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ABSTRACT
This paper describes a large-scale evaluation of the effec-
tiveness of HITS in comparison with other link-based rank-
ing algorithms, when used in combination with a state-of-
the-art text retrieval algorithm exploiting anchor text. We
quantified their effectiveness using three common perfor-
mance measures: the mean reciprocal rank, the mean av-
erage precision, and the normalized discounted cumulative
gain measurements. The evaluation is based on two large
data sets: a breadth-first search crawl of 463 million web
pages containing 17.6 billion hyperlinks and referencing 2.9
billion distinct URLs; and a set of 28,043 queries sampled
from a query log, each query having on average 2,383 re-
sults, about 17 of which were labeled by judges. We found
that HITS outperforms PageRank, but is about as effec-
tive as web-page in-degree. The same holds true when any
of the link-based features are combined with the text re-
trieval algorithm. Finally, we studied the relationship be-
tween query specificity and the effectiveness of selected fea-
tures, and found that link-based features perform better for
general queries, whereas BM25F performs better for specific
queries.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Storage and Retrieval—search process, selection process

General Terms
Algorithms, Measurement, Experimentation
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1. INTRODUCTION
Link graph features such as in-degree and PageRank have

been shown to significantly improve the performance of text
retrieval algorithms on the web. The HITS algorithm is also
believed to be of interest for web search; to some degree,
one may expect HITS to be more informative that other
link-based features because it is query-dependent: it tries to
measure the interest of pages with respect to a given query.
However, it remains unclear today whether there are prac-
tical benefits of HITS over other link graph measures. This
is even more true when we consider that modern retrieval
algorithms used on the web use a document representation
which incorporates the document’s anchor text, i.e. the text
of incoming links. This, at least to some degree, takes the
link graph into account, in a query-dependent manner.

Comparing HITS to PageRank or in-degree empirically is
no easy task. There are two main difficulties: scale and rel-
evance. Scale is important because link-based features are
known to improve in quality as the document graph grows.
If we carry out a small experiment, our conclusions won’t
carry over to large graphs such as the web. However, com-
puting HITS efficiently on a graph the size of a realistic web
crawl is extraordinarily difficult. Relevance is also crucial
because we cannot measure the performance of a feature in
the absence of human judgments: what is crucial is ranking
at the top of the ten or so documents that a user will peruse.
To our knowledge, this paper is the first attempt to evalu-
ate HITS at a large scale and compare it to other link-based
features with respect to human evaluated judgment.

Our results confirm many of the intuitions we have about
link-based features and their relationship to text retrieval
methods exploiting anchor text. This is reassuring: in the
absence of a theoretical model capable of tying these mea-
sures with relevance, the only way to validate our intuitions
is to carry out realistic experiments. However, we were quite
surprised to find that HITS, a query-dependent feature, is
about as effective as web page in-degree, the most simple-
minded query-independent link-based feature. This contin-
ues to be true when the link-based features are combined
with a text retrieval algorithm exploiting anchor text.

The remainder of this paper is structured as follows: Sec-
tion 2 surveys related work. Section 3 describes the data
sets we used in our study. Section 4 reviews the perfor-
mance measures we used. Sections 5 and 6 describe the
PageRank and HITS algorithms in more detail, and sketch
the computational infrastructure we employed to carry out
large scale experiments. Section 7 presents the results of our
evaluations, and Section 8 offers concluding remarks.



2. RELATED WORK
The idea of using hyperlink analysis for ranking web search

results arose around 1997, and manifested itself in the HITS
[16, 17] and PageRank [5, 21] algorithms. The popularity
of these two algorithms and the phenomenal success of the
Google search engine, which uses PageRank, have spawned
a large amount of subsequent research.

There are numerous attempts at improving the effective-
ness of HITS and PageRank. Query-dependent link-based
ranking algorithms inspired by HITS include SALSA [19],
Randomized HITS [20], and PHITS [7], to name a few.
Query-independent link-based ranking algorithms inspired
by PageRank include TrafficRank [22], BlockRank [14], and
TrustRank [11], and many others.

