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Abstract

We study a general class of problems called F -Deletion problems. In an F -Deletion problem,

we are asked whether a subset of at most k vertices can be deleted from a graph G such that the

resulting graph does not contain as a minor any graph from the family F of forbidden minors. We

obtain a number of algorithmic results on the F -Deletion problem when F contains a planar graph.

We give

• a linear vertex kernel on graphs excluding t-claw K1,t, the star with t leves, as an induced

subgraph, where t is a fixed integer.

• an approximation algorithm achieving an approximation ratio of O(log3/2 OPT ), where OPT

is the size of an optimal solution on general undirected graphs.

Finally, we obtain polynomial kernels for the case when F contains graph θc as a minor for a fixed

integer c. The graph θc consists of two vertices connected by c parallel edges. Even though this

may appear to be a very restricted class of problems it already encompasses well-studied problems

such as Vertex Cover, Feedback Vertex Set and Diamond Hitting Set. The generic kernelization

algorithm is based on a non-trivial application of protrusion techniques, previously used only for

problems on topological graph classes.

1 Introduction

Let F be a finite set of graphs. In an F -Deletion problem1, we are given an n-vertex graph G and an

integer k as input, and asked whether at most k vertices can be deleted from G such that the resulting

graph does not contain a graph from F as a minor. More precisely, the problem is defined as follows:

F -Deletion
Instance: A graph G and a non-negative integer k.

Parameter: k

Question: Does there exist S ⊆ V(G), |S | ≤ k,

such that G \ S contains no graph from F as a minor?

We refer to such a subset S as a F -hitting set. The F -Deletion problem is a generalization of several

fundamental problems. For example, when F = {K2}, a complete graph on two vertices, this is the

Vertex Cover problem. When F = {C3}, a cycle on three vertices, this is the Feedback Vertex Set

problem. Other famous cases are F = {K2,3,K4}, F = {K3,3,K5} and F = {K3,T2}, which correspond to

removing vertices to obtain outerplanar graphs, planar graphs, and graphs of pathwidth one respectively.

Here, Ki, j denotes the complete bipartite graph with bipartitions of sizes i and j, and Ki denotes the

complete graph on i vertices. Further, a T2 is a star on three leaves, each of whose edges has been
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1We use prefix p to distinguish the parameterized version of the problem.
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Figure 1: Graphs T2, t-claw K1,t with t = 7, and θc with c = 7

subdivided exactly once. A T2 structure is depicted in the leftmost graph of Figure 1. In the literature,

these problems are known as p-Outerplanar Deletion Set, p-Planar Deletion Set and p-Pathwidth

One Deletion Set respectively.

Our interest in the F -Deletion problem is motivated by its generality and the recent developments in

kernelization or polynomial time preprocessing. The parameterized complexity of this general problem

is well understood. By a celebrated result of Robertson and Seymour, every F -Deletion problem is

fixed-parameter tractable (FPT). That is, there is an algorithm solving the problem in time O( f (k) · n3)

[44]. In this paper we study this problem from the view point of polynomial time preprocessing and

approximation, when the obstruction set F satisfies certain properties.

Preprocessing as a strategy for coping with hard problems is universally applied in practice and the

notion of kernelization provides a mathematical framework for analyzing the quality of preprocessing

strategies. We consider parameterized problems, where every instance I comes with a parameter k. Such

a problem is said to admit a polynomial kernel if every instance (I, k) can be reduced in polynomial time

to an equivalent instance with both size and parameter value bounded by a polynomial in k. The study

of kernelization is a major research frontier of Parameterized Complexity and many important recent

advances in the area are on kernelization. These include general results showing that certain classes of

parameterized problems have polynomial kernels [3, 12, 31, 38]. The recent development of a framework

for ruling out polynomial kernels under certain complexity-theoretic assumptions [11, 25, 32] has added

a new dimension to the field and strengthened its connections to classical complexity. For overviews of

kernelization we refer to surveys [10, 33] and to the corresponding chapters in books on Parameterized

Complexity [30, 42].

While the initial interest in kernelization was driven mainly by practical applications, the notion

of kernelization turned out to be very important in theory as well. It is well known, see e.g. [26],

that a parameterized problem is fixed parameter tractable, or belongs to the class FPT, if and only if

it has a (perhaps exponential) kernel. Kernelization enables us to classify problems within the class

FPT further, based on the sizes of the problem kernels. So far, most of the work done in the field of

kernelization is still specific to particular problems and powerful unified techniques to identify classes

of problems with polynomial kernels are still in their nascent stage. One of the fundamental challenges in

the area is the possibility of characterising general classes of parameterized problems possessing kernels

of polynomial sizes. From this perspective, the class of the F -Deletion problems is very interesting

because it contains as special cases the p-Vertex Cover and p-Feedback Vertex Set problems which

are the most intensively studied problems from the kernelization perspective.

Our contribution and key ideas. One of the main conceptual contributions of this work is the exten-

sion of protrusion techniques, initially developed in [12, 31] for obtaining meta-kernelization theorems

for problems on sparse graphs like planar and H-minor-free graphs, to general graphs. We demonstrate
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this by obtaining a number of kernelization results for the F -Deletion problem when F contains a pla-

nar graph. Our first result is the following theorem for graphs that do not contain K1,t (a star on t leaves,

see Figure 1) as an induced subgraph.

Theorem 1. Let F be an obstruction set containing a planar graph. Then F -Deletion admits a linear

vertex kernel on graphs excluding K1,t as an induced subgraph, where t is a fixed integer.

Several well studied graph classes do not contain graphs with induced K1,t. Of course, every graph

with maximum vertex degree at most (t − 1) is K1,t-free. The class of K1,3-free graphs, also known as

claw-free graphs, contains line graphs and de Bruijn graphs. Unit disc graphs are known to be K1,7-

free [19]. We remark that the number of vertices in the kernels of Theorem 1 is (up to a multiplicative

constant) optimal, unless P=NP.

Our kernelization is a divide and conquer algorithm which finds large protrusions. A protrusion is

a subgraph of constant treewidth separated from the remaining part of the graph by a constant number

of vertices. Having found protrusions of substantial size, the kernelization algorithm replaces them with

smaller, “equivalent” protrusions. Here we use the results from the work by Bodlaender et al. [12] that

enable this step whenever the parameterized problem in question “behaves like a regular language”. To

prove that F -Deletion has the desired properties for this step, we formulate the problem in monadic sec-

ond order logic and show that it exhibits certain monotonicity properties. As a corollary we obtain that

p-Feedback Vertex Set, p-Diamond Hitting Set, p-Pathwidth One Deletion Set, and p-Outerplanar

Deletion Set admit a linear vertex kernel on graphs excluding K1,t as an induced subgraph. With the

same methodology we also obtain a O(k log k) vertex kernel for p-Disjoint Cycle Packing on graphs ex-

cluding K1,t as an induced subgraph. We note that p-Disjoint Cycle Packing does not admit a polynomial

kernel on general graphs [13] unless coNP ⊆ NP/poly.

Let θc be a graph with two vertices and c ≥ 1 parallel edges (see Figure 1). Our second result is the

following theorem on general graphs.

Theorem 2. Let F be an obstruction set containing θc. Then F -Deletion admits a kernel of size

O(k2 log3/2 k).

A number of well-studied NP-hard combinatorial problems are special cases of p-θc-Free-Deletion.

When c = 1, this is the classical Vertex Cover problem [41]. For c = 2, this is another well studied

problem, the Feedback Vertex Set problem [5, 7, 18, 35]. When c = 3, this is the Diamond Hitting

Set problem [29]. Let us note that the size of the best known kernel for c = 2 is O(k2), which is very

close to the size of the kernel in Theorem 2. Also, Dell and van Melkebeek proved that no NP-hard

vertex deletion problem based on a graph property that is inherited by subgraphs can have kernels of

size O(k2−ε) unless coNP ⊆ NP/poly [25] and thus the sizes of the kernels in Theorem 2 are tight up to

a polylogarithmic factor.

The proof of Theorem 2 is obtained in a series of non-trivial steps. The very high level idea is to

reduce the general case to problem on graphs of bounded degree, which allows us to use the protrusion

techniques as in the proof of Theorem 1. However, vertex degree reduction is not straightforward and

requires several new ideas. One of the new tools is a generic O(log3/2 OPT )-approximation algorithm

for the F -Deletion problem when the class of excluded minors for F contains at least one planar graph.

More precisely, we obtain the following result, which is of independent interest.

Theorem 3. Let F be an obstruction set containing a planar graph, and let OPT be the size of the

smallest F-hitting set. Given a graph G, in polynomial time we can find a subset S ⊆ V(G) such that

G[V \ S ] contains no element of F as a minor and |S | = O(OPT · log3/2 OPT ).

While several generic approximation algorithms are known for problems of minimum vertex deletion

to obtain subgraphs with property P, like when P is a hereditary property with a finite number of minimal

forbidden subgraphs [40], or can be expressed as a universal first order sentence over subsets of edges of
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the graph [37], we are not aware of any generic approximation algorithm for the case when a property P

is characterized by a finite set of forbidden minors.

