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Abstract— Internet worms are a growing menace due to their
increasing sophistication and speed of propagation. Although
there have been many different detection schemes proposed,
none of them can detect hitlist worms, which only scan active
addresses, in linear time. Hence, we present a new worm detection
scheme, History-based IP Worm Detection, that can detect these
hitlist worms. It uses the difference in the distribution of source
addresses between regular users and scanning hosts to distinguish
between worm probes and normal accesses. This property is used
to implement a weighted source address counting scheme, and a
change point detection technique is used to detect surges in the
rate of source addresses seen.

I. INTRODUCTION

The Internet’s easy and wide access has allowed malicious
programs, like worms, to propagate in unprecedented ways.
The traditional response to new worms has been to manually
generate the defining signatures, and distribute these signatures
for use in traffic filters. However, worms like Slammer [9],
which infected most vulnerable systems in a matter of minutes,
indicate this method is becoming infeasible. Motivated by
these concerns, the intrusion detection community has pro-
posed various automated worm detection schemes [17] [13]
[16] [6] [10] [15] [5].

These detection schemes can be classified into four broad
areas: unused address, signature, distributed, and infection pat-
tern based schemes. Schemes based on using unused addresses
involve monitoring scans to unused addresses and inactive ser-
vices. Signature based schemes automatically generate worm
signatures. Distributed detection schemes combine information
from distributed monitors for detection. Infection pattern based
schemes are based on the lifecycle of worms, which describes
the process of a worm infection.

Schemes that rely on monitoring probes to unused addresses
rely on the observation that legitimate traffic rarely make
connection attempts to these addresses [17] [16]. Hosts that
make many connection attempts to these unused addresses
are flagged as infected hosts. Generally, these schemes are
effective against random scanning worms. However, their
biggest weakness is their inability to detect worms that do
not scan indiscriminately, like hitlist worms [14].

Signature-based schemes automatically extract frequent traf-
fic patterns and consider these as worm signatures [10] [15]
[13]. In [13], the authors explored using Rabin fingerprints to
automatically generate common signatures of inbound pack-
ets. These schemes can detect a wide range of worms, but

suffer from relatively high false positive rates and processing
requirements.

Distributed detection schemes combine evidence from mul-
tiple distributed sub-networks to increase the address space
been monitored, which can decrease the detection time and
false positive rates [6]. However, these schemes require a sig-
nificant percentage of heterogeneous networks in the Internet
to buy into the scheme, which is currently unrealistic.

Finally, there are the infection pattern based schemes. Chen
and Heidemann [5] proposed a scheme, named DEWP, that
matched incoming and outgoing destination ports that have
one or more connection requests. Their idea is based on the
observation that worms consistently probe for new victims
on the same set of destination ports. After matching ports,
they searched for large increases in the number of unique
destination addresses on those ports. We will show later in
our testing that DEWP has a high false positive rate.

There has been work relating to hitlist worms, but it
aims to reduce the effectiveness of hitlist worms, rather than
detect them. In [1], the gathered address list of hitlist worms
are quickly made outdated by periodically randomising the
address space of the network.

Hence, there is a need for a detection algorithm that i) only
monitors traffic on the network where it is deployed; ii) does
not rely on scans to unused addresses, so that it can detect
hitlist worms; iii) has low false positive rates; and iv) has low
computational requirements.

In this paper, we present a worm detection scheme that
has all four characteristics, named History-based IP Worm
Detection (HIWD). It is based on monitoring the number of
unique inbound source and outbound destination addresses
seen in a time window. To reduce the false positive rate, HIWD
uses the following observations about the access history of
inbound connections:

1) The group of regular users of a network form a relatively
stable set of source addresses. In contrast, during a worm
outbreak, the source addresses of connections requests
are unlikely to have been seen at the network previously.

2) Source addresses that share a common network prefix
are usually topologically near. If one of these addresses
represents a regular user, it is likely the other addresses
represent legitimate users.

When tested on a small network, we found HIWD detected

hitlist worms when only 6% of vulnerable hosts were infected,



and with no false positives. To the best of our knowledge, our
scheme is the first to be able to detect hitlist worms quickly
and efficiently when protecting a local network.

II. BACKGROUND

In this section, we present an introduction to a worm life-
cycle proposal, used in the detection scheme. We also describe
several types of worms, based on their scanning techniques.

A. Worm Lifecycle

In [3], a four stage worm life-cycle was presented. The first
stage, target selection, represents an infected host scanning
for new victims. In the next stage, exploitation, the worm
compromises the selected victim. Then in the third stage,
infection, the worm copies itself onto the compromised host.
In the last stage, propagation, the newly infected victim scans
for new victims to infect. This stage is the same as the target
selection stage, except it is from the perspective of the newly
infected host.