Another line of research is concerned with analyzing the
mathematical properties of HITS and PageRank. For exam-
ple, Borodin et al. [3] investigated various theoretical prop-
erties of PageRank, HITS, SALSA, and PHITS, including
their similarity and stability, while Bianchini et al. [2] stud-
ied the relationship between the structure of the web graph
and the distribution of PageRank scores, and Langville and
Meyer examined basic properties of PageRank such as exis-
tence and uniqueness of an eigenvector and convergence of
power iteration [18].

Given the attention that has been paid to improving the
effectiveness of PageRank and HITS, and the thorough stud-
ies of the mathematical properties of these algorithms, it is
somewhat surprising that very few evaluations of their effec-
tiveness have been published. We are aware of two studies
that have attempted to formally evaluate the effectiveness of
HITS and of PageRank. Amento et al. [1] employed quanti-
tative measures, but based their experiments on the result
sets of just 5 queries and the web-graph induced by topical
crawls around the result set of each query. A more recent
study by Borodin et al. [4] is based on 34 queries, result sets
of 200 pages per query obtained from Google, and a neigh-
borhood graph derived by retrieving 50 in-links per result
from Google. By contrast, our study is based on over 28,000
queries and a web graph covering 2.9 billion URLs.

3. OUR DATA SETS
Our evaluation is based on two data sets: a large web

graph and a substantial set of queries with associated results,
some of which were labeled by human judges.

Our web graph is based on a web crawl that was con-
ducted in a breadth-first-search fashion, and successfully
retrieved 463,685,607 HTML pages. These pages contain
17,672,011,890 hyperlinks (after eliminating duplicate hy-
perlinks embedded in the same web page), which refer to
a total of 2,897,671,002 URLs. Thus, at the end of the
crawl there were 2,433,985,395 URLs in the “frontier” set
of the crawler that had been discovered, but not yet down-
loaded. The mean out-degree of crawled web pages is 38.11;
the mean in-degree of discovered pages (whether crawled or
not) is 6.10. Also, it is worth pointing out that there is a
lot more variance in in-degrees than in out-degrees; some
popular pages have millions of incoming links. As we will
see, this property affects the computational cost of HITS.

Our query set was produced by sampling 28,043 queries
from the MSN Search query log, and retrieving a total of
66,846,214 result URLs for these queries (using commercial
search engine technology), or about 2,838 results per query

on average. It is important to point out that our 2.9 billion
URL web graph does not cover all these result URLs. In
fact, only 9,525,566 of the result URLs (about 14.25%) were
covered by the graph.

485,656 of the results in the query set (about 0.73% of
all results, or about 17.3 results per query) were rated by
human judges as to their relevance to the given query, and
labeled on a six-point scale (the labels being “definitive”,
“excellent”, “good”, “fair”, “bad” and “detrimental”). Re-
sults were selected for judgment based on their commercial
search engine placement; in other words, the subset of la-
beled results is not random, but biased towards documents
considered relevant by pre-existing ranking algorithms.

Involving a human in the evaluation process is extremely
cumbersome and expensive; however, human judgments are
crucial for the evaluation of search engines. This is so be-
cause no document features have been found yet that can
effectively estimate the relevance of a document to a user
query. Since content-match features are very unreliable (and
even more so link features, as we will see) we need to ask
a human to evaluate the results in order to compare the
quality of features.

Evaluating the retrieval results from document scores and
human judgments is not trivial and has been the subject of
many investigations in the IR community. A good perfor-
mance measure should correlate with user satisfaction, tak-
ing into account that users will dislike having to delve deep
in the results to find relevant documents. For this reason,
standard correlation measures (such as the correlation coef-
ficient between the score and the judgment of a document),
or order correlation measures (such as Kendall tau between
the score and judgment induced orders) are not adequate.

4. MEASURING PERFORMANCE
In this study, we quantify the effectiveness of various rank-

ing algorithms using three measures: NDCG, MRR, and
MAP.