We then use the approximation algorithm as a subroutine in a polynomial time algorithm that trans-

forms the input instance (G, k) into an equivalent instance (G′, k′) such that k′ ≤ k and the maximum

degree of G′ is bounded by O(k log3/2 k). An important combinatorial tool used in designing this algo-

rithm is the q–Expansion Lemma. For q = 1 this lemma is Hall’s theorem and its usage is equivalent to

the application of the Crown Decomposition technique [1, 17]. After obtaining an equivalent instance

with bounded degree, we apply protrusion techniques and prove Theorem 2.

Related work. All non-trivial F -Deletion problems are NP-hard [39]. By one of the most well-known

consequences of the celebrated Graph Minor theory of Robertson and Seymour, the F -Deletion prob-

lem is fixed parameter tractable for every finite set of forbidden minors. A special case of that problem,

when the set F contains θc, has been studied from approximation and parameterized perspectives. In

particular, the case of p-θ1-Deletion or, equivalently, p-Vertex Cover, is the most well-studied problem

in Parameterized Complexity. Different kernelization techniques were applied on the problem, eventu-

ally resulting in a 2k-sized vertex kernel [1, 16, 24, 34]. For the kernelization of p-Feedback Vertex

Set, or p-θ2-Deletion, there has been a sequence of dramatic improvements starting from an O(k11)

vertex kernel by Buragge et al. [15], improved to O(k3) by Bodlaender [9], and then finally to O(k2)

by Thomassé [46]. Recently Philip et al. [43] and Cygan et al. [23] obtained polynomial kernels for

p-Pathwidth One Deletion Set. Constant factor approximation algorithms are known for Vertex Cover

and Feedback Vertex Set [5, 6]. Very recently, a constant factor approximation algorithm for the Dia-

mond Hitting Set problem, or p-θ3-Deletion, was obtained in [29]. Prior to our work, no polynomial

kernels were known for p-Diamond Hitting Set or more general families of F -Deletion problems.

The remaining part of the paper is organised as follows. In Section 2 we provide preliminaries

on basic notions from Graph Theory and Logic used in the paper. Section 3 is devoted to the proof

of Theorem 1. In Section 4 we give an approximation algorithms proving Theorem 3. The proof of

Theorem 2 is given in Section 5. We conclude with open questions in Section 6.

2 Preliminaries

In this section we give various definitions which we use in the paper. For n ∈ N, we use [n] to denote the

set {1, . . . , n}. We use V(G) to denote the vertex set of a graph G, and E(G) to denote the edge set. The

degree of a vertex v in G is the number of edges incident on v, and is denoted by d(v). We use ∆(G) to

denote the maximum degree of G. A graph G′ is a subgraph of G if V(G′) ⊆ V(G) and E(G′) ⊆ E(G).

The subgraph G′ is called an induced subgraph of G if E(G′) = {{u, v} ∈ E(G) | u, v ∈ V(G′)}. Given a

subset S ⊆ V(G) the subgraph induced by S is denoted by G[S ]. The subgraph induced by V(G) \ S is

denoted by G \ S . We denote by N(S ) the open neighborhood of S , i.e. the set of vertices in V(G) \ S

adjacent to S . Let F be a finite set of graphs. A vertex subset S ⊆ V(G) of a graph G is said to be a

F -hitting set if G \ S does not contain any graphs in the family F as a minor.

By contracting an edge (u, v) of a graph G, we mean identifying the vertices u and v, keeping all the

parallel edges and removing all the loops. A minor of a graph G is a graph H that can be obtained from

a subgraph of G by contracting edges. We keep parallel edges after contraction since the graph θc which

we want to exclude as a minor itself contains parallel edges.

Let G,H be two graphs. A subgraph G′ of G is said to be a minor-model of H in G if G′ contains

H as a minor. The subgraph G′ is a minimal minor-model of H in G if no proper subgraph of G′ is a

minor-model of H in G.

A graph class C is minor closed if any minor of any graph in C is also an element of C. A minor

closed graph class C is H-minor-free or simply H-free if H < C.

4



2.1 Monadic Second Order Logic (MSO)

The syntax of MSO on graphs includes the logical connectives ∨, ∧, ¬, ⇔, ⇒, variables for vertices,

edges, sets of vertices and sets of edges, the quantifiers ∀, ∃ that can be applied to these variables, and

the following five binary relations:

1. u ∈ U where u is a vertex variable and U is a vertex set variable;

2. d ∈ D where d is an edge variable and D is an edge set variable;

3. inc(d, u), where d is an edge variable, u is a vertex variable, and the interpretation is that the edge

d is incident on the vertex u;

4. adj(u, v), where u and v are vertex variables u, and the interpretation is that u and v are adjacent;

5. equality of variables representing vertices, edges, set of vertices and set of edges.

Many common graph-theoretic notions such as vertex degree, connectivity, planarity, being acyclic,

and so on, can be expressed in MSO, as can be seen from introductory expositions [14, 21]. Of particular

interest to us are p-min-MSO problems. In a p-min-MSO graph problem Π, we are given a graph G and

an integer k as input. The objective is to decide whether there is a vertex/edge set S of size at most k

such that the MSO-expressible predicate PΠ(G, S ) is satisfied.

2.2 Parameterized algorithms and Kernels

A parameterized problem Π is a subset of Γ∗ × N for some finite alphabet Γ. An instance of a param-

eterized problem consists of (x, k), where k is called the parameter. A central notion in parameterized

complexity is fixed parameter tractability (FPT) which means, for a given instance (x, k), solvability in

time f (k) · p(|x|), where f is an arbitrary function of k and p is a polynomial in the input size. The notion

of kernelization is formally defined as follows.

Definition 1. [Kernelization, Kernel] [30] A kernelization algorithm for a parameterized problem Π ⊆

Σ∗ × N is an algorithm that, given (x, k) ∈ Σ∗ × N, outputs, in time polynomial in (|x| + k), a pair

(x′, k′) ∈ Σ∗ ×N such that: (a) (x, k) ∈ Π if and only if (x′, k′) ∈ Π and (b) |x′|, k′ ≤ g(k), where g is some

computable function. The output instance x′ is called the kernel, and the function g is referred to as the

size of the kernel. If g(k) = kO(1), then we say that Π admits a polynomial kernel.

2.3 Tree-width and protrusions

Let G be a graph. A tree decomposition of a graph G is a pair (T,X = {Xt}t∈V(T )) such that

• ∪t∈V(T )Xt = V(G),

• for every edge {x, y} ∈ E(G) there is a t ∈ V(T ) such that {x, y} ⊆ Xt, and

• for every vertex v ∈ V(G) the subgraph of T induced by the set {t | v ∈ Xt} is connected.

The width of a tree decomposition is
(

maxt∈V(T ) |Xt|
)

−1 and the treewidth of G is the minimum width

over all tree decompositions of G. A tree decomposition (T,X) is called a nice tree decomposition if T

is a tree rooted at some node r where Xr = ∅, each node of T has at most two children, and each node is

of one of the following kinds:

1. Introduce node: a node t that has only one child t′ where Xt ⊃ Xt′ and |Xt| = |Xt′ | + 1.

2. Forget node: a node t that has only one child t′ where Xt ⊂ Xt′ and |Xt| = |Xt′ | − 1.

3. Join node: a node t with two children t1 and t2 such that Xt = Xt1 = Xt2 .

4. Base node: a node t that is a leaf of t, is different than the root, and Xt = ∅.
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Notice that, according to the above definition, the root r of T is either a forget node or a join node. It

is well known that any tree decomposition of G can be transformed into a nice tree decomposition in

time O(|V(G)| + |E(G)|) maintaining the same width [36]. We use Gt to denote the graph induced on the

vertices ∪t′X
′
t , where t′ ranges over all descendants of t, including t. We use Ht to denote Gt[V(Gt) \Xt].

Given a graph G and S ⊆ V(G), we define ∂G(S ) as the set of vertices in S that have a neighbor in

V(G) \ S . For a set S ⊆ V(G) the neighborhood of S is NG(S ) = ∂G(V(G) \ S ). When it is clear from

the context, we omit the subscripts. We now define the notion of a protrusion.

Definition 2. [r-protrusion] Given a graph G, we say that a set X ⊆ V(G) is an r-protrusion of G if

tw(G[X]) ≤ r and |∂(X)| ≤ r.

2.4 t-Boundaried Graphs

In this section we define t-boundaried graphs and various operations on them. Throughout this section,

t is an arbitrary positive integer.

Definition 3. [t-Boundaried Graphs] A t-boundaried graph is a graph G with t distinguished vertices,

uniquely labeled from 1 to t. The set ∂(G) of labeled vertices is called the boundary of G. The vertices

in ∂(G) are referred to as boundary vertices or terminals.

For a graph G and a vertex set S ⊆ V(G), we will sometimes consider the graph G[S ] as the |∂(S )|-

boundaried graph with ∂(S ) being the boundary.

Definition 4. [Gluing by ⊕] Let G1 and G2 be two t-boundaried graphs. We denote by G1 ⊕ G2 the

t-boundaried graph obtained by taking the disjoint union of G1 and G2 and identifying each vertex of

∂(G1) with the vertex of ∂(G2) with the same label; that is, we glue them together on the boundaries. In

G1 ⊕G2 there is an edge between two labeled vertices if there is an edge between them in G1 or in G2.

