Va Leong. Cache management for mobile
databases: Design and evaluation. In Proceedings of the Fourteenth International
Conference on Data Engineering, pages 54–63, 1998.

[12] Hui Chen, Yang Xiao, and Xuemin Shen. Update-based cache access and replacement
in wireless data access. IEEE Trans. on Mobile Computing, 5(12):1734–1748, 2006.

[13] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms. MIT Press, 3rd edition, 2009.

[14] Gerard Bosch I Creus and Petri Niska. System-level power management for mobile
devices. In International Conference on Computer and Information Technology, pages
799–804, 2007.

[15] Dropbox, Inc. Dropbox, 2010.

[16] Facebook, Inc. facebook, 2010.

[17] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary cache: a scal-
able wide-area web cache sharing protocol. IEEE/ACM Transactions on Networking,
8(3):281–293, 2000.

[18] Cedric C. F. Fong, John C. S. Lui, and Man Hon Wong. Quantifying complexity and
performance gains of distributed caching in a wireless mobile computing environment.
In Proceedings of the Thirteenth International Conference on Data Engineering, pages
104–113, 1997.

[19] Google Inc. Picasa, 2010.

[20] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satya-
narayanan, Robert N. Sidebotham, and Michael J. West. Scale and performance in a
distributed file system. ACM Transactions on Computer Systems, 6(1):51–81, 1988.

[21] Qinglong Hu and Dik Lun Lee. Cache algorithms based on adaptive invalidation
reports for mobile environments. Cluster Computing, 1(1):39–50, 1998.

[22] Jin Jing, Ahmed Elmagarmid, Abdelsalam Sumi Helal, and Rafael Alonso. Bit-
Sequences: A new cache invalidation method in mobile environments. Mobile Networks
and Applications, 2(2):115–127, 1997.

[23] A. Kahol, S. Khurana, S.K.S. Gupta, and P.K. Srimani. A strategy to manage cache
consistency in a distributed mobile wireless environment. IEEE Transaction on Par-
allel and Distributed Systems, 12(7):686–700, 2001.

69

[24] Ajey Kumar, Anil K. Sarje, and Manoj Misra. Prioritised predicted region based cache
replacement policy for location dependent data in mobile environment. International
Journal of Ad Hoc and Ubiquitous Computing, 5(1):56–67, 2010.

[25] Yi-Bing Lin, Wei-Ru Lai, and Jen-Jee Chen. Effects of cache mechanism on wireless
data access. IEEE Transactions on Wireless Communications, 2(6):1247–1258, 2003.

[26] Alok Madhukar, Tansel zyer, and Reda Alhajj. Dynamic cache invalidation scheme
for wireless mobile environments. Wireless Networks, 15(6):727–740, 2009.

[27] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

[28] Xuemin (Sherman) Shen Mursalin Akon, Mohammad Towhidul Islam and Ajit Singh.
Hit optimal cache for wireless data access. In IEEE Globecom, 2010. (accepted to).

[29] Michael N. Nelson, Brent B. Welch, and John K. Ousterhout. Caching in the Sprite
Network File System. ACM SIGOPS Operating Systems Review, 21(5):3–4, 1987.

[30] News Corp. Digital Media. Myspace, 2010.

[31] Gian Paolo Perrucci, Frank Fitzek, Giovanni Sasso, Wolfgang Kellerer, and Joerg
Widmer. On the impact of 2G and 3G network usage for mobile phones’ battery life.
In European Wireless 2009, pages 255–259, 2009.

[32] Photobucket. Photobucket, 2010.

[33] Qzone QQ. Qzone, 2010.

[34] Lakshmish Ramaswamy and Ling Liu. An expiration age-based document placement
scheme for cooperative Web caching. IEEE Transactions on Knowledge and Data
Engineering, 16(5):585–600, 2004.

[35] John T. Robinson and Murthy V. Devarakonda. Data cache management using
frequency-based replacement. In ACM SIGMETRICS Performance Evaluation Re-
view, volume 18, pages 134–142, 1990.

[36] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location and
routing for large-scale peer-to-peer systems. In IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), pages 329–350, 2001.

[37] Andrew S. Tanenbaum. Computer Networks. Pearson Education, NJ, USA, 2002.

[38] The University of California, San Diego. Squid, 2010.

70

[39] Kian-Lee Tian, Jun Cai, and Beng Chin Ooi. An evaluation of cache invalidation
strategies in wireless environments. IEEE Transactions on Parallel and Distributed
Systems, 12(8):789–807, 2001.

[40] Twitter, Inc. twitter, 2010.

