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Abstract—Recently, carrying control signals on passing data
packets has emerged as a promising direction for efficient control
information transmission. With control messages carried on data
payload, the extra air time needed for control packets like
RTS/CTS is eliminated and thus channel utilization is improved.
However, carrying control signals on the data payload of a
packet requires the data packet to have a sufficiently large SNR,
otherwise both the data packet and the control messages are lost.
In this paper, we propose Hitchhike, a technique that utilizes the
preamble field to carry control messages. Hitchhike completely
decouples the control messages from the payload and therefore
the superposition of (multiple) control messages has little adverse
effect on the operation of the payload decoding. We implement
and evaluate Hitchhike in the USRP2 platform with 5 nodes.
Evaluation results demonstrate the feasibility and effectiveness of
Hitchhike. Compared with the state-of-the-art, e.g., Side-channel
in 802.15.4, Hitchhike improves the detection accuracy of control
messages by 40% and reduces the data loss caused by control
messages by 15%.

I. INTRODUCTION

Due to the scarcity of wireless spectrum, it is a common

practice within wireless protocols to send control messages

as data messages, see e.g., ZigBee and Wi-Fi. As a prime

example, the control messages RTS/CTS used in CSMA/CA-

type of protocols are strictly speaking data packets containing

control information. While this is certainly a very convenient

way of disseminating and exchanging control information,

the overhead is significant: these extra data packets occupy

a disproportionately large portion of air time compared to the

amount of information they carry [1].

Recently, there has emerged a promising new direction for

efficient control message delivery, one that tries to build the

control plane on top of real data packets, see e.g., [2], [3]. The

basic idea is to embed control information in data messages

so the two may be transmitted concurrently. This is illustrated

in an example shown in Fig. 1(a). Bob wants to transmit

a control message to Carol telling her that he is Bob (the

equivalent of the “HELLO” control packet in many protocols).

Instead of using a separate data packet for this, Bob tries to

ride his message on top of a data packet from Alice to Carol

as follows. He intentionally interferes a few bits of Alice’s

packet and uses these bits to convey his control information.

Carol receives the (slightly) corrupted data packet and extracts

the control information from Bob by calculating the relative

distance among those bits. The original data message can

also be recovered due to the modulation redundancy [2] in

physical layer (PHY) implementation. This so-called in-band
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Fig. 1. Illustration of Hitchhike compared with payload based mechanism.
In Side-channel (Fig. 1(a)), the control message from Bob is carried on the
payload of the packet form Alice to Carol. While in Hitchhike (Fig. 1(b)),
the control message is carried on the preamble of the packet.

control message1 transmission mechanism eliminates the extra

transmission time for control messages and therefore improves

channel utilization.

However, there are three problems with the above mech-

anism. First of all, this mechanism requires high SNR for

the data packet. The basic assumption for this mechanism

to work is that the payload has a large redundancy, while

in reality, due to the existence of noise and interference,

the redundancy margin may be very limited. As a result, it

is possible to corrupt the data bits in the payload beyond

recovery by inserting the control message, especially under

low SNR conditions. Second, even if the control message

does not adversely affect the decoding of the payload, it may

be difficult to correctly decode the control message under

low SNR conditions. There may be other “error bits” caused

by noise and unintentional interference, which could mislead

the receiver to incorrectly decode and interpret the control

message. Lastly, this mechanism suffers when multiple users

try to transmit control messages via the same data payload.

In Fig.1(a), if another user, say David, also transmits his

control message on top of Alice’s packet, then the two control

messages interleave and Carol may not be able to decode either

of them.

In this paper, we propose Hitchhike, a novel technique that

carries control messages on the preamble rather than data

payload, and decodes them using correlation. As shown in

Fig. 1(b), the control message from Bob is sent as a unique

1We use control for short in the rest of this paper.
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signal pattern superposed on the preamble field of the packet

form Alice to Carol. Carol then detects both the preamble of

the packet and the control signal from Bob by correlation.

Compared with payload-based mechanism, preamble-based

control plane has the following advantages. First, by carrying

the control in the preamble field, the data payload is decoupled

from control signaling. As a result, the decoding of control

does not interfere with the decoding of data bits. Indeed,

detecting a preamble requires far lower SNR than decoding

a bit does, thus using this technique control messages can be

transmitted at extremely low SNR levels, without affecting

their detection accuracy. This also means that, there is no in-

creased SNR requirement on the payload as it is not threatened

by interference from the control message. Last but not least,

multiple control messages can be transmitted concurrently over

a common data packet’s preamble field and detected using a

bank of correlators.