In this paper, t-boundaried graphs often come coupled with a vertex set which represents a partial

solution to some optimization problem. For ease of notation we defineHt be to be the set of pairs (G, S ),

where G is a t-boundaried graph and S ⊆ V(G).

Definition 5. [Replacement] Let G be a graph containing a r-protrusion X. Let G1 be an r-boundaried

graph. The act of replacing G[X] with G1 corresponds to changing G into G[(V(G) \ X) ∪ ∂(X)] ⊕G1.

2.5 Finite Integer Index

Definition 6. [Canonical Equivalence] For a parameterized problem Π and two t-boundaried graphs

G1 and G2, we say that G1 ≡Π G2 if there exists a constant c such that for all t-boundaried graphs G3

and for all k,

(G1 ⊕G3, k) ∈ Π if and only if (G2 ⊕G3, k + c) ∈ Π.

Definition 7. [Finite Integer Index] We say that a parameterized problem Π has finite integer index if

for every t there exists a finite set S of t-boundaried graphs such that for any t-boundaried graph G1 there

exists G2 ∈ S such that G2 ≡Π G1. Such a set S is called a set of representatives for (Π, t).

Note that for every t, the relation ≡Π on t-boundaried graphs is an equivalence relation. A problem

Π is finite integer index if and only if for every t, ≡Π is of finite index, that is, has a finite number of

equivalence classes. The notion of strong monotonicity is an easily checked sufficient condition for a

p-min-MSO problem to have finite integer index.

Definition 8. [Signatures] Let Π be a p-min-MSO problem. For a t-boundaried graph G we define the

signature function ζΠ
G

: Ht → N ∪ {∞} as follows. For a pair (G′, S ′) ∈ Ht, if there is no set S ⊆ V(G)

(S ⊆ E(G)) such that PΠ(G ⊕ G′, S ∪ S ′) holds, then ζΠ
G

((G′, S ′)) = ∞. Otherwise ζΠ
G

((G′, S ′)) is the

size of the smallest S ⊆ V(G) (S ⊆ E(G)) such that PΠ(G ⊕G′, S ∪ S ′) holds.
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Definition 9. [Strong Monotonicity] A p-min-MSO problem Π is said to be strongly monotone if there

exists a function f : N → N such that the following condition is satisfied. For every t-boundaried

graph G, there is a subset S ⊆ V(G) such that for every (G′, S ′) ∈ Ht such that ζΠ
G

((G′, S ′)) is finite,

PΠ(G ⊕G′, S ∪ S ′) holds and |S | ≤ ζΠ
G

((G′, S ′)) + f (t).

2.6 MSO Formulations

We now give MSO formulations for some properties involving F or θc that we use in our arguments. For

a graph G and a vertex set S ⊆ V(G), let Conn(G, S ) denote the MSO formula which states that G[S ]

is connected, and let MaxConn(G, S ) denote the MSO formula which states that G[S ] is a maximal

connected subgraph of G.

H minor-models. Let F be the finite forbidden set. For a graph G, we use φH(G) to denote an MSO

formula which states that G contains H as a minor — equivalently, that G contains a minimal H minor

model. Let V(H) = {h1, . . . , hc}. Then, φH(G) is given by:

φH(G) ≡ ∃X1, . . . , Xc ⊆ V(G)[
∧

i, j

(Xi ∩ X j = ∅) ∧
∧

1≤i≤c

Conn(G, Xi)∧

∧

(hi,h j)∈E(H)

∃x ∈ Xi ∧ y ∈ X j[(x, y) ∈ E(G)]

] (1)

Minimum-size F -hitting set. A minimum-size F -hitting set of graph G can be expressed as:

Minimize S ⊆ V(G)[
∧

H∈F

¬φH(G \ S )] (2)

Largest θc “flower”. Let v be a vertex in a graph G. A maximum-size set M of θc minor-models in G,

all of which pass through v and no two of which share any vertex other than v, can be represented as:

Maximize S ⊆ V(G)[

∃F ⊆ E(G)[∀x ∈ S [

∃X ⊆ V ′[MaxConn(G′, X) ∧ x ∈ X ∧ ∀y ∈ S [y , x =⇒ y < X] ∧ φc(X ∪ {v})]

]]] (3)

Here G′ is the graph with vertex set V(G) and edge set F, and V ′ = V(G) \ {v}. S is a system of

distinct representatives for the vertex sets that constitute the elements of M.

3 Kernelization for F -Deletion on K1,t free graphs

In this section we show that if the obstruction setF contains a planar graph then theF -Deletion problem

has a linear vertex kernel on graphs excluding K1,t as an induced subgraph. We start with the following

lemma, which is crucial to our kernelization algorithms.

Lemma 1. Let F be an obstruction set containing a planar graph of size h. If G has a F –hitting set of

S size at most k, then tw(G \ S ) ≤ d and tw(G) ≤ k + d, where d = 202(14h−24)5

.
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Proof. By assumption, F contains at least one planar graph. Let h be the size of the smallest planar

graph H contained in F . By a result of Robertson et al. [45], H is a minor of the (ℓ × ℓ)-grid, where

ℓ = 14h − 24. In the same paper Robertson et al. [45] have shown that any graph with treewidth greater

than 202ℓ5 contains a (ℓ × ℓ)-grid as a minor. Let S be a F –hitting set of G of size at most k. Since the

(ℓ × ℓ)-grid contains H as a minor, we have that tw(G \ S ) ≤ 202ℓ5 . Therefore, tw(G) ≤ k + d, where

d = 202ℓ5 — indeed, a tree decomposition of width (k + d) can be obtained by adding the vertices of S

to every bag in an optimal tree decomposition of G \ S . This completes the proof of the lemma. �

3.1 The Protrusion Rule — Reductions Based on Finite Integer Index

Wo obtain our kernelization algorithm for F -Deletion by applying a protrusion based reduction rule.

That is, any large r-protrusion for a fixed constant r that depends only on F (that is, only on the problem)

is replaced with a smaller equivalent r-protrusion. For this, we utilize the following lemma of Bodlaender

et al. [12].

Lemma 2 ([12]). Let Π be a problem that has finite integer index. Then there exists a computable

function γ : N→ N and an algorithm that given an instance (G, k) and an r-protrusion X of G of size at

least γ(r), runs in O(|X|) time and outputs an instance (G∗, k∗) such that |V(G∗)| < |V(G)|, k∗ ≤ k, and

(G∗, k∗) ∈ Π if and only if (G, k) ∈ Π.

Remark: Let us remark that if G does not have K1,t as an induced subgraph then the proof of Lemma 2

also ensures that the graph G′ does not contain K1,t as an induced subgraph. This ensures that the reduced

instance is belongs to the same graph class as the original. The remark is not only true about the class of

graphs excluding K1,t as an induced subgraph, but also for any graph class G that can be characterized

by either finite set of forbidden subgraphs or induced subgraphs or minors. That is, if G is in G then the

graph G′ returned by Lemma 2 is also in G.

In order to apply Lemma 2 we need to be able to efficiently find large r-protrusions whenever the

instance considered is large enough. Also, we need to prove that F -Deletion has finite integer index.

The next lemma yields a divide and conquer algorithm for efficiently finding large r-protrusions.

Lemma 3. There is a linear time algorithm that given an n-vertex graph G and a set X ⊆ V(G) such

that tw(G \ X) ≤ d, outputs a 2(d + 1)-protrusion of G of size at least
n−|X|

4|N(X)|+1
. Here d is some constant.

Proof. Let F = G \ X. The algorithm starts by computing a nice tree decomposition of F of width at

most d. Notice that since d is a constant this can be done in linear time [8]. Let S be the vertices in V(F)

that are neighbors of X in G, that is, S = NG(X).

The nice tree decomposition of F is a pair (T,B = {Bℓ}ℓ∈V(T )), where T is a rooted binary tree. We

will now mark some of the nodes of T . For every v ∈ S , we mark the topmost node ℓ in T such that

v ∈ Bℓ. In this manner, at most |S | nodes are marked. Now we mark more nodes of T by exhaustively

applying the following rule: if u and v are marked, mark their least common ancestor in T . Let M be the

set of all marked nodes of T . Standard counting arguments on trees give that |M| ≤ 2|S |.

Since T is a binary tree, it follows that T \ M has at most 2|M| + 1 connected components. Let

the vertex sets of these connected components be C1,C2 . . .Cη, η ≤ 2|M| + 1. For every i ≤ η, let

C′
i
= NT (Ci) ∪ Ci and let Pi =

⋃

u∈C′
i
Bu. By the construction of M, every component of T \ M has

at most 2 neighbors in M. Also for every 1 ≤ i ≤ η and v ∈ S , we have that if v ∈ Pi, then v should

be contained in one of the bags of NT (Ci). In other words, S ∩ Pi ⊆
⋃

u∈C′
i
\Ci

Bu. Thus every Pi is a

2(d + 1)-protrusion of G. Since η ≤ 2|M| + 1 ≤ 4|S | + 1, the pigeon-hole principle yields that there is

a protrusion Pi with at least
n−|X|
4|S |+1

vertices. The algorithm constructs M and P1 . . . Pη and outputs the

largest protrusion Pi. It is easy to implement this procedure to run in linear time. This concludes the

proof. �

No we show that F -Deletion has finite integer index. For this we need the following lemma.
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Lemma 4 ([12]). Every strongly monotone p-min-MSO problem has finite integer index.