B. Scanning Methods

1) Random Scanning: Many worms in the wild use this
scanning strategy. They choose a new host to scan in a random,
uniform way.

2) Routable Scanning: Propagation can be accelerated by
only probing routable addresses. Zou et al [19] found 28.6%
of the IPv4 address space has been allocated and routable.
Hence, a routable scanning worm can still scan all potential
victims, but reduce the scanning space by 71.4%.

3) HitList Scanning: All worms suffer from a long initial
startup phase. One proposed solution [14] is for the worm
author to collect an initial hitlist of targets, and use it to
generate probing targets. When the hitlist is exhausted, the
worm can revert back to random scanning. If the hitlist only
contained existing hosts, hitlist worms can overcome detection
techniques that rely on detecting probes to unused addresses.
An example of a hitlist worm is the Witty worm [12].

III. HISTORY-BASED IP WORM DETECTION

In this section, we define the scope of our problem, as
well as outlining the worm features used for detection. Then
we describe the History-based IP Worm Detection (HIWD)
scheme, and briefly introduce the theory behind change point
detection that we use in our scheme.

Let us define the scope of our problem. We define the
protected network as the network protected by the detection
scheme, and the rest of the Internet as the other parts of the
Internet. Our worm detection scheme monitors the headers
of inbound and outbound packet traffic passing between the
protected network and the rest of the Internet. It should output
an alert when it detects the infection of one or more protected
hosts.

A. Source Address History Detection Feature

Part of the detection algorithm of HIWD requires determin-
ing how suspicious a connecting host is. In order to achieve
this, we use the history of past accesses to the protected
network. It has been observed by Peng et al [11] that many
legitimate users of a network form a stable group of source
addresses; we dub these addresses as the regular addresses. In
contrast, Yegneswaran et al [18] observed that worm victims
are more or less uniformly distributed across the Internet.
Given the focus of our work is on the protection of small to
medium sized networks, the size of the set of regular addresses
is much smaller than the size of all Internet addresses. Hence,
the source address of a worm probe is unlikely to be a regular
address. Therefore, whether an address is a regular address
determines its likelihood of being suspicious.

We can further differentiate between a suspicious and legit-
imate source address by considering its subnet. Jung et al [8]
observed that a new user to the network is likely to come from
the same subnet as a regular user, while a worm victim is much
less likely to come from a previously seen subnet. Hence, an
address that is not a regular address, but shares a subnet with
one or more of the regular addresses, is less suspicious than
an address that is not a regular address and does not share a
subnet with any of the regular addresses. However, it is still
more suspicious than a regular address.

More formally, let s be the source address of the incoming
connection, SAD and SSD be the set of regular addresses
and the set of subnets of all regular addresses respectively,
and Prg,s(s) indicates how suspicious address s is. Then
Prous(sls € SAD) < Prg,s(s|s ¢ SAD,s € SSD) <«
Proys(sls ¢ SAD,s ¢ SSD).

To evaluate whether regular users form a stable set of
addresses, we test what proportion of source addresses of
inbound connections are regular. Similar to [11], we define
regular addresses as those that were seen at least once in a
two week window. We used 24 hour traces collected from
the University of Melbourne Computer Science Department
network from May 22nd to July 12th 2004 to test the regularity
of regular addresses. This involved computing how many
addresses and subnets over a four day period (7th June to
10th June) appeared in the previous two weeks. These results
are presented in Table I. As the table indicates, 65-75%
of addresses and 74-76% of subnets were seen previously.
Although there is still a significant number of new addresses,
we shall show that our detection scheme is still effective with
this level of regular users. Note that Peng et al [11] obtained
better results when conducting the same experiment on traces
from the University of Auckland WAND project and a class
C Australian ISP, where they observed, respectively, 88-90%
and 76-81% of the test addresses were previously seen.

B. History-based IP Worm Detection

HIWD consists of two stages, which are based on the target
selection and propagation stages of the worm lifecycle. The
intuition is that a vulnerable host in the protected network will
first have to be scanned, infected, then in turn scan for new



Date Src IP % | Src Subnet %
07-June-04 65.6% 74.2%
08-June-04 69.4% 73.6%
09-June-04 71.6% 74.1%
10-June-04 75.4% 76.0%

TABLE I: Percentage of source addresses and subnets of
prefix width 24 previously seen from 23-May-04 to 06-
June-04. Melbourne University Computer Science traces.

victims on the same set of ports it was infected from. To lower
the false positive rate, the access history detection feature is
incorporated into the first stage. We shall describe each stage
next.

