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Abstract

Let X = {X(t), t ∈ RN} be a Gaussian random field with values in Rd defined by

X(t) =
(
X1(t), . . . , Xd(t)

)
,

where X1, . . . , Xd are independent copies of a centered Gaussian random field X0. Under
certain general conditions on X0, we study the hitting probabilities of X and determine
the Hausdorff dimension of the inverse image X−1(F ), where F ⊆ Rd is a non-random
Borel set.

The class of Gaussian random fields that satisfy our conditions includes not only frac-
tional Brownian motion, the Brownian sheet, but also such anisotropic fields as fractional
Brownian sheets, solutions to stochastic heat equation driven by space-time white noise
and the operator-scaling Gaussian random fields with stationary increments constructed
in [4].
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1 Introduction

In recent years, several classes of anisotropic Gaussian random fields have arisen naturally
in the studies of random fields, stochastic partial differential equations as well as in many
applied areas including image processing, hydrology, geostatistics and spatial statistics (see
[23] and the references therein for more information).

Typical examples of anisotropic Gaussian random fields are fractional Brownian sheets
and the solution to the stochastic heat equation. It has been known that the sample path
properties such as fractal dimensions of these anisotropic Gaussian random fields can be
very different from those of isotropic ones such as Lévy’s fractional Brownian motion; see,
for example, [1, 5, 6, 16, 21]. Recently, Xiao [23] studied systematically the analytic and
geometric properties of anisotropic Gaussian random fields under certain general conditions,
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with the aim of characterizing their anisotropic nature by a multiparameter index H =
(H1, . . . ,HN ) ∈ (0, 1)N . This index is often related to the operator-self-similarity or multi-
self-similarity of the Gaussian random field under study.

Let X = {X(t), t ∈ RN} be a Gaussian random field with values in Rd defined on a
probability space (Ω,F ,P) by

X(t) =
(
X1(t), . . . , Xd(t)

)
. (1.1)

We will call X an (N, d)-Gaussian random field. For any Borel set F ⊆ Rd, its inverse image
under X is defined by

X−1(F ) =
{
t ∈ RN : X(t) ∈ F

}
.

In particular, if F = {x} (x ∈ Rd), then X−1({x}) is the level set of X.
In the studies of random fields, it is interesting to consider the following questions:

(i) Given a non-random Borel set F ⊆ Rd, when is it non-polar for X in the sense that
P{X−1(F ) 6= ∅} > 0?

(ii) If P
{
X−1(F ) 6= ∅

}
> 0, what is the Hausdorff dimension of the inverse image X−1(F )?

In this paper, we will use dimH to denote Hausdorff dimension, and refer to [8] and [11] for
its definition and basic properties.

Question (i) is an important question in potential theory of random fields and complete
answer has only been known for a few types of random fields with certain Markovian struc-
tures. Of particular significance is the result due to Khoshnevisan and Shi [14], who proved
that if W = {W (t), t ∈ RN

+} is the (N, d)-Brownian sheet, then for every Borel set F ⊆ Rd,

P
{
W−1(F ) ∩ (0,∞)N 6= ∅}

> 0 ⇐⇒ Cd−2N (F ) > 0. (1.2)

Here and in the sequel, Cα denotes the Bessel-Riesz capacity of order α defined by

Cα(F ) =
[

inf
µ∈P(F )

∫

Rd

∫

Rd

fα(‖x− y‖)µ(dx)µ(dy)
]−1

, (1.3)

where P(F ) is the family of probability measures carried by F and the function fα : (0,∞) →
(0,∞) is defined by

fα(r) =





r−α if α > 0,
log

(
e

r∧1

)
if α = 0,

1 if α < 0.
(1.4)

Dalang and Nualart [7] extended the methods of Khoshnevisan and Shi [14] and proved similar
results for the solution of a system of d nonlinear hyperbolic stochastic partial differential
equations with two variables.

For random fields with general dependence structures, it is more difficult to establish re-
sults of the type (1.2). Some sufficient conditions and necessary conditions for P

{
X−1(F ) 6=

∅
}

> 0 have been established by Testard [18] and Xiao [22] for fractional Brownian mo-
tion, by Dalang, Khoshnevisan and Nualart [5, 6] for the solutions to non-linear stochastic
heat equations with additive and multiplicative noises, and by Xiao [23] for a large class of
Gaussian random fields satisfying Conditions (C1) and (C2) (see Section 2 for the precise
assumptions). Our Theorem 2.1 below unifies and, in some cases, strengthens the results in
the aforementioned works.

2



The main objective of this paper is to determine the Hausdorff dimension of the inverse
image X−1(F ) for Gaussian random fields satisfying Conditions (C1) and (C2). The analo-
gous problem for Lévy processes can be solved by applying potential theory of Lévy processes
and a subordination technique, see Hawkes [9] and Khoshnevisan and Xiao [13] for more de-
tails. However, when X is a non-Markovian process or a Gaussian random field and F ⊆ Rd

is a general Borel set, few results on the geometric properties of X−1(F ) are available. Tes-
tard [18] obtained an upper bound for dimHB−1(F ) when B = {B(t), t ∈ RN} is a fractional
Brownian motion of index α ∈ (0, 1), which is a centered Gaussian random field with values
in Rd and covariance function given by

E
[
Bi(s)Bj(t)

]
=

1
2
δij

(
‖s‖2α + ‖t‖2α − ‖s− t‖2α

)
, ∀s, t ∈ RN , (1.5)

where ‖ · ‖ denotes the Euclidean norm in RN and δij = 1 if i = j and 0 otherwise. Monrad
and Pitt [17] proved that, if N > αd, then almost surely

dimHB−1(F ) = N − αd + αdimHF for all Borel sets F ⊆ Rd. (1.6)

Note that the exceptional null event on which (1.6) does not hold is independent of F , so
such a result is called a uniform Hausdorff dimension result. The method of Monrad and Pitt
[17] relies on rather strong conditions such as N > αd and the strong local nondeterminism
of fractional Brownian motion. In Theorems 2.3 and 2.5 below, we determine dimHX−1(F )
for much more general Gaussian random fields. We should also point out that, compared
with the isotropic case, the anisotropic nature of X induces far richer fractal structure into
X−1(F ).

The rest of this paper is organized as follows. In Section 2, we provide the general
assumptions on the Gaussian random fields under investigation and state the main results
(i.e., Theorems 2.1, 2.3 and 2.5). Their proofs are given in Section 3. In Section 4 we apply
our results to solutions of a system of d nonlinear stochastic heat equations considered by
Dalang, Khoshnevisan and Nualart [5] and determine the Hausdorff dimension of the inverse
image u−1(F ) of the solution u = {u(t, x), t ∈ [0, T ], x ∈ [0, 1]}, where F ⊆ Rd is an arbitrary
non-random Borel set. This extends the results on the Hausdorff dimension of the level sets
of u in Dalang, Khoshnevisan and Nualart [5].

Throughout this paper we will use c to denote an unspecified positive and finite constant
which may not be the same in each occurrence. More specific constants in Section i are
numbered as ci,1 , ci,2 , . . ..
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Sciences Institute (SAMSI). He thanks the staff of SAMSI for their support and the good
working conditions.

The authors are deeply indebted to Kenneth Falconer for stimulating discussions, and to
an anonymous referee for his/her corrections and suggestions which have lead to improvement
of the manuscript.
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2 Main results

Let (H1, . . . ,HN ) ∈ (0, 1)N be a fixed vector and, for a, b ∈ RN with aj < bj (j = 1, . . . , N),
let I = [a, b] :=

∏N
j=1[aj , bj ] ⊆ RN denote an interval (or a rectangle). For simplicity, we set

I = [ε0, 1]N , where ε0 ∈ (0, 1) is a fixed constant. For a given concrete Gaussian random
field, the σ-stability of Hausdorff dimension (cf. [8]) will make it clear when one can replace
[ε0, 1]N by [0, 1]N in Theorems 2.3 and 2.5.

Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian random field defined by (1.1). Throughout
this paper we assume that the coordinate processes X1, . . . , Xd are independent copies of a
real-valued, centered Gaussian random field X0 = {X0(t), t ∈ RN}. We assume that X0

satisfies the following general conditions:

(C1) There exist positive and finite constants c2,1 , c2,2 and c2,3 such that E[X0(t)2] ≥ c2,1

for all t ∈ I and

c2,2

N∑

j=1

|sj − tj |2Hj ≤ E
[(

X0(s)−X0(t)
)2

]
≤ c2,3

N∑

j=1

|sj − tj |2Hj , ∀ s, t ∈ I. (2.1)

(C2) There exists a constant c2,4 > 0 such that for all s, t ∈ I,

Var
(
X0(t)

∣∣X0(s)
) ≥ c2,4

N∑

j=1

|sj − tj |2Hj . (2.2)

Here Var(X0(t)|X0(s)) denotes the conditional variance of X0(t) given X0(s).

It will be helpful to note that both (2.1) and (2.2) can be expressed in terms of the
following metric ρ on RN :

ρ(s, t) =
N∑

j=1

|sj − tj |Hj , ∀ s, t ∈ RN , (2.3)

since there exist positive constants c2,5 and c2,6 such that

c2,5

N∑

j=1

|sj − tj |2Hj ≤ ρ(s, t)2 ≤ c2,6

N∑

j=1

|sj − tj |2Hj , ∀ s, t ∈ RN .

The following are some remarks about Conditions (C1) and (C2).

• Condition “E[X0(t)2] ≥ c2,1 for all t ∈ I” in (C1) assumes that X is non-degenerate on
I. This condition is needed to avoid some trivial cases in studying hitting probability
of X and dimH

(
X−1(F ) ∩ I

)
.

• Under Condition (C1), X has a version which has continuous sample functions on I
almost surely. Henceforth we will assume without loss of generality that the Gaussian
random field X has continuous sample paths.
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• Conditions (C1) and (C2) are closely related. It is easy to see that (C1) implies that
Var

(
X0(t)

∣∣X0(s)
) ≤ c2,3

∑N
j=1 |sj − tj |2Hj for all s, t ∈ I and, on the other hand, (C2)

implies σ2(s, t) ≥ c2,4

∑N
j=1 |sj − tj |2Hj , where σ2(s, t) denotes E

[
(X0(s)−X0(t))

2 ]
.

Moreover, if the function σ(0, t) satisfies certain smoothness condition, say, it has con-
tinuous first order partial derivatives on I, then one can show that (C1) implies (C2) by
using the following fact (which can be verified easily): If (U, V ) is a centered Gaussian
vector, then

Var(U |V ) =

(
ρ2

U,V − (σU − σV )2
)(

(σU + σV )2 − ρ2
U,V

)

4σ2
V

, (2.4)

where ρ2
U,V = E

[
(U − V )2

]
, σ2

U = E(U2) and σ2
V = E(V 2).

• Condition (C2) can be referred to as “two-point local nondeterminism” with index
H = (H1, . . . ,HN ). See [23] for more information on properties of local nondeterminism
and their applications.

We point out that the class of Gaussian random fields that satisfy Conditions (C1) and
(C2) is large. It includes not only the well-known fractional Brownian motion and the Brow-
nian sheet, but also such anisotropic random fields as fractional Brownian sheets ([1]), solu-
tions to stochastic heat equation driven by space-time white noise ([5], [6], [16]) and many
more. The results in this paper can be extended further so that they can be applied to the
operator-scaling Gaussian fields with stationary increments constructed in [4]; see Remark
2.7 below.

Now we state the main results of this paper. We will always assume F ⊆ Rd to be
non-empty and, except in Remark 2.8, non-random. Theorem 2.1 is concerned with the
hitting probabilities of X and provides a necessary condition and a sufficient condition for
P{X−1(F ) ∩ I 6= ∅} > 0.

Theorem 2.1 Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian random field defined by (1.1)
and assume that X0 satisfies Conditions (C1) and (C2). If F ⊆ Rd is a Borel set, then

c2,7 Cd−Q(F ) ≤ P
{

X−1(F ) ∩ I 6= ∅
}
≤ c2,8 Hd−Q(F ), (2.5)

where c2,7 and c2,8 are positive constants depending on I, F and H only. In the above,
Q :=

∑N
j=1 1/Hj and Hq(F ) is defined as the q-dimensional Hausdorff measure of F when

q > 0, and Hq(F ) = 1 whenever q ≤ 0.

Remark 2.2

• Note that if 0 ∈ F , then the second inequality in (2.5) might not hold without the
condition “E[X0(t)2] ≥ c2,1 for all t ∈ I” in (C1).

• Let F ⊆ Rd be a Borel set and Q =
∑N

j=1 1/Hj . Theorem 2.1 implies the following
statements:

(i) If dimHF < d−Q, then X−1(F ) ∩ I = ∅ a.s.

(ii) If dimHF > d−Q, then P{X−1(F ) ∩ I 6= ∅} > 0.
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• A natural conjecture is that, at least for a large subclass of Gaussian random fields
satisfying the conditions of Theorem 2.1, P{X−1(F ) ∩ I 6= ∅} > 0 ⇐⇒ Cd−Q(F ) > 0.

Next we consider the Hausdorff dimension of the inverse image X−1(F )∩I. In the special
case of fractional Brownian motion, this problem was considered by Testard [18] and Monrad
and Pitt [17]. The following two theorems determine dimH

(
X−1(F ) ∩ I

)
in terms of dimHF

and the parameters N, d and H ∈ (0, 1)N of X. Compared with the results for fractional
Brownian motion, we see that the fractal structure of the inverse images of an anisotropic
random field is much richer.

For convenience we will always assume

0 < H1 ≤ H2 ≤ · · · ≤ HN < 1. (2.6)

Theorem 2.3 Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian random field defined by (1.1)
with X0 satisfying Conditions (C1) and (C2). Let F ⊆ Rd be a Borel set such that dimHF ≥
d−Q. Then the following statements hold:

(i) Almost surely

dimH

(
X−1(F ) ∩ I

) ≤ min
1≤k≤N

{ k∑

j=1

Hk

Hj
+ N − k −Hk

(
d− dimHF

)}
. (2.7)

In particular, if dimHF = d−Q, then dimH

(
X−1(F ) ∩ I

)
= 0 a.s.

(ii) If dimHF > d−Q, then for every ε > 0,

dimH

(
X−1(F ) ∩ I

) ≥ min
1≤k≤N

{ k∑

j=1

Hk

Hj
+ N − k −Hk

(
d− dimHF

)}− ε (2.8)

on an event of positive probability (which may depend on ε). In the special case when dimHF =
0 and d < Q, we have

dimH

(
X−1(F ) ∩ I

)
= min

1≤k≤N

{ k∑

j=1

Hk

Hj
+ N − k −Hkd

}
(2.9)

on an event of positive probability.

As in [9] and [13], we can combine (2.7) and (2.8) in Theorem 2.3 and write

∥∥dimH

(
X−1(F ) ∩ I

)∥∥
L∞(P) = min

1≤k≤N

{ k∑

j=1

Hk

Hj
+ N − k −Hk

(
d− dimHF

)}
. (2.10)

Here and in the sequel, for any function Y : Ω → R+, ‖Y ‖L∞(P) is defined as

‖Y ‖L∞(P) = sup
{
θ : Y ≥ θ on an event E with P(E) > 0

}
.