[41] ccache under GNU General Public License. ccache, 2010.

[42] Xian Wang and Pingzhi Fan. A strongly consistent cached data access algorithm for
wireless data networks. Wireless Networks, 15(8):1013–1028, 2009.

[43] Wikimedia Foundation, Inc. Domain name system, 2010.

[44] Windows Live SkyDrive. Skydrive, 2010.

[45] Kun-Lung Wu, Philip S. Yu, and Ming-Syan Chen. Energy-efficient caching for wire-
less mobile computing. In Proceedings of the Twelfth International Conference on
Data Engineering, pages 336–343, 1996.

[46] Richard S. L. Wu, Allan K. Y. Wong, and Tharam S. Dillon. E-MACSC: A novel
dynamic cache tuning technique to reduce information retrieval roundtrip time over
the Internet. Computer Communications, 29(8):1094–1109, 2006.

[47] Yahoo! Inc. flickr, 2010.

[48] Jian Yin, Lorenzo Alvisi, Michael Dahlin, and Calvin Lin. Volume leases for consis-
tency in large-scale systems. IEEE Transaction on Knowledge and Data Engineering,
11(4):563–576, 1999.

[49] Youku. Youku, 2010.

[50] YouTube, LLC. Youtube, 2010.

[51] Joe Chun-Hung Yuen, Edward Chan, Kam-Yiu Lam, and H. W. Leung. Cache in-
validation scheme for mobile computing systems with real-time data. ACM SIGMOD
Record, 29(4):34–39, 2000.

[52] Lixia Zhang, Scott Michel, Khoi Nguyen, Adam Rosenstein, Sally Floyd, and Van
Jacobson. Adaptive Web Caching: Towards a new global caching architecture. In 3rd
International WWW Caching Workshop, pages 2169–2177, 1998.

[53] Yingwu Zhu and Yiming Hu. Exploiting client caches to build large Web caches. The
Journal of Supercomputing, 39(2):149–175, 2007.

71

Appendices

72

Appendix A

Both Server and Clients Injected
Updates

In this Appendix, we present our proposed replacement policy and access policies for cache
systems allowing updates to data object from both the clients and the server.

A.1 The Update Process

The update process is simply a composition of the steps defined in previous chapters. When
an object update is injected from the server, the steps described in Section 4.1 is followed.
Whereas, if the update is injected from a client, the steps in Section 5.1 is followed.

A.2 The Update-oriented Replacement Policy (URP)

Gain factor (GF) the object Oi at client j up to time t for cache systems allowing updates
from both the clients and server is computed as follows:

GF j
i (t) =

(µj
i (t) + λj

i (t))µ
j
i (t)

µj
i (t) + λi(t)

(A.1)

Similarly, long term GF is defined as,

GF j
i = lim

t→∞
GF j

i (t) = lim
t→∞

(µj
i (t) + λj

i (t))µ
j
i (t)

µj
i (t) + λi(t)

=
(µj

i + λj
i)µ

j
i

µj
i + λi

(A.2)

73

The algorithmic form of GF computation (gf csi) is shown in Algorithm 4. In an
implementation of PAP and RAP, each call to find replaced (as in Fig. 3.3 and 3.4) is
augmented with gf csi as an argument.

Algorithm 4: gf csi - GF Computation in algorithmic form

input : i is the objects identifier
input : j is the client identifier
output: Gain factor for requested object i at client j

return
(µj

i +λj
i)µ

j
i

µj
i +λi

;

A.3 Quantitative Analysis

In this section, we analyze PAP and RAP for data access, combined with URP for replace-
ment for cache systems where updates are injected from both the clients and the server.
We conclude the following theorem based on the working principle of the URP policy.

Theorem 5 For cache systems where updates are injected from both the clients, as well
as the server, the probability of guaranteed effective hits at each replacement is maximized
for both RAP and PAP access mechanism when as replacement policy URP is in place.

Proof: We prove the theorem by showing that no other replacement policy exists that
can result in higher probability of guaranteed effective hits after t-th replacement than the
case when URP is exercised.