The normalized discounted cumulative gains (NDCG) mea-
sure [13] discounts the contribution of a document to the
overall score as the document’s rank increases (assuming
that the best document has the lowest rank). Such a mea-
sure is particularly appropriate for search engines, as studies
have shown that search engine users rarely consider anything
beyond the first few results [12]. NDCG values are normal-
ized to be between 0 and 1, with 1 being the NDCG of a
“perfect” ranking scheme that completely agrees with the
assessment of the human judges. The discounted cumula-
tive gain at a particular rank-threshold T (DCG@T ) is de-

fined to be
PT

j=1
1

log(1+j)

“
2r(j) − 1

”
, where r(j) is the rat-

ing (0=detrimental, 1=bad, 2=fair, 3=good, 4=excellent,
and 5=definitive) at rank j. The NDCG is computed by
dividing the DCG of a ranking by the highest possible DCG
that can be obtained for that query. Finally, the NDGCs of
all queries in the query set are averaged to produce a mean
NDCG.

The reciprocal rank (RR) of the ranked result set of a
query is defined to be the reciprocal value of the rank of the
highest-ranking relevant document in the result set. The RR
at rank-threshold T is defined to be 0 if none of the highest-
ranking T documents is relevant. The mean reciprocal rank
(MRR) of a query set is the average reciprocal rank of all
queries in the query set.



Given a ranked set of n results, let rel(i) be 1 if the result
at rank i is relevant and 0 otherwise. The precision P (j)

at rank j is defined to be 1
j

Pj
i=1 rel(i), i.e. the fraction

of the relevant results among the j highest-ranking results.
The average precision (AP) at rank-threshold k is defined to

be
Pk

i=1 P (i)rel(i)
Pn

i=1 rel(i)
. The mean average precision (MAP) of a

query set is the mean of the average precisions of all queries
in the query set.

The above definitions of MRR and MAP rely on the notion
of a “relevant” result. We investigated two definitions of rel-
evance: One where all documents rated “fair” or better were
deemed relevant, and one were all documents rated “good”
or better were deemed relevant. For reasons of space, we
only report MAP and MRR values computed using the lat-
ter definition; using the former definition does not change
the qualitative nature of our findings. Similarly, we com-
puted NDCG, MAP, and MRR values for a wide range of
rank-thresholds; we report results here at rank 10; again,
changing the rank-threshold never led us to different con-
clusions.

Recall that over 99% of documents are unlabeled. We
chose to treat all these documents as irrelevant to the query.
For some queries, however, not all relevant documents have
been judged. This introduces a bias into our evaluation:
features that bring new documents to the top of the rank
may be penalized. This will be more acute for features less
correlated to the pre-existing commercial ranking algorithms
used to select documents for judgment. On the other hand,
most queries have few perfect relevant documents (i.e. home
page or item searches) and they will most often be within
the judged set.

5. COMPUTING PAGERANK ON A LARGE
WEB GRAPH

PageRank is a query-independent measure of the impor-
tance of web pages, based on the notion of peer-endorsement:
A hyperlink from page A to page B is interpreted as an
endorsement of page B’s content by page A’s author. The
following recursive definition captures this notion of endorse-
ment:

R(v) =
X

(u,v)∈E

R(u)

Out(u)

where R(v) is the score (importance) of page v, (u, v) is an
edge (hyperlink) from page u to page v contained in the
edge set E of the web graph, and Out(u) is the out-degree
(number of embedded hyperlinks) of page u. However, this
definition suffers from a severe shortcoming: In the fixed-
point of this recursive equation, only edges that are part of
a strongly-connected component receive a non-zero score. In
order to overcome this deficiency, Page et al. grant each page
a guaranteed “minimum score”, giving rise to the definition
of standard PageRank:

R(v) =
d

|V | + (1 − d)
X

(u,v)∈E

R(u)

Out(u)

where |V | is the size of the vertex set (the number of known
web pages), and d is a “damping factor”, typically set to be
between 0.1 and 0.2.

Assuming that scores are normalized to sum up to 1,
PageRank can be viewed as the stationary probability dis-

tribution of a random walk on the web graph, where at each
step of the walk, the walker with probability 1 − d moves
from its current node u to a neighboring node v, and with
probability d selects a node uniformly at random from all
nodes in the graph and jumps to it. In the limit, the random
walker is at node v with probability R(v).

One issue that has to be addressed when implementing
PageRank is how to deal with “sink” nodes, nodes that do
not have any outgoing links. One possibility would be to
select another node uniformly at random and transition to
it; this is equivalent to adding edges from each sink nodes
to all other nodes in the graph. We chose the alternative
approach of introducing a single “phantom” node. Each sink
node has an edge to the phantom node, and the phantom
node has an edge to itself.