Lemma 5. F -Deletion has finite integer index.

Proof. One can easily formulate F -Deletion in MSO, which shows that it is a p-min-MSO problem

(see Section 2.6). To complete the proof that F -Deletion has finite integer index we show that Π =

F -Deletion is strongly monotone. Given a t-boundaried graph G, with ∂(G) as its boundary, let S ′′ ⊆

V(G) be a minimum set of vertices in G such that G \ S ′′ does not contain any graph in F as a minor.

Let S = S ′′ ∪ ∂(G).

Now for any (G′, S ′) ∈ Ht such that ζΠ
G

((G′, S ′)) is finite, we have that G⊕G′[(V(G)∪V(G′)) \ (S ∪

S ′)] does not contain any graph in F as a minor and |S | ≤ ζΠ
G

((G′, S ′)) + t. This proves that F -Deletion

is strongly monotone. By Lemma 4, F -Deletion has finite integer index. �

3.2 Analysis and Kernel Size – Proof of Theorem 1

Now we give the desired kernel for F -Deletion. We first prove an useful combinatorial lemma.

Lemma 6. Let G be a graph excluding K1,t as an induced subgraph and S be a F -hitting set. If F

contains a planar graph of size h, then |N(S )| ≤ g(h, t) · |S | for some function g of h and t.

Proof. By Lemma 1, tw(G \ S ) ≤ d for d = 202(14h−24)5

. It is well known that a graph of treewidth d is

d + 1 colorable. Let v ∈ S and let S v be its neighbors in G \ S . We first show that |S v| ≤ (t − 1)(d + 1).

Consider the graph G∗ = G[S v]. Since tw(G \ S ) ≤ d we have that tw(G∗) ≤ d and hence G∗ is d + 1

colorable. Fix a coloring κ of G∗ with d + 1 colors and let η be the size of the largest color class. Clearly

η ≥ (|S v|/d + 1). Since each color class is an independent set, we have that η ≤ (t − 1), else we will get

K1,t as an induced subgraph in G. This implies that |S v| ≤ (t − 1)(d + 1). Since v was an arbitrary vertex

of S , we have that
∑

v∈S |S v| ≤
∑

v∈S (t − 1)(d + 1) ≤ |S | · g(h, t). Here g(h, t) = (t − 1)(202(14h−24)5

+ 1).

Finally the observation that N(S ) = ∪v∈S S v, yields the result. �

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let (G, k) be an instance of F -Deletion and h be the size of a smallest planar

graph in the obstruction set F . We first apply Theorem 3 (to be proved in next section), an approximation

algorithm forF -Deletionwith factor O(log3/2 OPT ), and obtain a set X such that G\X contains no graph

in F as a minor. If the size of the set X is more than O(k log3/2 k) then we return that (G, k) is a NO-

instance to F -Deletion. This is justified by the approximation guarantee provided by the Theorem 3.

Let d denote the treewidth of the graph after the removal of X, that is, d := tw(G\S ). Now we obtain

the kernel in two phases: we first apply the protrusion rule selectively (Lemma 2) and get a polynomial

kernel. Then, we apply the protrusion rule exhaustively on the obtained kernel to get a smaller kernel.

This is done in order to reduce the running time complexity of the kernelization algorithm. To obtain the

kernel we follow the following steps.

Applying the Protrusion Rule. By Lemma 1, d ≤ 202(14h−24)5

. We apply Lemma 3 and obtain a 2(d+1)-

protrusion Y of G of size at least
|V(G′)|−|X|
4|N(X)|+1

. By Lemma 5, F -Deletion has finite integer index. Let

γ : N → N be the function defined in Lemma 2. If
|V(G′)|−|X|
4|N(X)|+1

≥ γ(2d + 1), then using Lemma 2 we

replace the 2(d + 1)-protrusion Y in G and obtain an instance (G∗, k∗) such that |V(G∗)| < |V(G)|, k∗ ≤ k,

and (G∗, k∗) is a YES-instance of F -Deletion if and only if (G, k) is a YES-instance of F -Deletion .

Recall that G∗ also excludes K1,t as an induced subgraph.

Let (G∗, k∗) be a reduced instance with hitting set X. In other words, there is no (2d + 2)-protrusion

of size γ(2d + 2) in G∗ \ X, and Protrusion Rule no longer applies. We claim that the number of vertices
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in this graph is bounded by O(k log3/2 k). Indeed, since we cannot apply the Protrusion Rule, we have

that
|V(G∗)|−|X|
4|N(X)|+1

≤ γ(2d + 2). Because k∗ ≤ k, we have that

|V(G∗)| ≤ γ(2d + 2)(4|N(X)| + 1) + |X|.

By Lemma 6, |N(X)| ≤ g(h, d) · |X| and thus

|V(G∗)| = O(γ(2d + 2) · k log3/2 k) = O(k log3/2 k).

This gives us a polynomial time algorithm that returns a vertex kernel of size O(k log3/2 k).

Now we give a kernel of smaller size. We would like to replace every large (2d + 2)-protrusion

in graph by a smaller one. We find a (2d + 2)-protrusion Y of size at least γ(2d + 2) by guessing the

boundary ∂(Y) of size at most 2d + 2. This could be performed in time kO(d). So let (G∗, k∗) be the

reduced instance on which we cannot apply the Protrusion Rule. If G is a YES-instance then there is a

F -hitting set X of size at most k such that tw(G \ X) ≤ d. Now applying the analysis above with this X

yields that |V(G∗)| = O(k). Hence if the number of vertices in the reduced instance G∗, to which we can

not apply the Protrusion Rule, is more than O(k) then we return that G is a NO-instance. This concludes

the proof of the theorem. �

Corollary 1. p-Feedback Vertex Set, p-Diamond Hitting Set, p-Pathwidth One Deletion Set, p-

Outerplanar Deletion Set admit linear vertex kernel on graphs excluding K1,t as an induced subgraph.

The methodology used in proving Theorem 1 is not limited to F -Deletion. For example, it is

possible to obtain an O(k log k) vertex kernel on K1,t-free graphs for p-Disjoint Cycle Packing, which

is for a given graph G and positive integer k to determine if there are k vertex disjoint cycles in G.

It is iteresting to note that p-Disjoint Cycle Packing does not admit a polynomial kernel on general

graphs [13]. For our kernelization algorithm, we use the following Erdős-Pósa property [27]: given a

positive integer ℓ every graph G either has ℓ vertex disjoint cycles or there exists a set S ⊆ V(G) of size

at most O(ℓ log ℓ) such that G \S is a forest. So given a graph G and positive integer k, we first apply the

factor 2 approximation algorithm given in [5] and obtain a set S such that G \ S is a forest. If the size

of S is more than O(k log k) then we return that G has k vertex disjoint cycles. Else, we use the fact that

p-Disjoint Cycle Packing [12] has finite integer index and apply the protrusion reduction rule in G \S to

obtain an equivalent instance (G∗, k∗), as in Theorem 1. The analysis for kernel size used in the proof of

Theorem 1 together with the observation that tw(G \ S ) ≤ 1 shows that if (G, k) is an yes instance then

the size of V(G∗) is at most O(k log k).

Corollary 2. p-Disjoint Cycle Packing has O(k log k) vertex kernel on graphs excluding K1,t as an

induced graph.

Next, we extend the methods used in this section for obtaining kernels for F -Deletion on graphs

excluding K1,t as an induced graph to all graphs, though for restricted F — we consider the families F

that contain θc. However, to achieve this we need a polynomial time approximation algorithm with a

factor polynomial in optimum size and not depending on the input size. For example, an approximation

algorithm with factor O(log n) would not serve our purpose. Here, we obtain an approximation algorithm

for F -Deletion with a factor O(log3/2 OPT ) whenever the finite obstruction set F contains a planar

graph. Here OPT is the size of a minimum F -hitting set. This immediately implies a factor O(log3/2 n)

algorithm for all the problems that can categorized by F -Deletion. We believe this result has its own

significance and is of independent interest.

4 An approximation algorithm for finding a F –hitting set

In this section, we present an O(log3/2 OPT )-approximation algorithm for theF -Deletion problem when

the finite obstruction set F contains at least one planar graph.
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Algorithm 1 Hit-Set-I-(G)

1: if tw(G) ≤ d then

2: Find a minimum F -hitting set Y of G and return Y .

3: end if

4: Compute an approximate tree decomposition (T,X = {Xt}t∈V(T )) of width ℓ.

5: if ℓ > (k + d)
√

log(k + d), where d is as in Lemma 1 then

6: Return that G does not have F –hitting set of size at most k.

7: end if

8: Convert (T,X = {Xt}t∈V(T )) to a nice tree decomposition of the same width.

9: Find a partitioning of vertex set V(G) into V1, V2 and X (a bag corresponding to a node in T ) such

that tw(G[V1]) = d as described in the proof.