This technique, however, is not without its own challenges.

First of all, the superposition of control signals over a preamble

may cause missed detection of the preamble which leads

the whole packet to be missed. To address this, we need to

carefully design orthogonal codes for control messages that

have appropriate lengths with respect to the signal pattern

of the preamble. The second challenge lies in the detection

and recovery of control information from the mixed control-

preamble signal. To eliminate the impact of the preamble in

the detection of control, we design a subtraction-detection

algorithm in which the preamble signal is subtracted from the

mixed signal to provide higher detection accuracy for control

signals. Finally, we need to ensure that the control signals can

ride exactly on the preambles, i.e., sufficiently synchronized

with the preamble. For this we propose to utilize the beginning

part of a preamble a synchronization mechanism signaling the

incoming of a preamble.

We design and implement Hitchhike on the GNURa-

dio/USRP2 platform, and our experiments involve 5 such

nodes. Our evaluation results indicate that placing the specially

designed control signals on a preamble has little adverse

effect on the normal operation of the preamble. Moreover, the

control signals carried by the preamble can also be detected

accurately. Compared with the state-of-the-art technique, Side-

channel [2], the detection accuracy of Hitchhike is 40% higher

and the side effect upon data decoding is 15% lower in

average. Our main contributions are summarized as follows:

• We propose a novel concept that utilizes preambles for

carrying control information. We contrast this with the

payload-based mechanisms and highlight its advantages

in being able to operate under lower SNR requirements

and in supporting multiple users.

• We design and implement Hitchhike, a mechanism that

uses the above concept to deliver control messages

in 802.15.4 networks. We design orthogonal codes for

control messages and develop the subtraction-detection

algorithm for their detection.

• We validate the feasibility of Hitchhike and evaluate its

performance with 5 nodes on the GNURadio/USRP2
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Fig. 2. Format of a packet in the 802.15.4 PHY layer. The preamble field
has a repeated signal pattern.

platform. The results indicate that the preamble and

the designed control messages can work in harmony in

Hitchhike.

The rest of this paper is organized as follows. Section II

details the motivation of this work. In Section III we introduce

the design detail of Hitchhike. In Section IV, we present

the implementation of Hitchhike, followed by a performance

evaluation in Section V. We discuss the potential applications

of Hitchhike in Section VI and the related work in Section VII.

We conclude the paper in Section VIII.

II. MOTIVATION

In this section we detail the motivation behind the concept

and design of Hitchhike. We start with a preliminary on

the use of preamble and related physical layer details. We

then describe a gap between the required SNRs in detecting

the preamble and decoding the data payload. We end by

presenting the main challenges in using preambles to carry

control messages.

A. A Primer on Preamble

In wireless networks with IEEE 802.15.4 [4] and 802.11 [5]

PHY layer, a data packet is mainly composed of four parts:

the preamble field, SFD (Start of Frame Delimiter), length

and the payload field. As shown in Fig. 2, the preamble

is the beginning of the packet followed by SFD and Len,

and the rest is the payload. Preamble is primarily used for

a receiver to detect the incoming/arrival of a packet and

perform synchronization needed for packet reception. The SFD

field indicates the start of the MAC sublayer frame and Len

specifies the length of the payload.

A preamble has a known repeated pattern so that the receiver

can use auto-correlation with the received signal to determine

its presence in the air. To ensure detection robustness, a

preamble is designed to have a repeated pattern. For example,

under the 802.15.4 specification, a preamble contains 32 binary

‘0’s which is in fact 8 repeated ‘0’ symbols. The correlation

operation would output a spike if a preamble is present in the

signal. At the same time, the receiver synchronizes itself with

the sender and calculates parameters like carrier frequency

offset (CFO). It begins receiving the payload signal after the

SFD and length checking.

B. The SNR Gap: Detection vs. Decoding

As mentioned above, a preamble is detected via correlation,

which is different from the decoding operation for a payload.

In short, determining an unknown bit sequence is much harder

than detecting a known pattern. The reasons are as follows.

First, correlation is a coarse decision process and has relatively
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Fig. 3. The SNR gap between decoding the payload and detecting the
preamble. The gap can be as large as almost 10 dB.

large tolerance for errors, while decoding a bit entails a high

SNR requirement and needs to map the received signal to

a constellation diagram accurately to decode a bit. Second,

a preamble is composed of repeated signal patterns, which

further enhances the detection robustness. By comparison, the

redundancy provided by coding and modulation schemes [4],

[5] for the data payload is not as much.