In practice, PageRank scores can be computed using power
iteration. Since PageRank is query-independent, the com-
putation can be performed off-line ahead of query time. This
property has been key to PageRank’s success, since it is a
challenging engineering problem to build a system that can
perform any non-trivial computation on the web graph at
query time.

In order to compute PageRank scores for all 2.9 billion
nodes in our web graph, we implemented a distributed ver-
sion of PageRank. The computation consists of two distinct
phases. In the first phase, the link files produced by the web
crawler, which contain page URLs and their associated link
URLs in textual form, are partitioned among the machines
in the cluster used to compute PageRank scores, and con-
verted into a more compact format along the way. Specifi-
cally, URLs are partitioned across the machines in the clus-
ter based on a hash of the URLs’ host component, and each
machine in the cluster maintains a table mapping the URL
to a 32-bit integer. The integers are drawn from a densely
packed space, so as to make suitable indices into the array
that will later hold the PageRank scores. The system then
translates our log of pages and their associated hyperlinks
into a compact representation where both page URLs and
link URLs are represented by their associated 32-bit inte-
gers. Hashing the host component of the URLs guarantees
that all URLs from the same host are assigned to the same
machine in our scoring cluster. Since over 80% of all hyper-
links on the web are relative (that is, are between two pages
on the same host), this property greatly reduces the amount
of network communication required by the second stage of
the distributed scoring computation.

The second phase performs the actual PageRank power
iteration. Both the link data and the current PageRank
vector reside on disk and are read in a streaming fashion;
while the new PageRank vector is maintained in memory.
We represent PageRank scores as 64-bit floating point num-
bers. PageRank contributions to pages assigned to remote
machines are streamed to the remote machine via a TCP
connection.

We used a three-machine cluster, each machine equipped
with 16 GB of RAM, to compute standard PageRank scores
for all 2.9 billion URLs that were contained in our web
graph. We used a damping factor of 0.15, and performed 200
power iterations. Starting at iteration 165, the L∞ norm of
the change in the PageRank vector from one iteration to the
next had stopped decreasing, indicating that we had reached
as much of a fixed point as the limitations of 64-bit floating
point arithmetic would allow.
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Figure 1: Effectiveness of authority scores computed using different parameterizations of HITS.

A post-processing phase uses the final PageRank vectors
(one per machine) and the table mapping URLs to 32-bit
integers (representing indices into each PageRank vector) to
score the result URL in our query log. As mentioned above,
our web graph covered 9,525,566 of the 66,846,214 result
URLs. These URLs were annotated with their computed
PageRank score; all other URLs received a score of 0.

6. HITS
HITS, unlike PageRank, is a query-dependent ranking al-

gorithm. HITS (which stands for “Hypertext Induced Topic
Search”) is based on the following two intuitions: First, hy-
perlinks can be viewed as topical endorsements: A hyperlink
from a page u devoted to topic T to another page v is likely
to endorse the authority of v with respect to topic T . Second,
the result set of a particular query is likely to have a certain
amount of topical coherence. Therefore, it makes sense to
perform link analysis not on the entire web graph, but rather
on just the neighborhood of pages contained in the result
set, since this neighborhood is more likely to contain topi-
cally relevant links. But while the set of nodes immediately
reachable from the result set is manageable (given that most
pages have only a limited number of hyperlinks embedded
into them), the set of pages immediately leading to the result
set can be enormous. For this reason, Kleinberg suggests
sampling a fixed-size random subset of the pages linking to
any high-indegree page in the result set. Moreover, Klein-
berg suggests considering only links that cross host bound-
aries, the rationale being that links between pages on the
same host (“intrinsic links”) are likely to be navigational or
nepotistic and not topically relevant.

Given a web graph (V, E) with vertex set V and edge
set E ⊆ V × V , and the set of result URLs to a query
(called the root set R ⊆ V ) as input, HITS computes a
neighborhood graph consisting of a base set B ⊆ V (the
root set and some of its neighboring vertices) and some of
the edges in E induced by B. In order to formalize the
definition of the neighborhood graph, it is helpful to first
introduce a sampling operator and the concept of a link-
selection predicate.