10: Return
(

X
⋃

Hit-Set-I-(G[V1])
⋃

Hit-Set-I-(G[V2])
)

.

Lemma 7. There is a polynomial time algorithm that, given a graph G and a positive integer k, either

reports that G has no F -hitting set of size at most k or finds a F -hitting set of size at most O(k log3/2 k).

Proof. We begin by introducing some definitions that will be useful for describing our algorithms. First

is the notion of a good labeling function. Given a nice tree decomposition (T,X = {Xt}t∈V(T )) of a graph

G, a function g : V(T )→ N is called a good labeling function if it satisfies the following properties:

• if t is a base node then g(t) = 0;

• if t is an introduce node, then g(t) = g(s), where s is the child of t;

• if t is a join node, then g(t) = g(s1) + g(s2), where s1 and s2 are the children of t; and

• if t is a forget node, then g(t) ∈ {g(s), g(s) + 1}, where s is the child of t.

A max labeling function g is defined analogously to a good labeling function, the only difference being

that for a join node t, we have the condition g(t) = max{g(s1), g(s2)}. We now turn to the approximation

algorithm.

Our algorithm has two phases. In the first phase we obtain a F -hitting set of size O(k2
√

log k)

and in the second phase we use the hitting set obtained in the first phase to get a F -hitting set of size

O(k log3/2 k). The second phase could be thought of as “bootstrapping” where one uses an initial solution

to a problem to obtain a better solution.

By assumption we know that F contains at least one planar graph. Let h be the number of vertices

in the smallest planar graph H contained in F . By a result of Robertson et al. [45], H is a minor of the

(t × t)-grid, where t = 14h − 24. Robertson et al. [45] have also shown that any graph with treewidth

greater than 202t5 contains a t × t grid as a minor. In the algorithm we set d = 202t5 .

We begin by describing the first phase of the algorithm, see Algorithm 1. We start by checking

whether a graph G has treewidth at most d (the first step of the algorithm) using the linear time al-

gorithm of Bodlaender [8]. If tw(G) ≤ d then we find an optimum F -hitting set of G in linear

time using a modification of Lemma 9. If the treewidth of the input graph is more than d then we

find an approximate tree decomposition of width ℓ using an algorithm of Feige et al. [28] such that

tw(G) ≤ ℓ ≤ d′tw(G)
√

log tw(G), where d′ is a fixed constant.

If ℓ > (k + d)d′
√

log(k + d), then by Lemma 1, we know that the size of a minimum F -hitting set of

G is at least (k + 1). Hence from now onwards we assume that tw(G) ≤ ℓ ≤ (k + d)d′
√

log(k + d). In

the next step we convert the given tree decomposition to a nice tree decomposition of the same width in

linear time [36]. Given a nice tree decomposition (T,X = {Xt}t∈V(T )) of G, we compute a partial function

β : V(T ) → N, defined as β(t) = tw(Ht). Observe that β is a max labeling function. We compute β in a

bottom up fashion starting from base nodes and moving towards the root. We stop this computation the

first time that we find a node t such that β(t) = tw(Ht) = d. Let V1 = V(Ht), V2 = V(G) \ V1 \ Xt and

X = Xt. After this we recursively solve the problem on the graphs induced on V1 and V2.

11



Algorithm 2 Hit-Set-II-(G,Z)

1: if tw(G) ≤ d then

2: Find a minimum F -hitting set Y of G and Return Y .

3: end if

4: Compute an approximate tree decomposition (T,X = {Xt}t∈V(T )) of width ℓ.

5: Convert it to a nice tree decomposition of G. Now compute the function µ : V(T ) → N, defined as

follows: µ(t) = |V(Ht) ∩ Z|.

6: if (µ(r) = 0) then

7: Return φ.

8: else

9: Find the partitioning of the vertex set V(G) into V1, V2 and X (a bag corresponding to a node in

T ) as described in Cases 1 and 2 of the proof of Theorem 7.

10: end if

11: Return
(

X
⋃

Hit-Set-II-(G[V1],Z)
⋃

Hit-Set-II-(G[V2],Z)
)

.

Let us assume that G has a F -hitting set of size at most k. We show that in this case the size of the

hitting set returned by the algorithm can be bounded by O(k2
√

log k). The above recursive procedure

can be thought of as a rooted binary tree T where at each non-leaf node of the tree the algorithm makes

two recursive calls. We will assume that the left child of a node of T corresponds to the graph induced

on V1 such that the treewidth of G[V1] is d. Assuming that the root is at depth 0 we show that the depth

of T is bounded by k. Let P = a0a1 · · · aq be a longest path from the root to a leaf and let Gi be the graph

associated with the node ai. Observe that for every i ∈ {0, . . . , q − 1}, ai has a left child, or else ai cannot

be a non-leaf node of T . Let the graph associated with the left child of ai, i ∈ {0, . . . , q − 1}, be denoted

by Hi. Observe that for every 0 ≤ i < j ≤ q − 1, V(Hi) ∩ V(H j) = ∅ and tw(Hi) = d. This implies that

every Hi has at least one H minor model and all of these are vertex-disjoint. This implies that q ≤ k and

hence the depth of T is bounded by k.

Let us look at all the subproblems at depth i in the recursion tree T . Suppose at depth i the induced

subgraphs associated with these subproblems are G[Vi], i ∈ [τ], where τ is some positive integer. Then

observe that for every i, j ∈ [τ] and i , j, we have that Vi∩V j = ∅, there is no edge (u, v) such that u ∈ Vi,

v ∈ V j, and hence
∑τ

i=1 ki ≤ k, where ki is the size of the minimum F –hitting set of G[Vi]. Furthermore

the number of instances at depth i such that it has at least one H minor model and hence contributes to the

hitting set is at most k. Now Lemma 1 together with the factor d′
√

log tw(G) approximation algorithm of

Feige et al. [28] implies that the treewidth of every instance is upper bounded by (ki + d)d′
√

log(ki + d),

where ki is the size of the minimum F –hitting set of G[Vi]. Hence the total size of the union of sets

added to our hitting set at depth i is at most

τ
∑

i=1

χ(i)(ki + d)d′
√

log(ki + d) ≤ d′(k + d)
√

log(k + d).

Here χ(i) is 1 if G[Vi] contains at least one H minor model and is 0 otherwise. We have shown that

for each i the size of the union of the sets added to the hitting set is at most d′(k + d)
√

log(k + d).

This together with the fact that the depth is at most k implies that the size of the F -hitting set is at

most O(k2
√

log k). Hence if the size of the hitting set returned by the algorithm is more than d′(k +

d)k
√

log(k + d) then we return that G has at no F -hitting set of size at most k. Hence when we move

to the second phase we assume that we have a hitting set of size O(k2
√

log k). This concludes the

description of the first phase of the algorithm.

Now we describe the second phase of the algorithm. Here we are given the hitting set Z of size

O(k2
√

log k) obtained from the first phase of the algorithm. The algorithm is given in Algorithm 2. The

new algorithm essentially uses Z to define a good labeling function µ which enables us to argue that the

depth of recursion is upper bounded by O(log |Z|). In particular, consider the function µ : V(T ) → N,
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defined as follows: µ(t) = |V(Ht) ∩ Z|. Let k′ := µ(r), where r is the node corresponding to the root of a

fixed nice tree decomposition of G.

Let t ∈ V(T ) be the node where µ(t) > 2k′/3 and for each child t′ of t, µ(t′) ≤ 2k′/3. Since µ

is a good labeling function, it is easy to see that this node exists and is unique provided that k′ > 0.

Moreover, observe that t could either be a forget node or a join node. We distinguish these two cases.

• Case 1. If t is a forget node, we set V1 = V(Ht′) and V2 = V(G) \ (V1 ∪ Xt′) and observe that

Pθc(G[Vi]) ≤ ⌊2k′/3⌋, i = 1, 2. Also we set X = Xt′ .

• Case 2. If t is a join node with children t1 and t2, we have that µ(ti) ≤ 2k′/3, i = 1, 2. However,

as µ(t1) + µ(t2) > 2k′/3, we also have that either µ(t1) ≥ k′/3 or µ(t2) ≥ k′/3. Without loss of

generality we assume that µ(t1) ≥ k′/3 and we set V1 = V(Ht1), V2 = V(G)\(V1∪Xt1) and X = Xt1 .

Now we argue that if G has a F –hitting set of size at most k then then the size of the hitting set returned

by the algorithm is upper bounded by O(k log3/2 k). As in the first phase we can argue that the size of the

union of the sets added to the hitting set in the subproblems at depth i is at most d′(k + d)
√

log(k + d).