To clearly see the gap between what’s needed to detect a

preamble vs. decode a packet, we conduct an experiment with

two USRP2 devices running with 802.15.4 PHY and placed 10

feet apart. One is used as a transmitter and the other a receiver.

Packets of length 100 bytes are sent from one to the other with

different SNRs, ranging from -10 dB to 15 dB. The received

signal trace is collected and decoded using standard decoding

block for IEEE 802.15.4 on MATLAB. The experiments are

repeated for five times.

Fig. 3 shows the result for the detection of the preamble

and for the decoding of the payload, respectively. In each

case we see a very clear threshold in acceptable SNR for

the corresponding operation to be considered successful. For

the decoding of the payload, this threshold is around 7 dB:

the payload decoding rate is > 90% above this level, and

falls precipitously to nearly zero when the SNR is below 3

dB. For the detection of preambles, this threshold is around

-3 dB, significantly below what’s required for the payload.

This finding coincides with the report in [1], [6]. Further, we

see that the detection of the preamble degrades much more

gracefully: it stays above 20% with the SNR falling below -7

dB.

If we set the decoding/detection requirement to above 90%,

then this SNR gap is about 10 dB from our experiment.

The gap comes from the correlation mechanism and the

inherent redundancy in a preamble structure with repeated

signal patterns. This gap suggests great potential for preambles

to become a carrier of control information. Because of the

physical separation, delivering control over preambles does

not affect the data bits. What is more, as preambles have low

SNR requirement, i.e., the preamble pattern can be recognized

with low SNR, there is more robustness in our ability to detect

the control messages. We give detailed analysis in the next

section.

C. Challenges in Using the SNR Gap

The introduction of control messages on a preamble should

not adversely affect the functionality of the preamble. In

particular, the preamble is used to detect the beginning of a

data packet and perform synchronization between a receiver

and a transmitter. If the insertion of control messages affect

the operations, then the receiver may miss the entire packet.

Second, the detection accuracy of control messages carried

in the preamble needs to be sufficiently high, i.e., with

low false positive and false negative probabilities, as control

information is extremely important. If the control signal is

easily drowned by the preamble signal then this scheme would

not be very useful even if it doesn’t harm the underlying,

original operation of data communication.

We next detail the design of Hitchhike to tackle theses

problems.

III. DESIGN OF HITCHHIKE

In this section, we describe the main design of Hitchhike.

We first present the code design for control messages to ensure

little mutual influence between the preamble and the control

messages. Then we describe the design of detection module

for the control messages.

A. Design of Control Messages

In order to decouple the control messages from the preamble

and detect possibly multiple control messages/signals from

the preamble, it is clear that the control signals need to

be orthogonal to the preamble signal as much as possible.

In later analysis we show that the detection accuracy is

proportional to how the control signals are orthogonal to the

preamble. Similarly, the control signals need to have as little

cross-correlation among themselves as possible. Strong cross-

correlation among control signals will result in false detection

of a non-signaled message.

In addition, the length of the control signal needs to be

carefully designed due to an inherent tradeoff: longer control

signals will have a larger adverse effect on the preamble

detection, while shorter control signals lower the detection

accuracy of the control messages as well as the capacity in

carrying control information.

Below we use 802.15.4 as an example to illustrate the design

choice of control signals/codes against the preamble. Under

the 802.15.4 specification, DSSS (Direct Sequence Spread

Spectrum) is used as the modulation scheme. With DSSS, a

data symbol containing four digital bits is spread to a 32-

chip sequence. The chips are the transmitted signal elements.

Therefore, the 8-symbol preamble in 802.15.4 is in fact a

sequence of 256 chips. Without loss of generality, we denote

the length of the preamble field by l (chips), the length of a

control signal by x chips, and by m the number of chips per

symbol.

In general, the preamble length l determines its detection

accuracy [7]. This is because a preamble contains a repeated
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signal pattern, so the larger the value of l, the more redundancy

there is in the preamble for the detection to be accurate.

For instance, with the cc2420 receiver [8], a commonly used

802.15.4 receiver chip, the preamble length can be configured,

with a minimum length as small as 2 symbols, indicating the

possibility of transmitting a very short preamble that can be

detected. This also means that with an 8-symbol preamble,

the remaining 6 symbols serve purely as redundancy, and can

potentially be used for other purposes.