Given a set A, the notation Sn[A] draws n elements uni-
formly at random from A; Sn[A] = A if |A| ≤ n.

A link section predicate P takes an edge (u, v) ∈ E. In
this study, we use the following three link section predicates:

all(u, v) ⇔ true

ih(u, v) ⇔ host(u) �= host(v)

id(u, v) ⇔ domain(u) �= domain(v)

where host(u) denotes the host of URL u, and domain(u)
denotes the domain of URL u. So, all is true for all links,
whereas ih is true only for inter-host links, and id is true
only for inter-domain links.

The outlinked-set OP of the root set R w.r.t. a link-
selection predicate P is defined to be:

OP =
[

u∈R

{v ∈ V : (u, v) ∈ E ∧ P (u, v)}

The inlinking-set IP
s of the root set R w.r.t. a link-selection

predicate P and a sampling value s is defined to be:

IP
s =

[
v∈R

Ss[{u ∈ V : (u, v) ∈ E ∧ P (u, v)}]

The base set BP
s of the root set R w.r.t. P and s is defined

to be:

BP
s = R ∪ IP

s ∪ OP

The neighborhood graph (BP
s , NP

s ) has the base set BP
s as

its vertex set and an edge set NP
s containing those edges in

E that are covered by BP
s and permitted by P :

NP
s = {(u, v) ∈ E : u ∈ BP

s ∧ v ∈ BP
s ∧ P (u, v)}

To simplify notation, we write B to denote BP
s , and N to

denote NP
s .

For each node u in the neighborhood graph, HITS com-
putes two scores: an authority score A(u), estimating how
authoritative u is on the topic induced by the query, and a
hub score H(u), indicating whether u is a good reference to
many authoritative pages. This is done using the following
algorithm:

1. For all u ∈ B do H(u) :=
q

1
|B| , A(u) :=

q
1

|B| .

2. Repeat until H and A converge:

(a) For all v ∈ B : A′(v) :=
P

(u,v)∈N H(u)

(b) For all u ∈ B : H ′(u) :=
P

(u,v)∈N A(v)

(c) H := ‖H ′‖2, A := ‖A′‖2

where ‖X‖2 normalizes the vector X to unit length in euclid-
ean space, i.e. the squares of its elements sum up to 1.

In practice, implementing a system that can compute HITS
within the time constraints of a major search engine (where
the peak query load is in the thousands of queries per second,
and the desired query response time is well below one sec-
ond) is a major engineering challenge. Among other things,
the web graph cannot reasonably be stored on disk, since
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Figure 2: Effectiveness of different features.

seek times of modern hard disks are too slow to retrieve the
links within the time constraints, and the graph does not fit
into the main memory of a single machine, even when using
the most aggressive compression techniques.

In order to experiment with HITS and other query-depen-
dent link-based ranking algorithms that require non-regular
accesses to arbitrary nodes and edges in the web graph, we
implemented a system called the Scalable Hyperlink Store,
or SHS for short. SHS is a special-purpose database, dis-
tributed over an arbitrary number of machines that keeps a
highly compressed version of the web graph in memory and
allows very fast lookup of nodes and edges. On our hard-
ware, it takes an average of 2 microseconds to map a URL
to a 64-bit integer handle called a UID, 15 microseconds to
look up all incoming or outgoing link UIDs associated with
a page UID, and 5 microseconds to map a UID back to a
URL (the last functionality not being required by HITS).
The RPC overhead is about 100 microseconds, but the SHS
API allows many lookups to be batched into a single RPC
request.

We implemented the HITS algorithm using the SHS in-
frastructure. We compiled three SHS databases, one con-
taining all 17.6 billion links in our web graph (all), one con-
taining only links between pages that are on different hosts
(ih, for “inter-host”), and one containing only links between
pages that are on different domains (id). We consider two
URLs to belong to different hosts if the host portions of the
URLs differ (in other words, we make no attempt to de-
termine whether two distinct symbolic host names refer to
the same computer), and we consider a domain to be the
name purchased from a registrar (for example, we consider
news.bbc.co.uk and www.bbc.co.uk to be different hosts be-
longing to the same domain). Using each of these databases,
we computed HITS authority and hub scores for various pa-
rameterizations of the sampling operator S , sampling be-
tween 1 and 100 back-links of each page in the root set.
Result URLs that were not covered by our web graph auto-
matically received authority and hub scores of 0, since they
were not connected to any other nodes in the neighborhood
graph and therefore did not receive any endorsements.