Note that (2.10) gives essential bounds for the Hausdorff dimension of the inverse image,
it is more desirable to establish an exact formula for dimH

(
X−1(F ) ∩ I

)
. This amounts

to strengthen the conclusion in Part (ii) of Theorem 2.3 so that the positive probability in
(2.8) is independent of ε. For this purpose, we introduce the following condition (S), which
contains more information on the geometry of F than its Hausdorff dimension alone.
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(S): There is a finite constant c2,9 ≥ 1 such that, for every γ ∈ (0, dimHF ), there exists
a probability measure µ0,γ (which may depend on γ) with compact support in F such
that

µ0,γ

(
B(x, r)

) ≤ c2,9 rγ for all x ∈ Rd and r > 0. (2.11)

Remark 2.4 The key feature of Condition (S) is that the constant c2,9 is independent of
γ < dimHF , even though the probability measure µ0,γ may depend on γ. This assumption
is stronger than the conclusion of Frostman’s lemma (where both c2,9 and µ0,γ may depend
on γ), and is verified by a large class of Borel sets including all self-similar sets satisfying
the open set condition ([8]) and, more generally, the d-sets ([10]). If F is a compact set in
Rd, then Condition (S) is equivalent to the existence of a constant c2,9 ≥ 1 and a probability
measure µ on F such that

µ
(
B(x, r)

) ≤ c2,9 rdim
H

F for all x ∈ Rd and r > 0.1 (2.12)

In fact, one direction is obvious. For the other direction, take µ to be an arbitrary subse-
quential weak limit of {µ0,γ}.

By examining the proof of Frostman’s lemma in [11, p. 130–131], one sees that Condition
(S) is satisfied provided that the Borel set F has the following property: There is a constant
c2,10 > 0 such that, for every γ ∈ (0,dimHF ), one has

inf
{ ∞∑

n=1

(diamBn)γ : F ⊆
∞⋃

n=1

Bn

}
≥ c2,10 , (2.13)

where the infimum is taken over all coverings of F by balls {Bn, n ≥ 1}. However, we have
not been able to fully characterize the family of Borel sets that satisfies Condition (S).

The following theorem shows that Condition (S) is a sufficient (but not necessary) condi-
tion for the probability in (2.8) to be independent of ε. Because of (2.7) and (2.9), it suffices
to consider Borel sets F ⊆ Rd that satisfy dimHF > max{d−Q, 0}.

Theorem 2.5 Let X = {X(t), t ∈ RN} be as in Theorem 2.3 and let F ⊆ Rd be a bounded
Borel set such that dimHF > max{d−Q, 0} and satisfies the condition (S). Then with positive
probability,

dimH

(
X−1(F ) ∩ I

)
= min

1≤k≤N

{ k∑

j=1

Hk

Hj
+ N − k −Hk(d− dimHF )

}

=
k∑

j=1

Hk

Hj
+ N − k −Hk(d− dimHF ), if

k−1∑

j=1

1
Hj

≤ d− dimHF <
k∑

j=1

1
Hj

.

(2.14)

In the above we use the convention
0∑

j=1

1/Hj = 0.

We end this section with the following remarks about Theorems 2.3 and 2.5.

1This statement and its proof were showed to us by the referee.
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Remark 2.6 In the special case of F = {x}, X−1(F ) ∩ I becomes the level set of X on
I and the above Hausdorff dimension formula (2.9) was proved by Ayache and Xiao [1] for
fractional Brownian sheets, by Wu and Xiao [20] for the solutions of stochastic heat equation
driven by a space-time white noise, and by Xiao [23] for Gaussian random fields satisfying
Conditions (C1) and (C2). Theorems 2.3 and 2.5 extend their results and, as we will see in
the next section, their proofs rely on some new ingredients.

Remark 2.7 From the proof of Theorem 2.3 given in Section 3 one can see that its conclusions
still hold if (2.1) and (2.2) in Conditions (C1) and (C2) are replaced respectively by the
following weaker conditions: For all ε > 0, there exist constants c′

2,i
(i = 2, 3, 4) which may

depend on ε such that,

c′
2,2

N∑

j=1

|sj − tj |2Hj+ε ≤ E
[(

X0(s)−X0(t)
)2

]
≤ c′

2,3

N∑

j=1

|sj − tj |2Hj−ε, ∀ s, t ∈ I; (2.15)

and

Var
(
X0(t)

∣∣X0(s)
) ≥ c′

2,4

N∑

j=1

|sj − tj |2Hj+ε, ∀ s, t ∈ I. (2.16)

It can be proven that the operator-scaling Gaussian fields constructed in [4] satisfy conditions
(2.15) and (2.16), while Conditions (C1) and (C2) are only satisfied by random fields with
diagonal scaling matrices. We refer to [2] and [3] for further information.

Remark 2.8 Note that the event described by (2.14) depends on F . In light of the result (1.6)
of Monrad and Pitt [17], we may ask the following natural question: When

∑N
j=1 1/Hj > d,

is it possible to have a single event Ω1 ⊆ Ω of positive probability such that on Ω1 (2.14)
holds for all Borel sets F ⊆ Rd? This is simply referred to as a uniform Hausdorff dimension
problem for the inverse images of X. An affirmative answer will make the formula (2.14)
applicable to random Borel sets F as well.

If, in addition to Conditions (C1) and (C2), we also assume that Condition (C3) or (C3′)
in [23] holds and H1 = H2 = · · · = HN , then one can modify the proofs in [17] to prove that
the answer to the above question is affirmative when N > H1d. In general, it can be proved
that the upper bound (2.7) holds almost surely for all Borel sets F ⊆ Rd. However the lower
bound might not hold uniformly due to the anisotropy of X.

Remark 2.9 Another useful dimension for studying fractals is packing dimension, denoted
by dimP , see [8] for its definition and properties. We mention that the problem of finding the
packing dimension of X−1(F ) remains widely open. Even though one can apply Lemma 3.1
and a covering argument to derive that under the conditions of Theorem 2.3,

dimP

(
X−1(F ) ∩ I

) ≤ min
1≤k≤N

{ k∑

j=1

Hk

Hj
+ N − k −Hk(d− dimPF )

}
, a.s., (2.17)

it is possible that, for a general Borel set F ⊆ Rd, the inequality in (2.17) might be strict.
New ideas may be needed for solving this problem.
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3 Proofs

In this section we prove the theorems stated in Section 2. The proofs of Theorem 2.1 and
Theorem 2.3 are divided into proving the upper and lower bounds for P

{
X−1(F )∩I 6= ∅}

and
dimH

(
X−1(F ) ∩I

)
separately. The upper bounds will be proved by using a covering argu-

ment, and the lower bounds will be proved by constructing a random measure on X−1(F )∩I.
These methods are similar to those in [11], [18] and [22] for studying the level sets and hit-
ting probabilities of fractional Brownian motion. However, in order to deal with anisotropic
Gaussian random fields in general, we have to rely also on some new ingredients such as
Lemma 3.1 and Lemma 3.2 below.

We will apply the following lemma on the hitting probability of X to prove the upper
bounds in (2.5) and (2.7). A slightly stronger version of this lemma was provided in [23] with
a longer proof. For the sake of completeness, we will provide a simpler proof by modifying
the argument in the proof of Proposition 4.4 in Dalang, Khoshnevisan and Nualart [5].