At client j, at any access, the probability of the accessed object being a given object
Oi, 1 6 i 6 N , is

pj
a,i =

µj
i

∑N
i=1 µi,j

=
µj

i

µj
(A.3)

Note that access event is a Poison process. So, the probability of local access or update
to Oi before it is updated by any other clients or the server is,

pj
u,i =

µj
i + λj

i

µj
i +
∑

j λj
i + λS

i

=
µj

i + λj
i

µj
i + λA

i + λS
i

=
µj

i + λj
i

µj
i + λi

(A.4)

74

The metric pj
u,i as well represents the probability of Oi being locally accessed or updated

before the object become invalid due to updates from the server or any other clients.
From (3.3), (A.3), and (A.4), no matter what replacement policy is used, we can deduce,

PRAP (t) = PPAP (t)

=
∑

∀i|Oi∈C′(t)

pj
a,ip

j
u,i

=
∑

∀i|Oi∈C(t)∪{Oa(t)}\{Or(t)}

pj
a,ip

j
u,i

=
∑

∀i|Oi∈C(t)∪{Oa(t)}\{Or(t)}

µj
i

µj

µj
i + λj

i

µj
i + λi

=
∑

∀i|Oi∈C(t)∪{Oa(t)}\{Or(t)}

(µj
i + λj

i)µ
j
i

(µj
i + λi)µj

=
∑

∀i|Oi∈C(t)∪{Oa(t)}

(µj
i + λj

i)µ
j
i

(µj
i + λi)µj

−
(µj

r + λj
r)µ

j
r

(µj
r + λr)µj

=
1

µj

∑

∀i|Oi∈C(t)∪{Oa(t)}

(µj
i + λj

i)µ
j
i

µj
i + λi

−
(µj

r + λj
r)µ

j
r

µj
r + λr

(A.5)

We can drive the follow equality when URP is exercised,

PRAP+URP (t) = PPAP+URP (t) =
1

µj

∑

∀i|Oi∈C(t)∪{Oa(t)}

(µj
i + λj

i)µ
j
i

µj
i + λi

−
(µj

URP + λj
URP)µj

URP

µj
URP + λURP

(A.6)

By definition, OURP has the lowest gain factor among all the cached and newly fetched
objects.

GF j
URP ≡ min

∀i|Oi∈C(t)∪{Oa(t)}

(

GF j
i

)

⇒
(µj

URP + λj
URP)µj

URP

µj
URP + λURP

≡ min
∀i|Oi∈C(t)∪{Oa(t)}

(

(µj
i + λj

i)µ
j
i

µj
i + λi

)

(A.7)

75

From (A.5), (A.6) and (A.7), we can draw the following equality,

PRAP+URP (t) = PPAP+URP (t)

=
1

µj

∑

∀i|Oi∈C(t)∪{Oa(t)}

GF j
i − min

∀i|Oi∈C(t)∪{Oa(t)}

(

GF j
i

)

>
1

µj

∑

∀i|Oi∈C(t)∪{Oa(t)}

GF j
i −GF j

r

= PRAP (t) = PPAP (t)

(A.8)

From (A.8), it is clear that when URP is employed as the replacement policy and
RAP/PAP for access policy, at each replacement, the probability of effective hits is higher
than or equal to any other policy. So, we assert that URP maximizes the probability of
guaranteed effective hits at each replacement for both RAP and PAP access mechanism
when updates are injected from both the clients and the server.�

From Theorem 5, we can postulate Corollary 5 and Theorem 6.

Corollary 5 When the data updates are injected by the clients as well as the server, URP
minimizes the expected cost of data access at each replacement for both RAP and PAP
access mechanism.

Theorem 6 In a cache system where all updates are injected from the clients as well as
the server, in the long run, URP gives optimal guaranteed effective cache hits for both RAP
and PAP.

The corollary and the theorem are proved in Appendix B and Appendix C, respectively.

Corollary 6 When the data updates are injected by the clients as well as the server, URP
minimizes the expected cost of data access in the long run for both RAP and PAP access
mechanism.

Proof of the corollary is presented in Appendix D.

76

Appendix B

Cost Optimality of the Proposed
Policies

Here, we prove Corollary 1, 3 and 5.

Proof: With the RAP cache access scheme, when an access results in an effective
cache hit, the client and the server exchange a request and acknowledgement message only
(Fig. 3.3(a)). Otherwise, i.e., if the access causes a cache miss or an invalid cache hit, the
client sends the server a request message, and the server responds to the client by fetching
the requested data object (Fig. 3.3(a)). If the cache is full, the server also forwards a
replacement decision (Fig. 3.3(b)). Therefore, for RAP,

CRAP (t) = PRAP (t)(Creq + Cack) + (1− PRAP (t))(Creq + Cobj)

= Creq + Cobj + PRAP (t)(Cack − Cobj)
(B.1)