We performed forty-five different HITS computations, each
combining one of the three link selection predicates (all, ih,
and id) with a sampling value. For each combination, we
loaded one of the three databases into an SHS system run-
ning on six machines (each equipped with 16 GB of RAM),
and computed HITS authority and hub scores, one query
at a time. The longest-running combination (using the all
database and sampling 100 back-links of each root set ver-
tex) required 30,456 seconds to process the entire query set,

or about 1.1 seconds per query on average.

7. EXPERIMENTAL RESULTS
For a given query Q, we need to rank the set of documents

satisfying Q (the “result set” of Q). Our hypothesis is that
good features should be able to rank relevant documents in
this set higher than non-relevant ones, and this should result
in an increase in each performance measure over the query
set. We are specifically interested in evaluating the useful-
ness of HITS and other link-based features. In principle, we
could do this by sorting the documents in each result set by
their feature value, and compare the resulting NDCGs. We
call this ranking with isolated features.

Let us first examine the relative performance of the dif-
ferent parameterizations of the HITS algorithm we exam-
ined. Recall that we computed HITS for each combination
of three link section schemes – all links (all), inter-host links
only (ih), and inter-domain links only (id) – with back-link
sampling values ranging from 1 to 100. Figure 1 shows the
impact of the number of sampled back-links on the retrieval
performance of HITS authority scores. Each graph is asso-
ciated with one performance measure. The horizontal axis
of each graph represents the number of sampled back-links,
the vertical axis represents performance under the appropri-
ate measure, and each curve depicts a link selection scheme.
The id scheme slightly outperforms ih, and both vastly out-
perform the all scheme – eliminating nepotistic links pays
off. The performance of the all scheme increases as more
back-links of each root set vertex are sampled, while the
performance of the id and ih schemes peaks at between 10
and 25 samples and then plateaus or even declines, depend-
ing on the performance measure.

Having compared different parameterizations of HITS, we
will now fix the number of sampled back-links at 100 and
compare the three link selection schemes against other iso-
lated features: PageRank, in-degree and out-degree count-
ing links of all pages, of different hosts only and of different
domains only (all, ih and id datasets respectively), and a
text retrieval algorithm exploiting anchor text: BM25F[24].
BM25F is a state-of-the art ranking function solely based on
textual content of the documents and their associated an-
chor texts. BM25F is a descendant of BM25 that combines
the different textual fields of a document, namely title, body
and anchor text. This model has been shown to be one of
the best-performing web search scoring functions over the
last few years [8, 24]. BM25F has a number of free parame-
ters (2 per field, 6 in our case); we used the parameter values
described in [24].
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Figure 3: Effectiveness measures for linear combinations of link-based features with BM25F.

Figure 2 shows the NDCG, MRR, and MAP measures
of these features. Again all performance measures (and
for all rank-thresholds we explored) agree. As expected,
BM25F outperforms all link-based features by a large mar-
gin. The link-based features are divided into two groups,
with a noticeable performance drop between the groups.
The better-performing group consists of the features that
are based on the number and/or quality of incoming links
(in-degree, PageRank, and HITS authority scores); and the
worse-performing group consists of the features that are
based on the number and/or quality of outgoing links (out-
degree and HITS hub scores). In the group of features based
on incoming links, features that ignore nepotistic links per-
form better than their counterparts using all links. More-
over, using only inter-domain (id) links seems to be marginally
better than using inter-host (ih) links.

The fact that features based on outgoing links underper-
form those based on incoming links matches our expecta-
tions; if anything, it is mildly surprising that outgoing links
provide a useful signal for ranking at all. On the other
hand, the fact that in-degree features outperform PageRank
under all measures is quite surprising. A possible explana-
tion is that link-spammers have been targeting the published
PageRank algorithm for many years, and that this has led
to anomalies in the web graph that affect PageRank, but
not other link-based features that explore only a distance-1
neighborhood of the result set. Likewise, it is surprising that
simple query-independent features such as in-degree, which
might estimate global quality but cannot capture relevance
to a query, would outperform query-dependent features such
as HITS authority scores.