Consider now using x out of the l chips to carry a control

signal. If the preamble can be detected with probability p from

a single symbol (p is naturally a function of the preamble

SNR), then taking away x chips to carry control signals leaves

l − x chips, or (l − x)/m repeated symbols, and a detection

probability of:

P (x) = 1− (1− p)
l−x

m (1)

At the same time, the capacity, i.e. the number of orthogonal

codes that may be packed in the space of x-chip signals, is

proportional to x. Thus we see clearly the tradeoff in selecting

a good value of x: larger x benefits the detection of control and

the capacity of control information, but decreases the accuracy

of preamble detection.

In our design, we wish to use a minimum length of chips

to generate a large number of control codes that have low

correlation with the preamble and low cross-correlation within

the control codes. We implement the control codes with PN

sequences in IEEE 802.15.4 [4] and use the length of x = 64.

B. Detecting the Control Message

We next describe how the control messages carried in the

preamble field can be detected with the correlation detection

technique [6], [9], [10]. In order to be self-contained, we

start with a brief introduction to the principle of correlation

detection for multiple signals even though this is standard

communication basics.

1) Correlation detection of multiple signals: In wireless

communication, the received symbols differ from the transmit-

ted symbols due to channel distortion and interference. This is

often captured by the following expression, with yi[n] denoting

the nth received symbol from sender i, after attenuation and

phase shift to the transmitted symbol xi[n] caused by the

wireless channel [11]:

yi[n] = Hixi[n] + wi[n] (2)

where Hi is the channel coefficient between the transmitter

and the receiver and wi[n] a random noise. Suppose that

N users transmit their signals simultaneously, the received

composite signal can be represented as with w =
∑

i wi

denoting the composite noise signal:

y[n] =

N∑

i=1

Hixi[n] + w[n] (3)

The correlation-based detection mechanism works as fol-

lows. Denote by C(s, y, q) the correlation coefficient between

a received signal y and a known pattern s (either the preamble

or a specific control signal pattern) of length L at a shifted

position q, given by:

C(s, y, q) =

L∑

k=1

s∗[k]y[k + q] (4)

where s∗[k] is the complex conjugate of s[k]. The value of

C(s, y, q) is low when the signal s is not present in y, and

even when the signal s is in y, the correlation values has a

spike only when y[k+ q] aligns well with the beginning of s.

When the received signal matches s and they align well, the

correlation coefficient of the spike is given by:

C(s, y, q) =

L∑

k=1

s∗[k]y[k + q] = H
L∑

k=1

|s[k]|2 (5)

When y is a composite signal containing multiple signal
patterns of interest, including both the preamble and control
messages in our case, we will try to detect the presence of the
preamble first, followed by each control messages in serial.
This can be done by correlating the received composite signal
y with each known signal pattern. Due to the orthogonality
between the preamble and the control signals, each correlation
operation is enhanced on one signal of interest and suppresses
the others, and thus can determine the presence of each signal,
one at a time. More precisely, if present in the received com-
posite signal y are the transmitted preamble s1 from sender
1, as well as control message si from sender i, i = 2, · · · , N ,
then we will have (omitting the noise terms for simplicity):

C(si, y, q) =

L∑

k=1

s
∗
i [k]

N∑

j=1

yj [k + q]

=

L∑

k=1

s
∗
i [k]Hisi[k + q] +

L∑

k=1

∑

j 6=i

s
∗
i [k]Hjsj [k + q]

=

L∑

k=1

s
∗
i [k]Hisi[k + q]

= Hi

L∑

k=1

|si[k]|
2

(6)

due to the orthogonality between si and sj , i 6= j. We

normalize the correlation value and detect the presence of

a signal by its strength using a threshold. The normalized

correlation is as follows:

N(s, y, q) =
C(s, y, q)
∑L

k=1
|s[k]|

(7)

When s is present in y, the theoretical normalized correlation

value is N(s, y, q) = 1.

2) The Subtraction-Detection Algorithm: In theory, as

shown above, we can use Eq. 7 to detect the control mes-

sages. However, in practice, the relative strengths between the

preamble signal and control signals and the non-complete or-

thogonality affect the correlation value because the signals and

the channel coefficients cannot be completely independent [6]:

the stronger signal dominates the output of the correlation.

To overcome this problem, we adopt a signal subtraction

technique, similar to the idea of successive signal cancellation

[12]. Specifically, the receiver subtracts the preamble signal
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Algorithm 1 The Subtraction-Detection Algorithm

Input: received signal y, known preamble p, controlling messages
set S and threshold set T .