Observe that the recursive procedure in Algorithm 2 is such that the value of the function µ() drops by

at least a constant fraction at every level of recursion. This implies that the depth of recursion is upper

bounded by O(log |Z|) = O(log k). Hence the size of the hitting set returned by the algorithm is upper

bounded by O(k log3/2 k) whenever G has a F –hitting set of size at most k. Thus if the size of the hitting

set returned by Hit-Set-II-(G,Z) is more than d′(k + d)

√

log3/2(k + d), we return that G does not have a

F –hitting set of size at most k. This concludes the proof. �

Proof of Theorem 3. Given a graph G on n vertices, let k be the minimum positive integer in {1, . . . , n}

such that Lemma 7 returns a F -hitting set S when applied on (G, k). We return this S as an approximate

solution. By our choice of k we know that G does not have F -hitting set of size at most k − 1 and

hence OPT ≥ k. This implies that the size of S returned by Lemma 7 is at most O(k log3/2 k) =

O(OPT log3/2 OPT ). This concludes the proof. �

We now define a generic problem. Let η be a fixed constant. In the Treewidth η-Deletion Set

problem, we are given an input graph G and the objective is to delete minimum number of vertices from

a graph such that the resulting graph has treewidth at most η. For an example Treewidth 1-Deletion Set

is simply the Feedback vertex set problem. We obtain the following corollary of Theorem 3.

Corollary 3. Feedback Vertex Set, Diamond Hitting Set, Pathwidth One Deletion Set, Outerplanar

Deletion Set and Treewidth η-Deletion Set admit a factor O(log3/2 n) approximation algorithm on

general undirected graphs.

5 Kernelization for p-θc-Free-Deletion

In this section we obtain a polynomial kernel for p-θc-Free-Deletion on general graphs. To obtain our

kernelization algorithm we not only need approximation algorithm presented in the last section but also

a variation of classical Hall’s theorem. We first present this combinatorial tool and other auxiliary results

that we make use of.

5.1 Combinatorial Lemma and some Linear-Time Subroutines.

We need a variation of the celebrated Hall’s Theorem, which we call the q–Expansion Lemma. The

q–Expansion Lemma is a generalization of a result due to Thomassé [46, Theorem 2.3], and captures a

certain property of neighborhood sets in graphs that implicitly has been used by several authors to obtain

polynomial kernels for many graph problems. For q = 1, the application of this lemma is exactly the

well-known Crown Reduction Rule [1].
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The Expansion Lemma. Consider a bipartite graph G with vertex bipartition A ⊎ B. Given subsets

S ⊆ A and T ⊆ B, we say that S has |S | q-stars in T if to every x ∈ S we can associate a subset

Fx ⊆ N(x) ∩ T such that (a) for all x ∈ S , |Fx| = q; (b) for any pair of vertices x, y ∈ S , Fx ∩ Fy = ∅.

Observe that if S has |S | q-stars in T then every vertex x in S could be thought of as the center of a star

with its q leaves in T , with all these stars being vertex-disjoint. Further, a collection of |S | q-stars is also

a family of q edge-disjoint matchings, each saturating S . We use the following result in our kernelization

algorithm to bound the degrees of vertices.

Lemma 8. [The q–Expansion Lemma] Let q be a positive integer, and let m be the size of the maximum

matching in a bipartite graph G with vertex bipartition A ⊎ B. If |B| > mq, and there are no isolated

vertices in B, then there exist nonempty vertex sets S ⊆ A,T ⊆ B such that S has |S | q-stars in T and no

vertex in T has a neighbor outside S . Furthermore, the sets S ,T can be found in time polynomial in the

size of G.

Proof. Consider the graph H = (X ⊎ B, E) obtained from G = (A ⊎ B, E) by adding (q − 1) copies of

all the vertices in A, and giving all copies of a vertex v the same neighborhood in B as v. Let M be a

maximum matching in H. In further discussions, vertices are saturated and unsaturated with respect to

this fixed matching M.

Let UX be the vertices in X that are unsaturated, and RX be those that are reachable from UX via

alternating paths. We let S A = X \ (UX ∪ RX). Let UB be the set of unsaturated vertices in B, and let S ′

denote the set of partners of S A in the matching M, that is, S ′ = {x ∈ B | {u, x} ∈ M and u ∈ S A}. Let

T = S ′ ∪ UB (see Figure 2).

Figure 2: The construction used in the proof of the q–Expansion Lemma

For every v ∈ A, let C(v) be the set of all copies of v (including v). We claim that either C(v) ∩ S A =

C(v), or C(v) ∩ S A = ∅. Suppose that v ∈ S A but a copy of v, say u, is in UX . Let {v,w} ∈ M. Then

v is reachable from u because {u,w} ∈ E(H), and hence w is not unsaturated in M, contradicting the

assumption that w ∈ UX . In the case when v ∈ S A but a copy of u is in RX , let {w, u} be the last edge

on some alternating path from UX to u. Since {w, v} ∈ E(H), we have that there is also an alternating

path from UX to v, contradicting the fact that v ∈ S A. Let S = {v ∈ A|C(v) ⊆ S A}. Then the subgraph

G[S ∪ T ] contains q edge-disjoint matchings, each of which saturates S in G — this is because in H, M

saturates each copy of v ∈ S separately.

If no vertex in T has a neighbor outside S A in H, then from the construction no vertex in T has a

neighbor outside S in G. We now prove that no vertex in T has a neighbor outside S A in H. For the

purpose of contradiction, let us assume that for some v ∈ T , u ∈ N(v), but u < S A. First, consider the

case when v ∈ S ′. Suppose u ∈ RX . We know that u ∈ RX because there is some unsaturated vertex (say

w) that is connected by an alternating path to u. This path can be extended to a path to v using the edge

{u, v}, and can be further extended to v′, where {v, v′} ∈ M. However, v′ ∈ S A, and by construction, there

is no path from w ∈ UX to v′, a contradiction. If u ∈ UX , then we arrive at a contradiction along the same
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lines (in fact, the paths from w to a vertex in S will be of length two in this case). Now consider the case

when v ∈ UB. Again, we may arrive at u from some w ∈ UX (if u ∈ RX) or {u,w} is an independent edge

outside M (if u ∈ UX). In both cases, we have an augmenting path, contradicting the fact that M is a

maximum matching. This proves the claim that no vertex in T has a neighbor outside S A in H.

We now note that the set S A obtained in the first part of the proof is non-empty. First, observe that

since |B| > mq, the set UB of unsaturated vertices of B in H is non-empty. Further, by the assumption

that B admits no isolated vertices, the neighbors of UB form a non-trivial subset of A. Now recall thatthe

neighbors of T lie in S A, and UB ⊆ T . So in particular, the neighbors of UB lie in S A and thus S A is

non-empty. This concludes the proof.

�

We will need the following proposition for the proof of next observation. Its proof follows from

definitions.

Proposition 1. For any c ∈ N, a subgraph M of graph G is a minimal minor-model of θc in G if and

only if M consists of two trees, say T1 and T2, and a set S of c edges, each of which has one end vertex

in T1 and the other in T2.

Observation 1. For c ≥ 2, any minimal θc minor-model M of a graph G is a connected subgraph of

G, and does not contain a vertex whose degree in M is less than 2, or a vertex whose deletion from M

results in a disconnected graph (a cut vertex of M).

Proof. From Proposition 1, whose terminology we use in this proof, M is connected and contains no

isolated vertex. Suppose x is a vertex of degree exactly one in M. Then x is a leaf node in one of the

two trees in M, say T1, and no edge in S is incident on x. Removing x from T1 results in a smaller θc
minor-model, contradicting the minimality of M. It follows that every vertex of M has degree at least

two.

Now suppose x is a cut vertex in M which belongs to, say, the tree T1. Let T 1
1
,T 2

1
, . . . ,T l

1
be the

subtrees of T1 obtained when x is deleted from T1. Let M′ be the graph obtained by deleting x from M.

If l > 0, then each T i
1

has a leaf node, which, by the above argument, has at least one neighbor in T2. If

l = 0, then M′ = T2. Thus M′ is connected in all cases, and so x is not a cut vertex, a contradiction. �

The following well known result states that every optimization problem expressible in MSO has a

linear time algorithm on graphs of bounded treewidth.

Proposition 2 ([4, 8, 14, 20, 22]). Let φ be a property that is expressible in Monadic Second Order Logic.

For any fixed positive integer t, there is an algorithm that, given a graph G of treewidth at most t as input,

finds a largest (alternatively, smallest) set S of vertices of G that satisfies φ in time f (t, |φ|)|V(G)|.

Proposition 2 together with MSO formulations 2 and 3 given in Section 2.6 implies the following

lemma.

Lemma 9. Let G be a graph on n vertices and v a vertex of G. Given a tree decomposition of width

t ∈ O(1) of G, we can, in O(n) time, find both (1) a smallest set S ⊆ V of vertices of G such that the

graph G \ S does not contain θc as a minor, and (2) a largest collection {M1,M2, . . . ,Ml} of θc minor

models of G such that for 1 ≤ i < j ≤ l, (V(Mi) ∩ V(M j)) = {v}.

Now we describe the reduction rules used by the kernelization algorithm. In contrast to the reduction

rules employed by most known kernelization algorithms, these rules cannot always be applied on general

graphs in polynomial time. Hence the algorithm does not proceed by applying these rules exhaustively,

as is typical in kernelization programs. We describe how to arrive at situations where these rules can

in fact be applied in polynomial time, and prove that even this selective application of rules results in a

kernel of size polynomial in the parameter k.
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5.2 Bounding the Maximum Degree of a Graph

Now we present a set of reduction rules which, given an input instance (G, k) of p-θc-Free-Deletion,

obtains an equivalent instance (G′, k′) where k′ ≤ k and the maximum degree of G′ is at most a polyno-

mial in k. In the sequel a vertex v is irrelevant if it is not a part of any θc minor model, and is relevant

otherwise. For each rule below, the input instance is (G, k).