However, we cannot investigate the effect of these features
in isolation, without regard to the overall ranking function,
for several reasons. First, features based on the textual con-
tent of documents (as opposed to link-based features) are
the best predictors of relevance. Second, link-based features
can be strongly correlated with textual features for several
reasons, mainly the correlation between in-degree and num-

Feature Transform function
bm25f T (s) = s
pagerank T (s) = log(s + 3 · 10−12)
degree-in-* T (s) = log(s + 3 · 10−2)
degree-out-* T (s) = log(s + 3 · 103)
hits-aut-* T (s) = log(s + 3 · 10−8)
hits-hub-* T (s) = log(s + 3 · 10−1)

Table 1: Near-optimal feature transform functions.

ber of textual anchor matches.
Therefore, one must consider the effect of link-based fea-

tures in combination with textual features. Otherwise, we
may find a link-based feature that is very good in isolation
but is strongly correlated with textual features and results
in no overall improvement; and vice versa, we may find a
link-based feature that is weak in isolation but significantly
improves overall performance.

For this reason, we have studied the combination of the
link-based features above with BM25F. All feature combina-
tions were done by considering the linear combination of two
features as a document score, using the formula score(d) =Pn

i=1 wiTi(Fi(d)), where d is a document (or document-
query pair, in the case of BM25F), Fi(d) (for 1 ≤ i ≤ n) is a
feature extracted from d, Ti is a transform, and wi is a free
scalar weight that needs to be tuned. We chose transform
functions that we empirically determined to be well-suited.
Table 1 shows the chosen transform functions.

This type of linear combination is appropriate if we as-
sume features to be independent with respect to relevance
and an exponential model for link features, as discussed
in [8]. We tuned the weights by selecting a random sub-
set of 5,000 queries from the query set, used an iterative
refinement process to find weights that maximized a given
performance measure on that training set, and used the re-
maining 23,043 queries to measure the performance of the
thus derived scoring functions.

We explored the pairwise combination of BM25F with ev-
ery link-based scoring function. Figure 3 shows the NDCG,
MRR, and MAP measures of these feature combinations,
together with a baseline BM25F score (the right-most bar
in each graph), which was computed using the same subset
of 23,045 queries that were used as the test set for the fea-
ture combinations. Regardless of the performance measure
applied, we can make the following general observations:

1. Combining any of the link-based features with BM25F
results in a substantial performance improvement over
BM25F in isolation.

2. The combination of BM25F with features based on in-
coming links (PageRank, in-degree, and HITS author-
ity scores) performs substantially better than the com-
bination with features based on outgoing links (HITS
hub scores and out-degree).

3. The performance differences between the various com-
binations of BM25F with features based on incoming
links is comparatively small, and the relative ordering
of feature combinations is fairly stable across the dif-
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Figure 4: Effectiveness measures for selected iso-
lated features, broken down by query specificity.

ferent performance measures used. However, the com-
bination of BM25F with any in-degree variant, and in
particular with id in-degree, consistently outperforms
the combination of BM25F with PageRank or HITS
authority scores, and can be computed much easier
and faster.

Finally, we investigated whether certain features are bet-
ter for some queries than for others. Particularly, we are in-
terested in the relationship between the specificity of a query
and the performance of different ranking features. The most
straightforward measure of the specificity of a query Q would
be the number of documents in a search engine’s corpus that
satisfy Q. Unfortunately, the query set available to us did
not contain this information. Therefore, we chose to ap-
proximate the specificity of Q by summing up the inverse
document frequencies of the individual query terms com-
prising Q. The inverse document frequency (IDF) of a term
t with respect to a corpus C is defined to be logN/doc(t),
where doc(t) is the number of documents in C containing t
and N is the total number of documents in C. By summing
up the IDFs of the query terms, we make the (flawed) as-
sumption that the individual query terms are independent of
each other. However, while not perfect, this approximation
is at least directionally correct.