Output: The decision set D
1: /* Correlate and subtract preamble from y */
2: Calculate C(p, y, q) with Eq. 7
3: if C(p, y, q) > Tp then
4: dp ← 1
5: Recover p′

6: y ← y − p′

7: /* Correlate control signals */
8: for all si ∈ S do
9: Calculate C(si, y, q) with Eq. 7

10: if C(si, y, q) > Ti then
11: di ← 1
12: end if
13: end for
14: return D
15: end if

from the mixed signal to enhance the correlation values

for control messages detection. As we have mentioned, the

preamble signal is a sequence of repeated symbol pattern, we

can use any individual received symbol and repeat the symbol

to recover the entire preamble, considering that the channel

condition is relatively static during a short time spans [13]. In

our design, we use the symbols that are not overlapped with

control messages as a “clean” symbol. Then this clean symbol

is subtracted from the mixed signal to obtain the remainder that

contains the control signals.

It should be mentioned that the received signal contain-

ing the preamble and control needs to be stored. After the

preamble is detected and the clean symbol found, this stored

signal then goes through the subtraction and correlation oper-

ations. Compared to directly operating on the original signal,

correlation using the processed signal leads to more accurate

detection results. Note that the subtraction operation doesn’t

require tight synchronization in our case as we do not need

to decode the signal and thus coarse subtraction suffices. The

subtraction-detection results are presented in Section V.

Combine the correlation and subtraction techniques above,

we propose the subtraction-detection algorithm in Alg. 1. Here

y denotes the received signal, p is the known preamble pattern,

and S = {s1, s2, ...sk} represents the set of control signals.

The vector D = {d1, d2, ...dk} (dp for the preamble) records

the detection results, with di = 1 denoting the presence of

control message si and 0 otherwise. As shown, the preamble

is detected first by correlating y with p, and then the pure

preamble signal p′ is obtained by repeating any clean symbol

in y. The pure control signal is obtained by subtracting p′ from

y. For the resulting signal, the control signals are sequentially

correlated. Finally, the result D is returned.

C. Other practical implementation issues

1) Frequency offset: Due to manufacturing limitations, the

transmitter and the receiver has a center frequency offset δf .

This offset will also affect the detection accuracy. However,

based on the finding in [6], the frequency offset is relatively

static and can be estimated based on history information.

Upper layer 

applications

Mapping
Control 

message

Data 

packet

Digital 

modulator
DAC

(a) The transmitter module.

DAC
Preamble 

detection

Payload 

decoding

Subtractor Correlator

Upper layer 

applications

(b) The receiver module.

Fig. 4. Implementation of transmitter and receiver module in Hitchhike.

Besides, according to our experiment measurement, the offset

is usually small in homogeneous networks, e.g., 262.85 Hz

in ZigBee networks on average [14]–[16]. Therefore in the

current implementation of our detection algorithm, we omit the

frequency offset caused by activities within the same protocol.

2) When to get on board: Earlier we described how the

redundancy in a preamble (the repeated signal pattern) allows

us to use a few symbols to carry control signals. A prerequisite

to this is for the transmitters of control messages to be able to

quickly detect the presence of a preamble and be sufficiently

synchronized to the incoming transmission. Again using the

redundancy, the sender does so by detecting the presence of

the preamble using only the first few symbols as described

earlier.

D. Complexity and Overhead

Hitchhike incurs limited overhead and needs no modifica-

tion to the protocol and hardware. The extra requirement only

lies in the detection, as it costs little to generate the control

messages and store the signal. For example, the devices only

need to store the signal trace during preamble period, which is

of only 256 chips in IEEE 802.15.4 [4]. For signal correlation,

with a control messages set which has N control messages,

the computational complexity of the correlation process is

bounded with O(N).

IV. IMPLEMENTATION

This section describes our implementation of the Hitchhike.

We implement the transmitter and receiver components of

Hitchhike on GNURadio/USRP2 software radio platform. We

use the RFX2400 daughterboards which operate in the 2.4

GHz range. The software for the signal processing blocks is

from the open source GNURadio library.

A. Transmitter Implementation

Fig. 4(a) presents the implementation of the transmitter in

Hitchhike. A control message generation block is added to

the standard transmitter design. Therefore the transmitter is

able to transmit both data packet and control commands. A
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Fig. 5. Overview of the evaluation environment. 5 USRP2 devices are used
in our experiments and the evaluation is conducted in an indoor environment.

control message goes through the same modulation process

as data does, while the data packet transmission process is

unchanged.