Reduction Rule 1 (Irrelevant Vertex Rule). Delete all irrelevant vertices in G.

Given a graph G and a vertex v ∈ V(G), an ℓ-flower passing through v is a set of ℓ different θc
minor-models in G, each containing v and no two sharing any vertex other than v.

Reduction Rule 2 (Flower Rule). If a (k + 1)-flower passes through a vertex v of G, then include v in

the solution and remove it from G to obtain the equivalent instance (G \ {v}, (k − 1)).

The argument for the soundness of these reduction rules is simple and is hence omitted. One can test

whether a particular vertex v is part of any minimal minor-model corresponding to θc using the rooted

minor testing algorithm of Robertson and Seymour [44]. It is not clear, however, that one might check

whether a vertex is a part of (k+1)-θc flower in polynomial time. Hence we defer the application of these

rules and apply them only when the vertices are “evidently” irrelevant or finding a flower can be solved

in polynomial time. Now we state an auxiliary lemma which will be useful in bounding the maximum

degree of the graph.

Lemma 10. Let G be a n-vertex graph containing θc as a minor and v be a vertex such that G′ = G \ {v}

does not contain θc as a minor and the maximum size of a flower containing v is at most k. Then there

exists a set Tv of size O(k) such that v < Tv and G \ Tv does not contain θc as a minor. Moreover we can

find the set Tv in polynomial time.

Proof. We first bound the treewidth of G′. Robertson, Seymour and Thomas [45] have shown that any

graph with treewidth greater than 202c5

contains a c × c grid, and hence θc, as a minor. This implies that

for a fixed c, tw(G′) ≤ 202c5

= O(1). Now we show the existence of a Tv of the desired kind. Recall the

algorithm used to show the existence of a θc hitting set for a graph described in Algorithm 2. We use the

same algorithm to construct the desired Tv. Let Fθc(G) denote the size of the maximum flower passing

through v in G. Consider a nice tree decomposition (T,X = {Xt}t∈V(T )) of G′ of width at most tw(G′).

We define the function µ(t) := Fθc(G[V(Ht) ∪ {v}]). It is easy to see that µ is a good labeling function,

and can be computed in polynomial time due to Lemma 9. Observe that µ(r) ≤ k, where r is the root

node of the tree decomposition. Let S(G′, k) denote the size of the hitting set returned by the algorithm.

Thus the size of the hitting set returned by the algorithm Hit-Set-II (Algorithm 2) is governed by the

following recurrence:

S(G′, k) ≤ max
1/3≤α≤2/3

{

S(G[V1], αk) + S(G[V2], (1 − α)k) + O(1)
}

.

Using Akra-Bazzi [2] it follows that the above recurrence solves to O(k). This implies that there exists

a set Tv of size O(k) such that v < Tv and G \ Tv does not contain θc as a minor. We now proceed

to find an optimal hitting set in G avoiding v. To make the algorithm Hit-Set-II run in polynomial

time we only need to find the tree decomposition and compute the function µ() in polynomial time.

Since tw(G) = O(1), we can find the desired tree decomposition of G or one of its subgraphs in linear

time using the algorithm of Bodlaender [8]. Similarly we can compute a flower of the maximum size

using Lemma 9 in linear time. Hence the function µ() can also be computed in polynomial time. This

concludes the proof of the lemma. �
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Flowers, Expansion and the Maximum Degree. Now we are ready to prove the lemma which bounds

the maximum degree of the instance.

Lemma 11. There exists a polynomial time algorithm that, given an instance (G, k) of p-θc-Deletion re-

turns an equivalent instance (G′, k′) such that k′ ≤ k and that the maximum degree of G′ is O(k log3/2 k).

Moreover it also returns a θc-hitting set of G′ of size O(k log3/2 k).

Proof. Given an instance (G, k) of p-θc-Deletion, we first apply Lemma 7 on (G, k). The polynomial

time algorithm described in Lemma 7, given a graph G and a positive integer k either reports that G

has no θc-hitting set of size at most k, or finds a θc-hitting set of size at most k∗ = O(k log3/2 k). If

the algorithm reports that G has has no θc-hitting set of size at most k, then we return that (G, k) is a

NO-instance to p-θc-Deletion. So we assume that we have a hitting set S of size k∗. Now we proceed

with the following two rules.

Selective Flower Rule. To apply the Flower Rule selectively we use S, the θc-hitting set. For a vertex

v ∈ S let Sv := S\ {v} and let Gv := G \ Sv. By a result of Robertson et. al. [45] we know that any graph

of treewidth greater than 202c5

contains a c × c grid, and hence θc, as a minor. Since deleting v from Gv

makes it θc-minor-free, tw(Gv) ≤ 202c5

+ 1 = O(1). Now by Lemma 9, we find in linear time the size

of the largest flower centered at v, in Gv. If for any vertex v ∈ S the size of the flower in Gv is at least

k + 1, we apply the Flower Rule and get an equivalent instance (G ← G \ {v}, k ← k − 1). Furthermore,

we set S := S \ {v}. We apply the Flower Rule selectively until no longer possible. We abuse notation

and continue to use (G, k) to refer to the instance that is reduced with respect to exhaustive application

of the Selective Flower Rule. Thus, for every vertex v ∈ S the size of any flower passing through v in Gv

is at most k.

Now we describe how to find, for a given v ∈ V(G), a hitting set Hv ⊆ V(G)\{v} for all minor-models

of θc that contain v. Notice that this hitting set is required to exclude v, so Hv cannot be the trivial hitting

set {v}. If v < S, then Hv = S. On the other hand, suppose v ∈ S. Since the maximum size of a

flower containing v in the graph Gv is at most k by Lemma 10, we can find a set Tv of size O(k) that

does not contain v and hits all the θc minor-models passing through v in Gv. Hence in this case we set

Hv = Sv ∪ Tv (See Figure 3.). We denote |Hv| by hv. Notice that Hv is defined algorithmically, that is,

there could be many small hitting sets in V(G) \ {v} hitting all minor-models containing v, and Hv is one

of them.

Figure 3: The hitting set in Selective Flower Rule

q-expansion Rule with q = c. Given an instance (G, k), S, and a family of sets Hv, we show that if

there is a vertex v with degree more than chv + c(c − 1)hv, then we can reduce its degree to at most

chv + c(c − 1)hv by repeatedly applying the q–Expansion Lemma with q = c. Observe that for every

vertex v the set Hv is also a θc hitting set for G, that is, Hv hits all minor-models of θc in G. Consider

the graph G \ Hv. Let the components of this graph that contain a neighbor of v be C1,C2, . . . ,Cr. Note
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that v cannot have more than (c − 1) neighbors into any component, else contracting the component will

form a θc minor and will contradict the fact that Hv hits all the θc minors. Also note that none of the Ci’s

can contain a minor model of θc.

We say that a component Ci is adjacent to Hv if there exists a vertex u ∈ Ci and w ∈ Hv such that

(u,w) ∈ E(G). Next we show that vertices in components that are not adjacent to Hv are irrelevant in

G. Recall a vertex is irrelevant if there is no minimal minor model of θc that contains it. Consider a

vertex u in a component C that is not adjacent to Hv. Since G[V(C) ∪ {v}] does not contain any θc minor

we have that if u is a part of a minimal minor model M ⊆ G, then v ∈ M and also there exists a vertex

u′ ∈ M such that u′ < C ∪ {v}. Then the removal of v disconnects u from u′ in M, a contradiction to

Observation 1 that for c ≥ 2, any minimal θc minor model M of a graph G does not contain a cut vertex.

Applying the Irrelevant Vertex Rule to the vertices in all such components leaves us with a new set of

components D1,D2, . . . ,Ds, such that for every i, in Di, there is at least one vertex that is adjacent to a

vertex in Hv.

As before, we continue to use G to refer to the graph obtained after the Irrelevant Vertex Rule has

been applied in the context described above. We also update the sets Hv for v ∈ V(G) by deleting all the

vertices w from these sets those have been removed using Irrelevant Vertex Rule.

Now, consider a bipartite graph G with vertex bipartitions Hv and D. Here D = {d1, . . . , ds} contains

a vertex di corresponding to each component Di. We add an edge (v, di) if there is a vertex w ∈ Di

such that {v,w} ∈ E(G). Even though we start with a simple graph (graphs without parallel edges)

it is possible that after applying reduction rules parallel edges may appear. However, throughout the

algorithm, we ensure that the number of parallel edges between any pair of vertices is at most c. Now,

v has at most chv edges to vertices in Hv. Since v has at most (c − 1) edges to each Di, it follows that

if d(v) > chv + c(c − 1)hv, then the number of components |D| is more than chv. Now by applying

q–Expansion Lemma with q = c, A = Hv, and B = D, we find a subset S ⊆ Hv and T ⊆ D such that S

has |S | c-stars in T and N(T ) = S .