We broke down our query set into 13 buckets, each bucket
associated with an interval of query IDF values, and we com-
puted performance metrics for all ranking functions applied
(in isolation) to the queries in each bucket. In order to
keep the graphs readable, we will not show the performance
of all the features, but rather restrict ourselves to the four
most interesting ones: PageRank, id HITS authority scores,
id in-degree, and BM25F. Figure 4 shows the MAP@10 for
all 13 query specificity buckets. Buckets on the far left of
each graph represent very general queries; buckets on the far
right represent very specific queries. The figures on the up-
per x axis of each graph show the number of queries in each
bucket (e.g. the right-most bucket contains 1,629 queries).
BM25F performs best for medium-specific queries, peaking
at the buckets representing the IDF sum interval [12,14).
By comparison, HITS peaks at the bucket representing the
IDF sum interval [4,6), and PageRank and in-degree peak at
the bucket representing the interval [6,8), i.e. more general
queries.

8. CONCLUSIONS AND FUTURE WORK
This paper describes a large-scale evaluation of the ef-

fectiveness of HITS in comparison with other link-based
ranking algorithms, in particular PageRank and in-degree,
when applied in isolation or in combination with a text re-
trieval algorithm exploiting anchor text (BM25F). Evalua-
tion is carried out with respect to a large number of human
evaluated queries, using three different measures of effec-
tiveness: NDCG, MRR, and MAP. Evaluating link-based
features in isolation, we found that web page in-degree out-
performs PageRank, and is about as effwective as HITS au-
thority scores. HITS hub scores and web page out-degree are
much less effective ranking features, but still outperform a
random ordering. A linear combination of any link-based
features with BM25F produces a significant improvement in
performance, and there is a clear difference between com-
bining BM25F with a feature based on incoming links (in-
degree, PageRank, or HITS authority scores) and a feature
based on outgoing links (HITS hub scores and out-degree),
but within those two groups the precise choice of link-based
feature matters relatively little.

We believe that the measurements presented in this paper
provide a solid evaluation of the best well-known link-based
ranking schemes. There are many possible variants of these
schemes, and many other link-based ranking algorithms have
been proposed in the literature, hence we do not claim this
work to be the last word on this subject, but rather the
first step on a long road. Future work includes evaluation
of different parameterizations of PageRank and HITS. In
particular, we would like to study the impact of changes
to the PageRank damping factor on effectiveness, the im-
pact of various schemes meant to counteract the effects of
link spam, and the effect of weighing hyperlinks differently
depending on whether they are nepotistic or not. Going
beyond PageRank and HITS, we would like to measure the
effectiveness of other link-based ranking algorithms, such as
SALSA. Finally, we are planning to experiment with more
complex feature combinations.
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evaluation of IR techniques. ACM Transactions on
Information Systems, 20(4):422–446, 2002.

[14] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and
G. H. Golub. Extrapolation methods for accelerating
PageRank computations. In Proc. of the 12th
International World Wide Web Conference, pages
261–270, 2003.

[15] M. M. Kessler. Bibliographic coupling between
scientific papers. American Documentation,
14(1):10–25, 1963.

[16] J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. In Proc. of the 9th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages
668–677, 1998.

[17] J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. Journal of the ACM,
46(5):604–632, 1999.

[18] A. N. Langville and C. D. Meyer. Deeper inside
PageRank. Internet Mathematics, 1(3):2005, 335-380.

[19] R. Lempel and S. Moran. The stochastic approach for
link-structure analysis (SALSA) and the TKC effect.
Computer Networks and ISDN Systems,
33(1–6):387–401, 2000.

[20] A. Y. Ng, A. X. Zheng, and M. I. Jordan. Stable
algorithms for link analysis. In Proc. of the 24th
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 258–266, 2001.

[21] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank citation ranking: Bringing order to the
web. Technical report, Stanford Digital Library
Technologies Project, 1998.

[22] J. A. Tomlin. A new paradigm for ranking pages on
the World Wide Web. In Proc. of the 12th
International World Wide Web Conference, pages
350–355, 2003.

[23] T. Upstill, N. Craswell, and D. Hawking. Predicting
fame and fortune: Pagerank or indegree? In Proc. of
the Australasian Document Computing Symposium,
pages 31–40, 2003.

[24] H. Zaragoza, N. Craswell, M. Taylor, S. Saria, and
S. Robertson. Microsoft Cambridge at TREC–13:
Web and HARD tracks. In Proc. of the 13th Text
Retrieval Conference, 2004.