B. Receiver Implementation

The implementation of the receiver is shown in Fig. 4(b).

A detector block for detecting the control messages contained

in the preambles has been added to the standard receiver

design. The detector contains two parts: the subtractor and

the correlator. The subtractor module subtracts the preamble

signal from the mixed signal with the rebuilt preamble pattern.

The correlator block correlates the remained signal with the

predefined codes in the control messages set. Finally the

detected messages are passed to the upper layer applications.

V. EVALUATION

We evaluate Hitchhike in this section. Fig. 5 shows the eval-

uation environment and devices. We use 5 USRP2 nodes with

4 transmitters and 1 receiver. Among the transmitters, one is

transmitting data packets while the rest three transmit control

messages. The transmitters and the receiver are connected to

a PC respectively via a switch.

We benchmark Hitchhike’s performance with the following

metrics in our evaluation:

• The detection error introduced by the control signals on

the preamble.

• The detection accuracy of control messages and how well

the subtraction-detection algorithm works.

• The performance of Hitchhike against the state-of-the-art

Side-channel [2] in terms of detection accuracy and loss

rate with different SNR.

A. Experiment Settings

Modulation scheme. Hitchhike takes modulation and de-

modulation as a black box and works with various modulation

schemes. In our implementation, however, we use 802.15.4

DSSS modulation to validate Hitchhike.

Test scenarios. We validate Hitchhike in environments

without interference from other protocols like Wi-Fi tech-

nology. In the future, we may extend the experiments under

the interference from other 2.4 GHz protocol like Wi-Fi and

Bluetooth.

Parameter settings. The control messages have length of

64 chips (2 symbols), the data packet have length of 30 bytes.
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Fig. 6. Illustration of received signal traces. Fig. 6(a) depicts the signal trace
when only one control signal is added on the preamble. Fig. 6(b) is the case
when three control messages are put on the preamble.

The preamble has length of 8 symbols, the same as specified

in the IEEE standard [4]. The center frequency is set to 2.432

GHz, which overlaps with the Wi-Fi band. To test the detection

accuracy for both the preamble and the control messages,

we vary the transmit power of the preamble and the control

messages. The powers are configured to have SNR range from

10 dB to 26 dB (by first measuring the noise power and

setting the amplitude of the transmitters), therefore the SNR

difference between the preamble and the control signal can

range from -16 dB to 16 dB. The data transmitters and the

control transmitters transmit 100 packets at each SNR level.

The detection threshold for the control messages is set to 0.3.

B. Signal Trace Analysis

We begin by showing the representative signal traces when

control is superposed in the way described above, in Fig. 6.

Each trace is a whole packet and a dotted line delineates the

preamble and the payload. Fig. 6(a) shows a single control

signal added onto the preamble, resulting in the observed

spikes and fluctuation in the preamble field while the payload

is unaffected. Fig. 6(b) shows three control signals added onto

a preamble. The signal in the overlapping period is enhanced,

seen by the power level of the composite signal (the red dashed
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Fig. 7. Detection error of preamble when there is no external interference.

TABLE I
FREQUENCY OFFSET WITHIN ZIGBEE DEVICES.

Estimated CFO (Hz) avg. min. max.

With Control 262.85 181.43 385.81

Without Control 151.26 112.56 181.43

line).

This set of traces also serve to highlight our testing scenar-

ios. We first evaluate the detection accuracy of the preamble

after the insertion of the control messages. We then examine

the detection of the control messages from the mixed signals

with Alg. 1.

C. Detection Error of the Preamble

We first examine what effect control messages have upon

the operation of a preamble by measuring the detection error

of a preamble when control messages are added. We will limit

our attention to a single control signal in this subsection.

Detection error. Fig. 7 shows the detection error when

there is no Wi-Fi interference. As expected, the preamble

detection error decreases as the SNR difference between the

two (preamble and control) increases. Overall the addition of

control messages increases the preamble detection error only

slightly, e.g., less than 1% on average. This shows that the

orthogonality of the signals, as well as the length of the control

signal have been chosen appropriately.

Estimated frequency offset. To further investigate the rea-

son behind the increased error rate, we analyze the estimated

frequency offset of the received signal. As mentioned in

Section III, a receiver performs frequency offset estimation

using FFT and finds the center frequency by looking for the

frequency with the strongest power. We measure the estimated

frequency offset with the signal traces shown in Fig. 6. When

there is no interference from Wi-Fi, the estimated frequency

offset is always less than 400 Hz, with and without the control

messages, as is shown in Tab. I.