In all practical applications, the cost of transmitting a simple message, such as an
acknowledgment, is much smaller than the cost of transmitting an entire object, i.e.,
Cack ≪ Cobj . If simple messages are more or as expensive as fetching data objects, deploy-
ment of caches for strongly consistent applications would be more expensive in terms of
both computing and communication resources. Thus, Cack − Cobj < 0, but PRAP (t) > 0
and PRAP+URP (t) > 0. We know that PRAP (t) is maximized when URP is used, i.e.,
PRAP+URP (t) > PRAP (t) (from Theorem 1 when updates are injected from the server only,
from Theorem 3 when updates are injected from the clients only, or from Theorem 5
when updated are injected from both the server and the clients). Therefore, when URP is

77

applied, following properties hold:

CRAP+URP (t) = Creq + Cobj + PRAP+URP (t)(Cack − Cobj)

6 Creq + Cobj + PRAP (t)(Cack − Cobj) = CRAP (t)
(B.2)

In PAP, in case of an effective cache hit there is no need for communication in between
the client and the server. Therefore, the cost of access resulting from the replacement at
the t-th access is:

CPAP (t) = (1− PPAP (t))(Creq + Cobj) (B.3)

Again, (from Theorem 1, 3 and 5), CPAP (t) is minimized when URP is employed to
make replacement decisions, i.e., PPAP+URP (t) > PPAP (t). Thus,

CPAP+URP (t)

= (1− PPAP+URP (t))(Creq + Cobj)

6 (1− PPAP (t))(Creq + Cobj) = CPAP (t)

(B.4)

�

78

Appendix C

Long Term Optimality of the
Proposed Policy

Here, we prove Theorem 2, 4 and 6.

Proof: Let the content of a cache be C up to time t1. Let object Oa1 be accessed at
t1, and there is another replacement policy called OPT making a different decision than
URP. The objects replaced by URP and OPT are OURP1 and OOPT1, respectively. By
definition, GFURP1 6 GFOPT1. It has been proven (in Theorem 1 for system where updates
are injected from the server only, in Theorem 3 for systems where updates are injected from
the clients only, and in Theorem 5 for systems where updated are injected from both the
server and the clients) that the guaranteed hits for URP are higher than or equal to any
other replacement policy, including OPT. Assume that PURP (t1) > POPT (t1). To makeup
the loss and outperform URP, let at a later time t2 > t1, when Oa2 is accessed, OPT makes
another replacement decision, where URP continues with the existing cache content. Thus,
PURP (t1) = PURP (t2) < POPT (t2). At time t2, object OOPT2 is decided to be replaced.
The events are shown in Fig. C.1. Next, we prove the theorem by contradiction and show

Figure C.1: Replacement in OUR and other policies

79

that OPT replacement policy cannot exist.

POPT (t2) > PURP (t1)

⇒
∑

∀i|Oi∈C

GFi + GFa1 + GFa2 −GFOPT1 −GFOPT2

>
∑

∀i|Oi∈C

GFi + GFa1 −GFURP1

⇒ GFa2 > GFOPT2 + GFOPT1 −GFURP1

(C.1)

Here, GFOPT1 > GFURP1 and thus, a2 6= OPT2 and the replacement at t2 involves in
an eviction. It is clear that the following equation must hold:

OOPT2 ∈ C ∪ {Oa1}\{OOPT1} (C.2)

We consider three possible cases for choosing OOPT2.

Case 1, where OOPT2 ∈ C\{OOPT1, OURP1}: URP would make an eviction and accom-
modate OOPT2, as C\{OOPT1, OURP1} ⊆ C ∪ {Oa1}\{OURP1}.

Case 2, where OOPT2 ≡ OURP1: From (C.1), we can derive GFa2 > GFOPT1. As
OOPT1 ∈ C ∪ {Oa1}\{OURP1}, URP would evict Ok ≡ min∀i|Oi∈C∪{Oa1}\{OURP1} Oi, where
either k ≡ OPT1 or (GFOPT1 > GFk ⇒ GFa2 > GFk) ∧ (k 6= OPT1).

Case 3, where OOPT2 ≡ Oa1: With similar argument of case 2, it can be shown that
URP would make a replacement decision to evict some Ok ∈ C ∪ {Oa1}\{OURP1} to
accommodate Oa2.

Therefore, it is not be possible that OPT makes an eviction decision to accommodate
Oa2 at t2 while satisfying (C.1), and at the same time, URP does not also accommodate
Oa2 by evicting one of the cached objects. Hence, a policy like OPT does not exist. Using
the same argument, it can be shown that there exists no sequence of replacements (by
another replacement policy) which results in higher guaranteed effective hits than URP.�

80

Appendix D

Long Term Cost Optimality of the
Proposed Policies

Here, we prove Corollary 2, 4 and 6. The proof is similar to the short term cost optimality
proof presented in Appendix B.