Lemma 3.1 Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian random field defined by (1.1)
with X0 satisfying Conditions (C1) and (C2). For any constant M > 0, there exist positive
constants c3,1 and δ0 such that for all r ∈ (0, δ0), t ∈ I and all x ∈ [−M, M ]d,

P
{

inf
s∈Bρ(t,r)∩I

∥∥X(s)− x
∥∥ ≤ r

}
≤ c3,1 rd. (3.1)

In the above Bρ(t, r) = {s ∈ RN : ρ(s, t) ≤ r} denotes the closed ball of radius r in the metric
ρ in RN defined by (2.3).

Proof Since the coordinate processes of X are independent copies of X0, it is sufficient to
prove (3.1) for X0. Note that for any s ∈ I, we have

E
(
X0(s)|X0(t)

)
=
E

(
X0(s)X0(t)

)

E
(
X0(t)2

) X0(t) := c(s, t)X0(t). (3.2)

Then the Gaussian random variables X0(s)− c(s, t)X0(t) (s ∈ I) and X0(t) are independent.
Let

Z(t, r) = sup
s∈Bρ(t,r)∩I

∣∣X0(s)− c(s, t)X0(t)
∣∣.

Then Z(t, r) is independent of X0(t). It follows from triangle’s inequality that

P
{

inf
s∈Bρ(t,r)∩I

∣∣X0(s)− x
∣∣ ≤ r

}

≤ P
{

inf
s∈Bρ(t,r)∩I

∣∣c(s, t)(X0(t)− x
)∣∣ ≤ r + Z(t, r) + sup

s∈Bρ(t,r)∩I

∣∣(1− c(s, t)
)
x
∣∣
}

.

(3.3)

The Cauchy-Schwarz inequality and Condition (C1) imply that for all s, t ∈ I,

∣∣1− c(s, t)
∣∣ =

∣∣E[
X0(t)

(
X0(t)−X0(s)

)]∣∣
E

(
X0(t)2

) ≤
(

c2,3

c2,1

N∑

j=1

|sj − tj |2Hj

)1/2

. (3.4)
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Hence there exists a constant δ0 > 0 such that for all r ∈ (0, δ0) and s ∈ Bρ(t, r)∩ I, we have
1/2 ≤ c(s, t) ≤ 1. Moreover, for all r ∈ (0, δ0), all s ∈ Bρ(t, r) ∩ I and all x ∈ [−M, M ],

∣∣(1− c(s, t)
)
x
∣∣ ≤ M r

2
.

Combining the above with (3.3) it follows that for all x ∈ [−M, M ] and r ∈ (0, δ0),

P
{

inf
s∈Bρ(t,r)∩I

∣∣X0(s)−x
∣∣ ≤ r

}
≤ P

{
x−(M+2)r−2Z(t, r) ≤ X0(t) ≤ x+(M+2)r+2Z(t, r)

}
.

Then using the independence of X0(t) and Z(t, r) and Condition (C1) we obtain that for all
x ∈ [−M, M ] and r ∈ (0, δ0),

P
{

inf
s∈Bρ(t,r)∩I

∣∣X0(s)− x
∣∣ ≤ r

}
≤ c3,2 E

(
r + Z(t, r)

)
= c3,2 r + c3,2 E

(
Z(t, r)

)
, (3.5)

where c3,2 is a finite positive constant which depends on M .
The last term in (3.5) can be estimated by applying Dudley’s entropy theorem (see, e.g.,

[11], p. 219) to the Gaussian random field Y (s) = X0(s)− c(s, t)X0(t) (s ∈ Bρ(t, r) ∩ I). To
this end, note that Y (t) = 0 and the canonical metric

d(s, s′) :=
{
E

(
Y (s)− Y (s′)

)2
}1/2

≤ c ρ(s, s′)

for all s, s′ ∈ Bρ(t, r) ∩ I. Denote by D := sups,s′∈Bρ(t,r)∩I d(s, s′) and Nd

(
Bρ(t, r), ε

)
the

d-diameter and the metric entropy number of Bρ(t, r), respectively. Then D ≤ cr and

Nd

(
Bρ(t, r), ε

) ≤ c
(r

ε

)Q
.

It follows from Dudley’s theorem that

E
(
Z(t, r)

) ≤ c

∫ D

0

√
log Nd

(
Bρ(t, r), ε

)
dε ≤ c3,3 r. (3.6)

This and (3.5) together imply (3.1) for d = 1. The proof of Lemma 3.1 is finished. ¤

For proving the lower bounds in Theorems 2.1, 2.3 and Theorem 2.5 we will make use of
the following lemma which extends a result of Testard [18] for fractional Brownian motion.

Lemma 3.2 Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian random field defined by (1.1)
with X0 satisfying Conditions (C1) and (C2). Then there exists a positive and finite constant
c3,4 such that for all ε ∈ (0, 1), s, t ∈ I and x, y ∈ Rd, we have

∫

R2d

e−i(〈ξ, x〉+〈η, y〉) exp
(
− 1

2
(ξ, η)

(
εI2d + Cov

(
X(s), X(t)

))
(ξ, η)′

)
dξdη

≤ c3,4

max{ρd(s, t), ‖x− y‖d} .

(3.7)

In the above, I2d denotes the identity matrix of order 2d, Cov
(
X(s), X(t)

)
denotes the co-

variance matrix of the random vector (X(s), X(t)), and (ξ, η)′ is the transpose of the row
vector (ξ, η).
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Proof Since the coordinate processes X1, . . . , Xd of X are independent copies of X0, we
first consider the case when d = 1.

For any ε ∈ (0, 1), let

Φs,t
ε (ξ1, η1) = ε(ξ2

1 + η2
1) + E

(
ξ1X1(s) + η1X1(t)

)2

=
(
ε + E

(
X1(s)2

))
ξ2
1 + 2ξ1η1E

(
X1(s)X1(t)

)
+

(
ε + E

(
X1(t)2

))
η2
1.

(3.8)

Denote by Γε(s, t) the symmetric matrix corresponding to the quadratic form (3.8). Then
Γε(s, t) = εI2 + Cov

(
X1(s), X1(t)

)
and its inverse is given by

Γ−1
ε (s, t) =

1
det

(
Γε(s, t)

)
(

ε + E
(
X1(t)2

) −E(
X1(s)X1(t)

)
−E(

X1(s)X1(t)
)

ε + E
(
X1(s)2

)
)

, (3.9)

where det(Γε(s, t)) denotes the determinant of Γε(s, t). Since the symmetric matrix Γε(s, t)
is positive definite for all ε > 0, we have

∫

R2

e−i(ξ1x1+η1y1) exp
(
− 1

2
Φs,t

ε (ξ1, η1)
)

dξ1dη1

=
2π√

det
(
Γε(s, t)

) exp
(
− 1

2
(x1, y1) Γ−1

ε (s, t) (x1, y1)′
)

.
(3.10)

Let us remark that

(x1, y1) Γ−1
ε (s, t) (x1, y1)′ =

1
det

(
Γε(s, t)

)
(

ε(x2
1 + y2

1) + E
[(

x1X1(t)− y1X1(s)
)2

])

≥ 1
det

(
Γε(s, t)

) E
[(

x1X1(t)− y1X1(s)
)2

]
.

(3.11)

We claim that for all s, t ∈ I and all x1, y1 ∈ R,

E
[(

x1X1(t)− y1X1(s)
)2

]
≥ c3,5 (x1 − y1)2, (3.12)

where c3,5 > 0 is a constant depending only on c2,1 , . . . , c2,4 in Conditions (C1) and (C2).
In order to verify (3.12), we note that it is equivalent to prove the following: There exists

a constant c > 0 such that, for all s, t ∈ I, the quadratic form

E
[(

x1X1(s)− y1X1(t)
)2

]
− c (x1 − y1)2 (3.13)

is positive semi-definite. Hence it is sufficient to show the existence of a constant c > 0 such
that

(i) E
(
X1(s)2

) ≥ c for all s ∈ I.