In summary, we conclude that the superposition of control

messages with length of 64 chips on the preamble cause

little adverse effect (less than 1% additional error rate and

no significant frequency offset).
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Fig. 8. Detection result for control message in single control user scenario.
Fig. 8(a) shows the comparison of correlation value before and after the
preamble is subtracted. Fig. 8(b) shows the detection accuracy with Alg. 1.

D. Detection Error of Control Messages

Next we evaluate the detection results of control messages.

We first calculate the correlation coefficient of the control

signal without subtracting the preamble, and then compare this

with that after the adoption of Alg. 1 to verify the effectiveness

of the algorithm. We also measure the detection accuracy at

various SNR differences.

Correlation coefficient. The bars with mark in Fig. 8(a)

show the correlation result for control message without sub-

tracting the preamble signal. We see that the correlation values

are only 0.1 above the detection threshold 0.3, when the

control SNR is below that of the preamble by more than 8

dB. It is also interesting to see that the correlation coefficient

for the control message doesn’t depend heavily on the SNR

difference. For example, when the SNR difference are -16 dB

and 16 dB, respectively, the resulting correlation values differ

only by 0.1.

The subtraction algorithm. The bars without marks in

Fig. 8(a) show the corresponding correlation value after the

preamble signal is subtracted from the mixed signal. Compared

with the results before subtraction, the correlation value at

each SNR level is improved by at least 0.2, which directly

enhances the detection accuracy for control messages. The

absolute value for the correlation coefficient is nearly 0.6,

0.3 higher than the threshold, even in the presence of noise.



8

 0

 20

 40

 60

 80

 100

 0  4  8  12  16  20  24

D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y
 (

%
)

SNR (dB)

Side-channel, k=1
Side-channel, k=2

Hitchhike 

(a) Detection accuracy of control messages.

 0

 10

 20

 30

 40

 50

 60

 70

 0  4  8  12  16  20  24

L
o

s
s
 R

a
te

 (
%

)

SNR (dB)

Side-channel, k=1
Side-channel, k=2

Hitchhike

(b) Data loss rate for Side-channel and Hitchhike.

Fig. 9. Performance comparison with Side-channel. Fig. 9(a) shows that the detection accuracy of Hitchhike is high even when the SNR of data packet is
low. Fig. 9(b) depicts the loss rate of data packets caused by the two approaches.

This evaluation result indicates that our subtraction-detection

algorithm works quite well in enhancing the control detection

accuracy, especially when the preamble dominates the control

signals (SNR difference from -16 dB to 0 dB).

Detection accuracy. Fig. 8(b) presents the detection accura-

cy using Alg. 1, in the form of false positive and false negative

ratios. The former mainly comes from the imperfect cross-

correlation among control messages, and the latter is due to

interference and noise. In our design, low false negative ratio

is more desirable as control messages are important. As shown

and to be expected, the false positive and negative ratios are

nearly 0 when the SNR of the control signal is larger than that

of the preamble. While the errors increase when the preamble

gets stronger by comparison, they are both at reasonably low

levels, e.g., under 15% for false positive and under 6% for false

negative even when control is 16 dB below the preamble.

E. Comparison with Payload-based Mechanism

We end this section with a comparison between Hitchhike

and the state-of-the-art protocol Side-channel [2] for 802.15.4

networks. We examine two metrics: the detection accuracy

of control messages and the loss rate of data packets caused

by control messages. The data packet and the control signal

use the same transmitting power and the SNR is set from 0

dB to 26 dB. The control message in Hitchhike has a length

of 64 chips and data packet has a length of 30 bytes. We use

two methods to encode control messages in Side-channel. The

first is to interfere single chips and use 4 chips in each symbol

(Side-channel, k = 1) and the second is to use two consecutive

chips (Side-channel, k = 2). The detection accuracy and the

extra packet loss rate are obtained by analyzing the received

signal trace on receiver side. This evaluation is repeated for

10 rounds at each SNR level.

Fig. 9(a) shows the detection accuracy at different SNR

levels of the data packet. We see that the detection accuracy

for Side-channel is much lower than that of Hitchhike in low

SNR conditions. In particular, it is less than 40% when SNR

falls below 8 dB. The reason behind is that noise and external

interference cause false “error” bits that destroy the encoded

messages. We do see that using two consecutive chips has

better accuracy than using a single chip. Lastly, the accuracy

of Hitchhike remains high at all SNR levels.