The reduction rule involves deleting edges of the form (v, u) for all u ∈ Di, such that di ∈ T , and

adding c edges between v and w for all w ∈ S . We add these edges only if they were not present before so

that the number of egdes between any pair of vertices remains at most c. This completes the description

of the q-expansion reduction rule with q = c. Let GR be the graph obtained after applying the reduction

rule. The following lemma shows the correctness of the rule.

Lemma 12. Let G, S and v be as above and GR be the graph obtained after applying the c-expansion

rule. Then (G, k) is an yes instance of p-θc-Deletion if and only if (GR, k) is an yes instance of p-θc-

Deletion.

Proof. We first show that if GR has hitting set Z of size at most k, then the same hitting set Z hits all the

minor-models of θc in G. Observe that either v ∈ Z or S ⊆ Z. Suppose v ∈ Z, then observe that GR \ {v}

is the same as G \ {v}. Therefore Z \ {v}, a hitting set of GR \ {v} is also a hitting set of G \ {v}. This shows

that Z is a hitting set of size at most k of G. The case when S ⊆ Z is similar.

To prove that a hitting set of size at most k in G implies a hitting set of size at most k in GR, it suffices

to prove that whenever there is a hitting set of size at most k, there also exists a hitting set of size at most

k that contains either v or all of S . Consider a hitting set W that does not contain v, and omits at least

one vertex from S . Note the |S | c-stars in G[S ∪ T ], along with v, correspond to minor-models of θc
centered at v in G, vertex-disjoint except for v. Thus, such a hitting set must pick at least one vertex from

one of the components. Let D be the collection of components Di such that the (corresponding) vertex

di ∈ T . Let X denote the set of all vertices of W that appeared in any Di ∈ D. Consider the hitting set

W′ obtained from W by removing X and adding S , that is, W′ := (W \ X) ∪ S .

We now argue that W′ is also a hitting set of size at most k. Indeed, let S ′ be the set of vertices in S

that do not already belong to W. Clearly, for every such vertex that W omitted, W must have had to pick

distinct vertices fromD to hit the θc minor-models formed by the corresponding c-stars. Formally, there

exists a X′ ⊆ X such that there is a bijection between S ′ and X′, implying that |W′| ≤ |W | ≤ k.
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Finally, observe that W′ must also hit all minor-models of θc in G. If not, there exists a minor-model

M that contains some vertex u ∈ X. Hence, u ∈ Di for some i, and M contains some vertex in Hv \ S .

However, v separates u from Hv \ S in G \ S , contradicting Observation 1 that M does not contain a cut

vertex. This concludes the proof. �

Observe that all edges that are added during the application of the q-expansion reduction rule have

at least one end point in S, and hence S remains a hitting set of GR. We are now ready to summarize the

algorithm that bounds the degree of the graph (see Algorithm 3).

Algorithm 3 Bound-Degree(G, k,S)

1: Apply the Selective Flower Rule

2: if ∃v ∈ V(G) such that d(v) > chv + c(c − 1)hv then

3: Apply the q-expansion reduction rule with q = c.

4: else

5: Return (G, k,S).

6: end if

7: Return Bound-Degree(G, k,S).

Let the instance output by Algorithm 3 be (G′, k′,S). Clearly, in G′, the degree of every vertex is at

most chv + c(c − 1)hv ≤ O(k log3/2 k). The routine also returns S— a θc-hitting set of G′ of size at most

O(k log3/2 k).

We now show that the algorithm runs in polynomial time. For x ∈ V(G), let ν(x) be the number of

neighbors of x to which x has fewer than c parallel edges. Observe that the application of q-expansion

reduction rule never increases ν(x) for any vertex and decreases ν(x) for at least one vertex. The other

rules delete vertices, which can never increase ν(x) for any vertex. This concludes the proof. �

5.3 Analysis and Kernel Size – Proof of Theorem 2

In this section we give the desired kernel for p-θc-Free-Deletion.

Proof of Theorem 2. Let (G, k) be an instance to p-θc-Free-Deletion. We first bound the maximum

degree of the graph by applying Lemma 11 on (G, k). If Lemma 11 returns that (G, k) is a NO-instance

to p-θc-Free-Deletion then we return the same. Else we obtain an equivalent instance (G′, k′) such that

k′ ≤ k and the maximum degree of G′ is bounded by O(k log3/2 k). Moreover it also returns a θc-hitting

set, X, of G′ of size at most O(k log3/2 k). Let d denote the treewidth of the graph after the removal of X,

that is, d := tw(G \ X).

Now, we obtain our kernel in two phases: we first apply the protrusion rule selectively (Lemma 2)

and get a polynomial kernel. Then, we apply the protrusion rule exhaustively on the obtained kernel to

get a smaller kernel. To obtain the kernel we follow the following steps.

Applying the Protrusion Rule. By a result of Robertson et. al. [45] we know that any graph of treewidth

greater than 202c5

contains a c × c grid, and hence θc, as a minor. Hence d ≤ 202c5

. Now we apply

Lemma 3 and get a 2(d + 1)-protrusion Y of G′ of size at least
|V(G′)|−|X|
4|N(X)|+1

. By Lemma 5, p-θc-Free-

Deletion has finite integer index. Let γ : N → N be the function defined in Lemma 2. Hence if
|V(G′)|−|X|
4|N(X)|+1

≥ γ(2d + 1) then using Lemma 2 we replace the 2(d + 1)-protrusion Y of G′ and obtain an

instance G∗ such that |V(G∗)| < |V(G′)|, k∗ ≤ k′, and (G∗, k∗) is a YES-instance of p-θc-Free-Deletion if

and only if (G′, k′) is a YES-instance of p-θc-Free-Deletion .

Before applying the Protrusion Rule again, if necessary, we bound the maximum degree of the graph

by reapplying Lemma 11. This is done because the application of the protrusion rule could potentially

increase the maximum degree of the graph. We alternately apply the protrusion rule and Lemma 11 in

this fashion, until either Lemma 11 returns that G is a NO instance, or the protrusion rule ceases to apply.
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Observe that this process will always terminate as the procedure that bounds the maximum degree never

increases the number of vertices and the protrusion rule always reduces the number of vertices.

Let (G∗, k∗) be a reduced instance with hitting set X. In other words, there is no (2d + 2)-protrusion

of size γ(2d + 2) in G∗ \ X, and the protrusion rule no longer applies. Now we show that the number

of vertices and edges of this graph is bounded by O(k2 log3 k). We first bound the number of vertices.

Since we cannot apply the Protrusion Rule,
|V(G∗)|−|X|
4|N(X)|+1

≤ γ(2d + 2). Since k∗ ≤ k this implies that

|V(G∗)| ≤ γ(2d + 2)(4|N(X)| + 1) + |X|

≤ γ(2d + 2)(4|X|∆(G∗) + 1) + |X|

≤ γ(2d + 2)(O(k log3/2 k) × O(k log3/2 k) + 1) + O(k log3/2 k)

≤ O(k2 log3 k).

To get the desired bound on the number of edges we first observe that since tw(G∗ \ X) ≤ 202c5

= d, we

have that the number of edges in G∗ \X ≤ d|V(G∗)\X| = O(k2 log3 k). Also the number of edges incident

on the vertices in X is at most |X| · ∆(G∗) ≤ O(k2(log k)3). This gives us a polynomial time algorithm

that returns a kernel of size O(k2 log3 k).

Now we give a kernel of smaller size. To do so we apply combination of rules to bound the degree

and the protrusion rule as before. The only difference is that we would like to replace any large (2d+ 2)-

protrusion in graph by a smaller one. We find a 2d + 2-protrusion Y of size at least γ(2d + 2) by

guessing the boundary ∂(Y) of size at most 2d + 2. This could be performed in time kO(d). So let

(G∗, k∗) be the reduced instance on which we can not apply the Protrusion Rule. Then we know that

∆(G∗) = O(k log3/2 k). If G is a YES-instance then there exists a θc-hitting set X of size at most k such that

tw(G \ X) ≤ 202c5

= d. Now applying the analysis above with this X yields that |V(G∗)| = O(k2 log3/2 k)

and |E(G∗)| ≤ O(k2 log3/2 k). Hence if the number of vertices or edges in the reduced instance G∗,

to which we can not apply the Protrusion Rule, is more than O(k2 log3/2 k) then we return that G is a

NO-instance. This concludes the proof of the theorem. �

Theorem 2 has following immediate corollary.

Corollary 4. p-Vertex Cover , p-Feedback Vertex Set and p-Diamond Hitting Set have kernel of size

O(k2 log3/2 k).

6 Conclusion

In this paper we gave the first kernelization algorithms for a subset of F -Deletion problems and a generic

approximation algorithm for the F -Deletion problem when the set of excluded minors F contains at

least one planar graph. Our approach generalizes and unifies known kernelization algorithms for p-

Vertex Cover and p-Feedback Vertex Set. By the celebrated result of Robertson and Seymour, every

F -Deletion problem is FPT and our work naturally leads to the following question: does every F -

Deletion problem have a polynomial kernel? Can it be that for some finite sets of minor obstructions

F = {O1, . . . ,Op} the answer to this question is NO? Even the case F = {K5,K3,3}, vertex deletion

to planar graphs, is an interesting challenge. Another interesting question is if our techniques can be

extended to another important case when F contains a planar graph.
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