(ii) for all s, t ∈ I we have

(
E

(
X1(s)2

)− c
)(
E

(
X1(t)2

)− c
)
−

(
E

(
X1(s)X1(t)

)− c
)2
≥ 0. (3.14)
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Since Condition (C1) implies (i) holds for any c ∈ (0, c2,1 ], it remains to verify (ii) for c > 0
small enough.

It can be seen that (3.14) holds for some c > 0 if and only if

c ≤
E

(
X1(s)2

)
E

(
X1(t)2

)−
(
E

(
X1(s)X1(t)

))2

E
[(

X1(s)−X1(t)
)2] (3.15)

for all s, t ∈ I with s 6= t. Observe that the numerator in (3.15) is detCov
(
X1(s), X1(t)

)
. It

follows from (C1), (C2) and the identity that for any Gaussian vector (Z1, Z2),

detCov
(
Z1, Z2

)
= Var

(
Z1

)
Var

(
Z2

∣∣Z1

)
(3.16)

that

detCov
(
X1(s), X1(t)

) ≥ c2,1 c2,4

N∑

j=1

|sj − tj |2Hj . (3.17)

This and (2.1) imply that the right-hand side of (3.15) is bounded from below by c2,1c2,4/c2,3 .
By taking 0 < c ≤ min{c2,1 , c2,1c2,4/c2,3}, we have verified (3.12).

Combining (3.10), (3.11) and (3.12) together, we obtain
∫

R2

e−i(ξ1x1+η1y1) exp
(
− 1

2
Φs,t

ε (ξ1, η1)
)

dξ1dη1

≤ 2π√
det

(
Γε(s, t)

) exp
(
− c3,5

2
(x1 − y1)2

det
(
Γε(s, t)

)
)

.
(3.18)

Going back to Rd, we derive from (3.18) that for all ε > 0,
∫

R2d

e−i(〈ξ, x〉+〈η, y〉) exp
(
− 1

2
(ξ, η)

(
εI2d + Cov

(
X(s), X(t)

))
(ξ, η)′

)
dξdη

≤ (2π)d

[
det

(
Γε(s, t)

)]d/2
exp

(
− c3,5

2
‖x− y‖2

det
(
Γε(s, t)

)
)

.
(3.19)

Note that, if det
(
Γε(s, t)

) ≥ ‖x− y‖2, then

(2π)d

[
det

(
Γε(s, t)

)]d/2
exp

(
− c3,5

2
‖x− y‖2

det
(
Γε(s, t)

)
)
≤ (2π)d

[
det

(
Γε(s, t)

)]d/2
. (3.20)

On the other hand, if det
(
Γε(s, t)

)
< ‖x − y‖2, then we use the elementary inequality

xd/2e−c x ≤ c3,6 (∀x > 0) to obtain

(2π)d

[
det

(
Γε(s, t)

)]d/2
exp

(
− c3,5

2
‖x− y‖2

det
(
Γε(s, t)

)
)
≤ c3,7

‖x− y‖d
. (3.21)

By (3.20) and (3.21) we obtain

(2π)d

[
det

(
Γε(s, t)

)]d/2
exp

(
− c3,5

2
‖x− y‖2

det
(
Γε(s, t)

)
)
≤ c3,8

max
{[

det
(
Γε(s, t)

)]d/2
, ‖x− y‖d

} . (3.22)

Finally, we note that for all s, t ∈ I,

det
(
Γε(s, t)

) ≥ detCov
(
X1(s), X1(t)

) ≥ c2,1 c2,4 ρ(s, t)2. (3.23)

Therefore (3.7) follows from (3.19), (3.22) and (3.23). ¤

12



We will also make use of the following elementary lemma from [1, Lemma 10].

Lemma 3.3 Let α, β and η be positive constants. For A > 0 and B > 0, let

J := J(A,B) =
∫ 1

0

dt

(A + tα)η(B + t)β
. (3.24)

Then there exist finite constants c3,9 and c3,10, depending on α, β, η only, such that the
following hold for all real numbers A, B > 0 satisfying A1/α ≤ c3,9 B:

(i) If αη > 1, then

J ≤ c3,10

1
Aη−α−1Bβ

; (3.25)

(ii) If 0 < αη < 1 and αη + β 6= 1, then

J ≤ c3,10

(
1

Bαη+β−1
+ 1

)
. (3.26)

Now we are ready to prove Theorems 2.1, 2.3 and 2.5.

Proof of Theorem 2.1 We distinguish between three cases: (i) d < Q, (ii) d = Q and
(iii) d > Q. When d < Q, the second inequality in (2.5) holds automatically with c2,8 = 1.
Moreover, Theorem 7.1 in [23] implies that X hits points, hence P

{
X−1(F ) ∩ I 6= ∅

}
> 0

since F 6= ∅.
When d > Q, (2.5) is proved in Theorem 7.6 in [23]. Hence it only remains to consider

the case (ii). Again, the second inequality in (2.5) holds automatically with c2,8 = 1.
The proof of the lower bound in (2.5) is similar to that of Theorem 7.6 in [23]. Without

loss of generality, we assume C0(F ) > 0 otherwise there is nothing to prove. By Choquet’s
capacity theorem (cf. [12]), we may and will assume F is compact and let M > 0 be a
constant such that F ⊆ [−M,M ]d.

By definition (1.3), there is a Borel probability measure ν0 on F such that

E0(ν0) :=
∫

Rd

∫

Rd

log
(

e

‖x− y‖ ∧ 1

)
ν0(dx)ν0(dy) ≤ 2

C0(F )
. (3.27)

For all integers n ≥ 1, we consider a family of random measures νn on I defined by

∫

I
g(t) νn(dt) =

∫

I

∫

Rd

(2πn)d/2 exp
(
− n

∥∥X(t)− x
∥∥2

2

)
g(t) ν0(dx) dt

=
∫

I

∫

Rd

∫

Rd

exp
(
− ‖ξ‖2

2n
+ i〈ξ, X(t)− x〉

)
g(t) dξ ν0(dx) dt,

(3.28)

where g is an arbitrary measurable, nonnegative function on I.
Denote the total mass of νn by ‖νn‖ := νn(I). We claim that the following two inequalities

hold:
E

(‖νn‖
) ≥ c3,11 and E

(‖νn‖2
) ≤ c3,12E0(ν0), (3.29)

where the constants c3,11 and c3,12 are independent of ν0 and n.
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Some simple calculation shows

E
(‖νn‖

)
=

∫

I

∫

Rd

∫

Rd

exp
(
− 1

2

( 1
n

+ σ2(t)
)
‖ξ‖2 − i〈ξ, x〉

)
dξ ν0(dx) dt

≥
∫

I

∫

Rd

(2π)d/2

(1 + σ2(t))d/2
exp

(
− ‖x‖2

2σ2(t)

)
ν0(dx) dt

≥
∫

I

(2π)d/2

(1 + σ2(t))d/2
exp

(
− dM2

2σ2(t)

)
dt := c3,11 ,

(3.30)

where σ2(t) = E
(
X0(t)2

)
and the last inequality follows from the boundedness of F . Since

t 7→ σ2(t) is a positive continuous function on I, c3,11 > 0. This gives the first inequality
in (3.29).

Denote by I2d the identity matrix of order 2d and let Γn(s, t) = n−1I2d+Cov
(
X(s), X(t)

)
.