The first stage, History-based Detector, detects target selec-
tion activity. It monitors for suspicious inbound activity, which
is characterised by an above average number of unique source
addresses seen in a time window [18]. To increase the efficacy
of detection based on source address counting, we associate
a weight with each source address. The weight is based on
the access history feature. Again, let s be the source address
of an incoming connection, and i) S; be the weight of s if
s € SAD; ii) Sy be the weight of s if s ¢ SAD,s € SSD;
and iii) S3 be the weight of s if s ¢ SAD,s ¢ SSD. Then
we have 0 < S7 < S9 < 3, reflecting the probability of
the weighted address being suspicious. This weighting assists
with reducing false positive rates and detection time, as a few
scans/accesses from suspicious hosts will trigger the detector,
while many more regular users’ accesses are needed to falsely
trigger the detector. Each detected, suspicious, destination port
is reported to the second stage.

The second stage (Scan Detector) detects propagation stage
activity. If an attack is occurring, and some subset of the hosts
in the protected network are infected, then it is likely those
newly infected hosts will scan outside of the network on the
same set of ports they were infected from. Based on this obser-
vation, the Scan Detector monitors for suspicious increases in
the number of unique outbound destination addresses, for each
reported port. Those ports that are deemed to be suspicious
by the Scan Detector are likely to be ports that the worms
are using to propagate. These ports can be blocked to enable
further investigation of infected hosts and cause of infection.

To decide which deviations in the monitored address counts
are suspicious, both detectors use a change point detection
technique called CUSUM [2]. CUSUM can detect abrupt
changes, as well as slower but sustained increases in the
monitored addresses, which naive static thresholding cannot
achieve without introducing more false positives. By using the
CUSUM technique, HIWD can detect slower worms at similar
false positive rates. Figure 1 provides an overview of HIWD.

C. Change Point Detection

In this section, we present a summary of the change point
detection theory, particularly how it was adapted for worm
detection. For a more complete presentation, refer to [2].
In change point detection, the aim is to monitor a random
sequence {X,,}, n < 0, and detect significant deviations from
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the mean «, called change points. For our detection scheme,
X, is the total (weighted) address count at detection time
interval n, and o > 0

We adapted the method presented in [11] for worm detection
(for full details, refer to [4]). It uses the Cumulative Sum
(CUSUM) change point detection algorithm [2]. The basic idea
is to accumulate sequential values of the detection feature X,
that are higher than the mean, o. When the accumulated values
Y- 1s greater than a threshold T, where 7 is the earliest time
that y,, > T, then a change point m has been detected.

Note that the CUSUM algorithm actually accumulates val-
ues of X, greater than 0, as it assumes the mean is negative.
That is, any deviation of X,, less than the magnitude of the
(negative) mean is considered normal deviation. As the mean
a > 0, we shift it by S (8 > 0) to obtain the necessary
negative mean w = « — (. To maintain statistical consistency,
we also shift X,, by 3. Hence, we can define y,, now as
Yn = WYn—1+ Xpn — B3)T,y0 =0, where 2T =z if > 0, or
0 otherwise. The only parameters that require tuning are the
shifted mean w, which measures what is considered abnormal
deviation, and the detection delay 7 —m, which the threshold
T can be derived from. The mean « is measured from the
network.

IV. EVALUATION RESULTS AND DISCUSSION

In this section, we describe the evaluation of our worm de-
tection scheme, including the worm simulation and the testing
procedure. We then present the evaluation of the effectiveness
of HIWD in detecting worms that do not indiscriminately scan,
and compare this with an earlier approach, DEWP [5]. We also
provide a worst case time analysis of HIWD.

A. Hybrid Model Simulation and Testing Procedure

Our evaluation approach is to simulate worm traffic between
the Internet and the protected network, and integrate realistic
background traffic from real-life packet traces. It is based on
the hybrid worm propagation model of Chen et al [5]. Figure
2 shows the general schematic of the simulator.

In our hybrid model, we separate the hosts in the protected
network and the hosts in the rest of the Internet into two
stratified populations. To model worm propagation between
the two populations, we used a modified version of the
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basic stratified SIR epidemic model [7]. This modification
additionally models the worm probing traffic between the two
stratified populations.

We measure the performance of our detection scheme in
terms of the infection percentage (i.e., the percentage of
the network infected when the first alert is raised), and the
number of false positives. To examine infection percentages
for the inbound History-based Detector, the background trace
was switched off, as the background traffic can trigger the
detectors earlier than the true detection time. For testing the
false positive rate, only the background traffic was used.