We further analyze the impact control messages have on

packet decoding and the result is shown in Fig. 9(b). In all

cases data loss decreases with the increase in packet SNR,

much as expected. In the case of Side-channel, single-chip

performs better than 2-chip interference, so there is a clear

tradeoff between high control detection accuracy and low

data loss for Side-channel. On the other hand, Hitchhike

demonstrates both high detection ratio and low error rate on

packet decoding (across all SNR levels).

From this evaluation, we conclude that at high SNRs,

both Side-channel and Hitchhike demonstrate high detection

accuracy and less impact on packet decoding. However, when

SNR decreases, Hitchhike performs better in the two metrics,

especially with SNR locating within 8 dB to 16 dB where data

packet has limited redundancy margin. When SNR is below

8 dB, where data packets become easy to be corrupted (refer

to Fig. 3), Hitchhike can still use these corrupted packets for

conveying the important control information.

VI. DISCUSSION

As a PHY layer technique, Hitchhike can be utilized to

benefit a variety of upper layer applications. The essential

feature of Hitchhike is that by carrying the small control

messages on the preambles, the receiver can receive both the

data packets and the control messages, with little overhead and

performance degradation. Here we demonstrate two applica-

tions, priority scheduling and neighbor discovery; the detailed

implementation of these applications is left for future work.

Efficient priority scheduling. First, Hitchhike can be used

to enhance the efficiency of priority scheduling. In wireless

networks, priority scheduling is often required for provid-

ing QoS (quality of service), see e.g., [17]–[20]. Hitchhike

is useful in scheduling transmitters with different priorities,

especially when the schedule is urgent and efficiency is

desirable. Different from traditional scheduling mechanisms, a

receiver in Hitchhike can schedule transmitters by inspecting

the received packet. Specifically, the receiver looks into the
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preamble of the received packet and detects the control mes-

sages carried on the preamble. As multiple control messages

are supported on a single preamble, the receiver is able to

learn about all transmitters, their readiness to send packets,

and their priorities by interpreting the control messages.

Fast neighbor discovery. Another application is in neighbor

discovery [21]. In wireless networks like Wi-Fi, the users

around an AP may change dynamically. A critical task for

the AP is to learn the new comers as soon as possible [22].

Hitchhike can be applied in this scenario. The newly-joining

devices may use a simple control signal to identity itself riding

on someone else’s packet. Without any extra overhead, the

AP can know the newly joining devices while receiving data

packets.

VII. RELATED WORK

Recently, there has been a lot of work trying to improve the

delivery efficiency of control messages. In general, they can be

classified into out-of-band and in-band control. Note that out-

of-band control here simply means the control messages are

physically separated from data packets in time domain while

in-band control is not.

Out-of-band control. Motivated by the fact that control bits

in a control packet occupy a small portion of the whole packet,

the authors in [1] propose to use short command sequences

to replace control packets. The work Gap-sense [23] and

Esense [24] code the control messages with signal pulses and

energy bursts. However, the out-of-band mechanism cannot

eliminate the extra air time of the control messages.

In-band control. Another promising thread is to con-

currently transmit the control messages with data packets.

µACK [25] uses a portion of channel resources for dedicated

control transmission. The work in [26] for the first time

analyzes the chip error pattern caused by interference and

utilizes this pattern to convey control information in their

following work Side-channel [2]. However, due to the overlap

of control signal and the data payload, the two interferes

with each other, especially in low SNR conditions. Also

using correlation based detection, the work [1] asserts that

control messages decoding can be done while receiving data.

However, this work doesn’t carefully consider where to put

the control signals.

Motivated by the work for in-band control, Hitchhike builds

the control plane on the preamble field of data packets. By

decoupling control from the payload, the mutual interference

between the control signal and the payload is minimized.

VIII. CONCLUSION AND FUTURE WORK

This paper proposes Hitchhike, a novel technique that

utilizes preamble for efficient control messages transmission.

We carefully design control codes and develop the subtraction-

detection algorithm for control messages detection. Evaluation

on 5 USRP2 nodes show that control messages carried by

preamble can be transmitted with high accuracy whereas

the operation of preamble is with limited adverse effect.

Several issues are left for future study. First, we shall extend

the implementation of Hitchhike in 802.11 Wi-Fi networks,

especially in OFDM where the preamble is different from

that in 802.15.4. Second, we will implement the applications

mentioned in Section VI that can benefit from Hitchhike.
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