Since Γn(s, t) is positive definite, we have

E
(‖νn‖2

)
=

∫

I

∫

I

∫

R2d

∫

R2d

e−i(〈ξ, x〉+〈η, y〉)

× exp
(
− 1

2
(ξ, η) Γn(s, t) (ξ, η)′

)
dξdη ν0(dx)ν0(dy) dsdt

=
∫

I

∫

I

∫

R2d

(2π)d

√
det

(
Γn(s, t)

) exp
(
− 1

2
(x, y) Γ−1

n (s, t) (x, y)′
)

ν0(dx)ν0(dy) dsdt

≤ c3,13

∫

I

∫

I

∫

R2d

1
max{ρd(s, t), ‖x− y‖d} ν0(dx)ν0(dy) dsdt,

(3.31)

where the last inequality follows from Lemma 3.2 and the constant c3,13 is independent of ν0

and n.
We claim that for all x, y ∈ Rd,

∫

I

∫

I

dsdt

max{ρd(s, t), ‖x− y‖d} ≤ c3,14 log
(

e

‖x− y‖ ∧ 1

)
, (3.32)

where c3,14 > 0 is a constant. To verify this, we break the integral in (3.32) over the regions
{(s, t) ∈ I × I : ρ(s, t) ≤ ‖x− y‖} and {(s, t) ∈ I × I : ρ(s, t) > ‖x− y‖} and denote them by
I1 and I2, respectively. Since d = Q, we derive that

I1 =
∫

I

∫

{t∈I:ρ(s,t)≤‖x−y‖}

dsdt

‖x− y‖d
≤ c3,15

‖x− y‖d
‖x− y‖Q = c3,15 . (3.33)

In the above, we have used the fact that, for every s ∈ I, the set {t ∈ I : ρ(s, t) ≤ ‖x − y‖}
is contained in an rectangle of side-lengths ‖x− y‖1/Hj (j = 1, . . . , N).

On the other hand,

I2 =
∫

I

∫

{t∈I:ρ(s,t)>‖x−y‖}

dsdt

ρd(s, t)
≤

∫

{t∈[−1,1]N :ρ(0,t)>‖x−y‖}

dt

ρd(0, t)

since ρ(s, t) = ρ(0, t − s). Let us consider the diagonal matrix E = diag (1/H1, . . . , 1/HN ).
Then, t 7→ ρ(0, t) is E-homogeneous function in the sense of Definition 2.6 of [4], that is

∀r > 0, ρ
(
0, rEt

)
= rρ (0, t)
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with rE=̂ exp (log(r)E) . By using the formula of integration in the polar coordinates with
respect to E (see Proposition 2.3 in [15]) and Q = d, we have

I2 ≤
∫ +∞

0

∫

SE

1{rEθ∈[−1,1], rρ(0,θ)>‖x−y‖}
σE (dθ) dr

r ρd(0, θ)
,

where SE is a compact set which does not contain 0 and σE (dθ) is a finite positive Radon
measure on SE . Since

0 < min
θ∈SE

ρ (0, θ) ≤ max
θ∈SE

ρ (0, θ) < ∞,

there exist some finite positive constants `, L, c, c3,16 such that

I2 ≤ c

∫ L

0
1{r>`‖x−y‖}

dr

r
≤ c3,16 log

(
e

‖x− y‖ ∧ 1

)
. (3.34)

Combining (3.33) and (3.34) one verifies (3.32). It is clear that (3.31), (3.32) and Fubini’s
theorem imply the second inequality in (3.29).

By using (3.29) and an argument in [18, Lemma 2.9] or in [11, pp.204–206], one can
verify that there is an event Ω0 with probability at least c2

3,11
/(2c3,12 E0(ν0)) such that for

every ω ∈ Ω0, {νn(ω), n ≥ 1} has a subsequence that converges weakly to a finite positive
measure ν which is supported on X−1(F ) ∩ I. Then, we have

P
{

X(I) ∩ F 6= ∅
}
≥ P{‖ν‖ > 0

} ≥ c2
3,11

2c3,12 E0(ν0)
. (3.35)

Combining this with (3.27) yields the lower bound in (2.5). The proof of Theorem 2.1 is
completed. ¤

Proof of Theorem 2.3
Proof of Part (i) It is clear that the second statement in Part (i) follows from (2.7) directly.
Hence we proceed to prove (2.7).

Since dimH is σ-stable ([8]), without loss of generality, we will assume that F ⊆ [−M, M ]d

for some constant M > 0 to prove that (2.7) holds almost surely.
Let us choose and fix an arbitrary constant γ > dimHF . Then, for δ0 in Lemma 3.1, there

exists a constant δ ∈ (0, δ0) and a sequence of balls {B(xj , rj), j ≥ 1} in Rd (in Euclidean
metric) such that rj ≤ δ for all j ≥ 1,

F ⊆
∞⋃

j=1

B(xj , rj) and
∞∑

j=1

(2rj)γ ≤ 1. (3.36)

Moreover, we require xj ∈ [−M, M ]d for all j ≥ 1.
For every integer j ≥ 1, let nj be the integer such that 2−nj−1 ≤ rj < 2−nj . We

divide I into sub-rectangles Rj,i of side-lengths 2−nj/H` (` = 1, . . . , N). Note that there
are at most c 2njQ such rectangles (recall that Q =

∑N
j=1 1/Hj), and each Rj,i is equivalent

to a ball of radius 2−nj in the metric ρ. Let Nj denote the number of Rj,i’s such that
Rj,i ∩X−1(B(xj , rj)) 6= ∅. Hence, by using Lemma 3.1, we derive

E(Nj) ≤ c3,17 2njQ 2−njd = c3,17 2nj(Q−d). (3.37)
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Since X−1(F ) ⊆ ⋃∞
j=1 X−1

(
B(xj , rj)

)
, we have obtained a covering of X−1(F ) ∩ I by a

subsequence of the rectangles {Rj,i} (i.e., those satisfying Rj,i ∩X−1
(
B(xj , rj)

) 6= ∅).
For every fixed k ∈ {1, . . . , N}, we see that each rectangle Rj,i can be covered by at most∏N

`=k

(
2nj(1/Hk−1/H`) +1

)
cubes of side-length 2−nj/Hk . In this way, we obtain a (random)

covering of X−1(F ) ∩ I by cubes of side-length 2−nj/Hk which can be used to bound the
Hausdorff measure of X−1(F ) ∩ I. Let

βk =
k∑

j=1

Hk

Hj
+ N − k −Hk(d− γ).

It follows from (3.36) and (3.37) that

E
[ ∞∑

j=1

Nj

N∏

`=k

(
2nj(

1
Hk
− 1

H`
) + 1

)
2−

nj
Hk

βk

]
≤ c3,18

∞∑

j=1

2−njγ ≤ c3,18 . (3.38)

This and Fatou’s lemma together imply that Hβk

(
X−1(F ) ∩ I) < ∞ almost surely. Hence

we have dimH

(
X−1(F ) ∩ I

) ≤ βk a.s. for every k ∈ {1, . . . , N}. Letting γ ↓ dimHF along
rational numbers yields (2.7).

Proof of Part (ii) Assume that F is a non-empty set such that dimHF > d−Q. Note that if
dimHF = 0, then we have

∑N
j=1 1/Hj > d. For any fixed x ∈ F , we have X−1(F ) ⊇ X−1({x})

and (2.9) follows from Theorem 7.1 in [23] and (2.7). It remains to consider those Borel sets
F ⊆ Rd with dimHF > 0.

For this purpose, let us note that (2.6) implies

min
1≤k≤N

{ k∑

j=1

Hk

Hj
+ N − k −Hk(d− dimHF )

}

=
k∑

j=1

Hk

Hj
+ N − k −Hk(d− dimHF ), if

k−1∑

j=1

1
Hj

≤ d− dimHF <

k∑

j=1

1
Hj

.