Proof: From (B.1), we can drive that

C̃RAP = P̃RAP (Creq + Cack) + (1− P̃RAP)(Creq + Cobj)

= Creq + Cobj + P̃RAP (Cack − Cobj)
(D.1)

Here, C̃RAP and P̃RAP are used to denote long term cost and probability of effective
hits, respectively, when RAP is exercised. From the discussion of Appendix B, we know

that Cack − Cobj < 0, P̃RAP > 0 and ˜PRAP+URP > 0. From Theory 4, 2 and 6, we further

know that ˜PRAP+URP > P̃RAP . Therefore, when URP is applied, following properties hold:

˜CRAP+URP = Creq + Cobj + ˜PRAP+URP (Cack − Cobj)

6 Creq + Cobj + P̃RAP (Cack − Cobj) = C̃RAP

(D.2)

For PAP, we can drive the following from (B.3):

C̃PAP = (1− P̃PAP)(Creq + Cobj) (D.3)

81

Here, C̃PAP and P̃PAP are the notations for long term cost and probability of effective

hits, respectively, when PAP is exercised. Again, (from Theorem 2, 4 and 6), C̃PAP is

minimized when URP is employed to make replacement decisions, i.e., ˜PPAP+URP > P̃PAP .
Thus,

˜CPAP+URP = (1− ˜PPAP+URP)(Creq + Cobj)

6 (1− P̃PAP)(Creq + Cobj) = C̃PAP

(D.4)

�

82

Appendix E

Probability of No Updates

Let there be two independent Poison Processes with rate µ1 and µ2. In this appendix, we
will find the probability to happening an event of the first process before an event of the
second process.

Let N1(t) and N2(t) be the number of events from the first and second process, respec-
tively, in between time t0 and t0 + t.

We have,

P [N1(t) = n] = exp−µ1t (µ1t)
n

n

and,

P [N2(t) = n] = exp−µ2t (µ2t)
n

n

The inter-arrival time of two consecutive events from the first process, X, follows ex-
ponential distribution with parameter µ1, i.e.,

fX(x) = µ1 exp−µ1x

Therefore, probability of no event from the second process, in between two events from
the first process

83

=

∫ ∞

−∞

P [N1(x) = 0|X = x]fX(x)dx

=

∫ ∞

−∞

expµ2 µ1 exp−µ1x

=
µ1

µ1 + µ2

To use the above equation to drive the probability of an object not being updated, we
may consider the first process being the combination of access processes and the second
process being the combinations update processes to the concerned object.

84

	List of Figures
	Nomenclature
	Introduction
	Caching in Computing Environment
	Motivation
	Problems
	Outline
	Thesis Contributions

	Related Works
	ccache
	Dynamic Programming
	Harvest
	Adaptive Web Caching
	Summary Cache
	EA-based Placement
	E-MACSC
	P2P Client Cache
	SPACE
	Policies for Strong Consistency
	Invalidation Report
	Poll-Each-Read (PER) and Call-Back (CB)

	Update-based Cache Replacement

	Preliminaries
	System Model
	Performance Metrics
	Notations
	Primitives for the Proposed Policies
	Working Steps of the Access Policies
	Working Steps for Update-oriented Replacement Policy (URP)
	Cache Content Invariants
	Simulation Model for Performance Evaluation
	Performance Metrics
	Simulation Setup

	Server Injected Updates
	The Update Process
	The Update-oriented Replacement Policy (URP)
	Quantitative Analysis
	Performance Evaluation
	Objects with No updates
	Impact of Number of Objects and Cache Size
	Impact of Zipf Ratio
	Impact of Number of Mobile Stations
	Impact of Message Size
	General Observations

	Client Injected Updates
	The Update Process
	The Update-oriented Replacement Policy (URP)
	Quantitative Analysis
	Performance Evaluation
	Impact of Objects Population
	Impact of Cache Size
	Impact of Objects with No updates
	Impact of Zipf Ratio
	Impact of Number of Mobile Stations
	Other Observations

	Conclusion
	Contribution
	Future Works

	Bibliography
	Appendices
	Allowing Updates from Both the Server and Clients
	The Update Process
	The Update-oriented Replacement Policy (URP)
	Quantitative Analysis

	Cost Optimality of the Proposed Policies
	Long Term Optimality of the Proposed Policy
	Long Term Cost Optimality of the Proposed Policies
	Probability of No Updates