The background traffic used was the Computer Science
traces. We chose the trace collected on June 2nd 2004 as the
background traffic for testing, because it was part of the traces
used to calculate the mean (May 23rd to June 6th), and this
trace was not used to build the SAD and SSD databases (June
7th to June 30th). For brevity, we chose to replay connections
to destination port 80 (HTTP) only, as this port had the highest
background traffic and most likely to cause false positives.

B. Detection of Routable and Hitlist Worms

In this section, we examine the hitlist detection performance
of HIWD, as well as the performance for random and routable
worms. The shifted mean parameter w of both inbound and
outbound detectors were set to -2.75 and -2.0 respectively. At
these values, HIWD did not produce any false positives.

As there are no false positives, we concentrate on the in-
fection percentage results for the three different worm probing
methods (Figures 3a and 3b). The results indicate that the
detector is effective in detecting routing and hitlist worms,
which is the focus of this work. The infection percentages were
higher for random scanning worms. We hypothesise this was
due to the larger address space scanned by random scanning
worms and the relatively low scan rates used for testing
(Slammer reportedly had a scan rate of 500 scans/s [9]), so that
the effective number of infected source addresses seen at the
edge of the protected network is below the average. Although
the infection percentages are relatively high for the random
scanning worm, HIWD can be complemented by detection
schemes that rely on scans to unused addresses [17], which
are effective against random scanning worms, but not hitlist
worms.

C. Comparison with DEWP

Recall DEWP [5] is another localised detection scheme
that monitors for surges in the number of unique addresses
seen and combines inbound and outbound evidence. As a
comparison, we implemented the DEWP scheme, and followed
Chen et al’s suggestions for parameter values - detection
interval of 1s, measurement interval of 8s, o = 0.125.

We examine the relationship between the sensitivity pa-
rameter ¢, false positives and infection percentage. DEWP
generated an alert as soon as there was one infection in the
protected network, for § < 30 scans/s. This was for random,
routable and hitlist scanning worms. The false positive rate
was less promising. Figure 3¢ shows the relationship between
0 and false positives at a worm scan rate of 20 scans/s. The
relationship is reaching an asymptotic lower bound of 2000
false positives. That is extremely high, and would infer that
DEWP cannot distinguish between worm and normal traffic.

D. False Positives and Infection Percentage

In this section, we examine the false positive rate and the
infection rate observed as we vary the shifted mean parameter
w of the CUSUM algorithm in the input and output detectors.
We also examine the effect of using both the input and output
detectors together, and discuss the effect of the source address
databases on false positives.

First, we test the false positive rate of the History-based
Detector, by turning the Scan Detector off. When the Scan
Detector is off and the inbound mean is low, the number of
false alerts is high (see Figure 4a). However, when the History-
based Detector is combined with the Scan Detector (Figure
4b) and the outbound mean is set to 2.0, all false positives
are eliminated. So to obtain a low number of false positives,
low mean values are required. Now consider the effect of
varying the inbound mean on infection percentages when the
outbound detector is off. As Figure 4c shows, as the inbound
mean increases, the infection percentage also increases, which
indicates it is not possible to have both low false positive rates
and infection percentages when only one detector is used. To
achieve this, both detectors of HIWD are needed.

In addition, we tested the effectiveness of our scheme
without using the source address databases. Due to the lack
of space, we do not present the results, but will state that the
infection rate of all three types of worms increased by at least
10% when the databases were not used (for the same false
positive rates).

E. Complexity Analysis

In this section, we analyse the worst case time complexity of
HIWD. The running time is dominated by the searching time
of the address databases. For the databases, we used hashing
with ordered buckets and binary search. Let Ng4p and Nggsp
denote the number of addresses and subnets in the databases,
respectively. Then, the worst case time complexity of HIWD
is O(logy(Nsap) + logy(Nssp)). As it can be seen, even
when using simple data structures, our scheme has low worst
case computational requirements.
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V. CONCLUSION

In this paper, we have presented a new worm detection
scheme, History-based IP Worm Detection. History-based IP
Worm Detection is based on the idea that the source address
of worm scans are distributed widely, hence unlikely to have
been previously seen at the network before, while legitimate
users of a network form a stable group of seen addresses.
Combined with a simple outbound scan detector, we have
shown these detection features allow our scheme to detect
routing and hitlist worms quickly, while having low false
positive rates. We have also presented a complexity analysis,
showing our scheme to have low processing requirements. The
History-based IP Worm Detection scheme provides a robust
approach to detecting both existing and new generations of
worm attacks.
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