(3.39)

The verification of (3.39) is elementary (cf. Lemma 7 in [1]) and is omitted.
Let k ∈ {1, . . . , N} be the unique integer satisfying

k−1∑

j=1

1
Hj

≤ d− dimHF <
k∑

j=1

1
Hj

. (3.40)

By (3.39), it is sufficient to prove that for every ε > 0, the inequality

dimH

(
X−1(F ) ∩ I

) ≥
k∑

j=1

Hk

Hj
+ N − k −Hk(d− dimHF )− ε (3.41)

holds on an event with positive probability (which may depend on ε).
Let us choose and fix an arbitrary constant δ ∈ (0, dimHF ) such that

k−1∑

j=1

1
Hj

< d− dimHF + δ <
k∑

j=1

1
Hj

(3.42)
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(this is possible because of (3.40)) and define

βδ :=
k∑

j=1

Hk

Hj
+ N − k −Hk(d− dimHF )−Hkδ. (3.43)

Then it can be verified that βδ ∈ (N − k, N − k + 1), and (3.41) follows from

dimH

(
X−1(F ) ∩ I

) ≥ βδ (3.44)

on an event with positive probability (which may depend on δ).
Now we prove (3.44). Let γ ∈ (dimHF − δ, dimHF ) be a constant. Then (3.42) still

holds when dimHF − δ is replaced by γ. Then there is a compact set Fγ ⊆ F such that
dimHFγ > γ (see [8]). It follows from Frostman’s lemma (cf. [8] or [11]) that there exists a
Borel probability measure µ0,γ supported on Fγ such that

µ0,γ

(
B(x, r)

) ≤ c3,19 rγ for all x ∈ Rd and r > 0, (3.45)

where c3,19 may depend on γ.

We construct a sequence {µn,γ , n ≥ 1} of random Borel measures on I as in (3.28) with
ν0 replaced by µ0,γ . We will prove the following statements:

(i) There exist finite positive constants c3,20 and c3,21 (which may depend on γ) such that

E
(‖µn,γ‖

) ≥ c3,20 and E
(‖µn,γ‖2

) ≤ c3,21 (3.46)

hold for all integers n ≥ 1.

(ii) For the constant βδ defined by (3.43), there exists a finite positive constant c3,22 such
that for all n ≥ 1

E
∫

I

∫

I

1
‖s− t‖βδ

µn,γ(ds)µn,γ(dt) ≤ c3,22 . (3.47)

That is, the expected βδ-energy of the random measures {µn,γ} are bounded.

The first inequality in (3.46) is derived in the same way as (3.30), because the probability
measure µ0,γ is supported on the compact set Fγ . Now we prove the second inequality in
(3.46). Similar to (3.31), we use Lemma 3.2 to obtain

E
(‖µn,γ‖2

) ≤ c3,23

∫

I

∫

I

∫

R2d

1
max{ρd(s, t), ‖x− y‖d} µ0,γ(dx)µ0,γ(dy) dsdt. (3.48)

By property (3.45) of µ0,γ , it can be shown that
∫

R2d

1
max{ρd(s, t), ‖x− y‖d} µ0,γ(dx)µ0,γ(dy) ≤ c3,24

ρ(s, t)d−γ
. (3.49)

To this end, we break the above integral over {(x, y) ∈ R2d : ‖x− y‖ ≥ ρ(s, t)} and {(x, y) ∈
R2d : ‖x − y‖ < ρ(s, t)} and write them as J1 and J2, respectively. For each fixed x ∈ Rd,
let κx be the image measure of µ0,γ under the mapping T : y 7→ ‖x− y‖ from Rd to R+.

J1 =
∫

Rd

µ0,γ(dx)
∫

{‖x−y‖≥ρ(s,t)}

µ0,γ(dy)
‖x− y‖d

=
∫

Rd

µ0,γ(dx)
∫ +∞

ρ(s,t)

1
rd

κx(dr)

≤ d c3,19

∫

Rd

µ0,γ(dx)
∫ +∞

ρ(s,t)
rγ−d−1 dr =

c3,25

ρ(s, t)d−γ
,

(3.50)

17



where the above inequality follows from an integration-by-parts formula and (3.45).
On the other hand, (3.45) implies that

J2 =
∫

Rd

µ0,γ(dx)
∫

{‖x−y‖<ρ(s,t)}

µ0,γ(dy)
ρ(s, t)d

≤ c3,19

ρ(s, t)d−γ
. (3.51)

Hence (3.49) follows from (3.50) and (3.51).
It follows from (3.48), (3.49), Condition (C2) and some elementary computation that

E(‖µn,γ‖2) ≤ c3,26

∫

I

∫

I

1[∑N
j=1 |sj − tj |Hj

]d−γ
ds dt := c3,21 < ∞. (3.52)

In the above, we have used (3.42) to show the last integral is convergent (cf. [1], p. 432).
Thus we have verified the second inequality in (3.46).

Similar to (3.48)–(3.52) and recall that I = [ε0, 1]N , we derive

E
∫

I

∫

I

1
‖s− t‖βδ

µn,γ(ds)µn,γ(dt)

≤ c3,27

∫

I

∫

I

1[ ∑N
j=1 |sj − tj |Hj

]d−γ( ∑N
j=1 |sj − tj |

)βδ
ds dt

≤ c3,28

∫

[0,1]N

1[∑N
j=1 t

Hj

j

]d−γ( ∑N
j=1 tj

)βδ
dt.

(3.53)

Let us denote the last integral in (3.53) by G and apply Lemma 3.3 to verify that it
is convergent. Without loss of generality, we assume k ≥ 2, otherwise we jump to (3.56)
directly. We integrate [dt1] first. By (3.42) we see that H1(d − γ) > 1. Hence we can use
(3.25) of Lemma 3.3 with α = H1, η = d− γ, A =

∑N
j=2 t

Hj

j and B =
∑N

j=2 tj to get

G ≤ c3,29

∫ 1

0
dtN · · ·

∫ 1

0

1
( ∑N

j=2 t
Hj

j

)d−γ−1/H1
( ∑N

j=2 tj
)βδ

dt2. (3.54)

We repeat this procedure for integrating dt2, . . . , dtk−1 to obtain

G ≤ c3,30

∫ 1

0
dtN · · ·

∫ 1

0

dtk
(∑N

j=k t
Hj

j

)d−γ−∑k−1
j=1 1/Hj

( ∑N
j=k tj

)βδ

. (3.55)

To integrate [dtk] in (3.55), note that Hk

(
d − γ − ∑k−1

j=1 1/Hj

)
< 1. It follows from (3.26)

that

G ≤ c3,31

[ ∫ 1

0
dtN · · ·

∫ 1

0

dtk+1
(∑N

j=k+1 tj
)Hk(d−γ−∑k−1

j=1 1/Hj)+βδ−1
+ 1

]

= c3,31

[ ∫ 1

0
dtN · · ·

∫ 1

0

dtk+1(∑N
j=k+1 tj

)N−k+Hk(dim
H

F−δ−γ)
+ 1

]
.

(3.56)

Since dimHF − δ < γ, the last integral is convergent. Hence (3.47) holds.
By using (3.46), (3.47) and the argument in [18, Lemma 2.9] or in [11, pp.204–206] again,

one can verify that there is an event Ωγ with probability at least c2
3,20

/(2c3,21) such that, for
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every ω ∈ Ωγ , {µn,γ(ω), n ≥ 1} has a subsequence {µnk,γ(ω), k ≥ 1} that converges weakly to
a positive measure µγ = µγ(ω), which is supported on X−1(F ) ∩ I. Moreover, the βδ-energy
of {µnk,γ(ω), k ≥ 1} are bounded. This and the monotone convergence theorem together
imply that, on the event Ωγ , the βδ-energy of µγ is finite. Therefore by Frostman’s theorem
(cf. [8] or [11]) we derive that (3.41) holds on an event with probability at least c2

3,20
/(2c3,21).

This finishes the proof of Theorem 2.3. ¤

Finally we show that, under the extra condition (S), the proof of Theorem 2.3 can be
strengthened to prove Theorem 2.5.

Proof of Theorem 2.5 The second equality in (2.14) is implied by (3.39). Hence it only
remains to prove that, if F ⊆ Rd is a Borel set satisfying

k−1∑

j=1

1
Hj

≤ d− dimHF <
k∑

j=1

1
Hj

(3.57)

for some integer k ∈ {1, . . . , N}, then

dimH

(
X−1(F ) ∩ I

) ≥
k∑

j=1

Hk

Hj
+ N − k −Hk(d− dimHF ) (3.58)

holds with positive probability. We will prove the following statement: There exist constants
δ0 ∈ (0, dimHF ) and c3,32 > 0 such that for all δ ∈ (0, δ0) we have

k−1∑

j=1

1
Hj

< d− dimHF + δ <
k∑

j=1

1
Hj

(3.59)

and

dimH

(
X−1(F ) ∩ I

) ≥
k∑

j=1

Hk

Hj
+ N − k −Hk(d− dimHF )−Hkδ (3.60)

holds with probability greater than c3,32 (which does not depend on δ). Letting δ ↓ 0, this
shows that (3.58) holds with probability greater than c3,32 .

The proof of the above statement is almost the same as the proof of (3.44). Since (3.57)
is fulfilled, we can choose δ0 ∈ (0, dimHF ) such that (3.59) holds for all δ ∈ (0, δ0).

Let δ ∈ (0, δ0), γ ∈ (dimHF − δ, dimHF ) and define βδ by (3.43). Let µ0,γ be the
probability measure with compact support in F given by Condition (S), and let {µn,γ , n ≥ 1}
be the sequence of random Borel measures on I constructed in the proof of Theorem 2.3.
The only difference is that we will show the constants c3,20 and c3,21 in (3.46) are independent
of δ and γ.

Since F is bounded, we derive as in (3.30) that c3,20 is independent of µ0,γ , γ and δ. Next
we prove that E

(‖µn,γ‖2
) ≤ c3,21 for all γ ∈ (dimHF − δ, dimHF ), and the constant c3,21 only

depends on F , δ0, c2,9 , I and H.
Recall from (3.48) that

E
(‖µn,γ‖2

) ≤ c3,23

∫

I

∫

I

∫

R2d

1
max{ρd(s, t), ‖x− y‖d} µ0,γ(dx)µ0,γ(dy) dsdt. (3.61)
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Since γ > dimHF − δ0 > 0 and c2,9 ≥ 1, we see from (2.11) that the probability measure µ0,γ

also satisfies

µ0,γ

(
B(x, r)

) ≤ c2,9 rdim
H

F−δ0 for all x ∈ Rd and r ∈ (0,∞). (3.62)

Similar to the verification of (3.49), we derive from (3.62) that
∫

R2d

1
max{ρd(s, t), ‖x− y‖d} µ0,γ(dx)µ0,γ(dy) ≤ c3,33

ρ(s, t)d−dim
H

F+δ0
. (3.63)

Here the constant c3,33 depends only on d, F , c2,9 and δ0. It follows from (3.61) and (3.63)
that

E(‖µn,γ‖2) ≤ c3,34

∫

I

∫

I

1[∑N
j=1 |sj − tj |Hj

]d−dim
H

F+δ0
ds dt := c3,21 < ∞. (3.64)

This verifies the second inequality in (3.46) and the constant c3,21 is independent of γ and δ.
Observe that (3.47) remains valid for µn,γ , and the constant c3,22 does not affect the lower

bound for P(Ωγ) in the proof of Theorem 2.3. The same proof shows the existence of an
event Ωγ of probability at least c2

3,20
/(2c3,21) such that, for every ω ∈ Ωγ , {µn,γ(ω), n ≥ 1}

has a subsequence that converges weakly to a positive measure µγ , which is supported on
X−1(F ) ∩ I and has finite βδ-energy.

Define c3,32 := c2
3,20

/(2c3,21). Then the constant c3,32 does not depend on δ. It follows from
the above and Frostman’s theorem that for all δ ∈ (0, δ0)

dimH

(
X−1(F ) ∩ I

) ≥ βδ (3.65)

on an event with probability greater than c3,32 . This verifies (3.60) and the proof of Theorem
2.5 is finished. ¤

4 Applications to stochastic partial differential equations

Theorems 2.1, 2.3 and 2.5 are applicable to solutions of stochastic partial differential equations
(SPED) such as linear hyperbolic SPDE considered by Dalang and Nualart [7] and nonlinear
stochastic heat equations considered by Dalang, Khoshnevisan and Nualart [5]. In this section
we only consider the Hausdorff dimension of the inverse images of nonlinear stochastic heat
equations in [5].

Let Ẇ =
(
Ẇ1, . . . , Ẇd

)
be a space-time white noise in Rd. That is, the components

Ẇ1(x, t), . . . , Ẇd(x, t) of Ẇ (x, t) are independent space-time white noises, which are general-
ized Gaussian processes with covariance given by

E
[
Ẇi(t, x)Ẇi(y, s)

]
= δ(x− y)δ(t− s), (i = 1, . . . , d),

where δ(·) is the Dirac delta function. For all 1 ≤ j ≤ d, let bj : Rd → R be globally Lipschitz
and bounded functions, and let σ := (σi,j) be a deterministic d× d invertible matrix.

Consider the system of stochastic partial differential equations

∂ui

∂t
(t, x) =

∂2ui

∂x2
(t, x) +

d∑

j=1

σi,jẆj(t, x) + bi

(
u(t, x)

)
(4.1)
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for 1 ≤ i ≤ d, t ∈ [0, T ] and x ∈ [0, 1], with the initial conditions u(0, x) = 0 for all x ∈ [0, 1],
and the Neumann boundary conditions

∂ui

∂x
(t, 0) =

∂ui

∂x
(t, 1) = 0, 0 ≤ t ≤ T. (4.2)

In the above, u(t, x) =
(
u1(t, x), . . . , ud(t, x)

)
.

Following Dalang, Khoshnevisan and Nualart [5] (see also Walsh [19]), Equation (4.1)
can be interpreted rigorously as follows. Let Wi = {Wi(s, x), s ∈ R+, x ∈ [0, 1]} (1 ≤ i ≤ d)
be independent Brownian sheets, defined on a probability space (Ω,F ,P), and set W =
(W1, . . . , Wd). For t ≥ 0, let Ft = σ(W (s, x) : s ∈ [0, t], x ∈ [0, 1]). We say that a random
field u = {u(t, x), t ∈ [0, T ], x ∈ [0, 1]} is adapted to (Ft) if u(t, x) is Ft-measurable for every
(t, x) ∈ [0, T ] × [0, 1]. A random field u = {u(t, x), t ∈ [0, T ], x ∈ [0, 1]} is a solution of (4.1)
if u is adapted to (Ft) and if for every i ∈ {1, . . . , d}, t ∈ [0, T ] and x ∈ [0, 1],

ui(t, x) =
∫ t

0

∫ 1

0
Gt−r(x, v)

d∑

j=1

σi,jWj(dr, dv) +
∫ t

0

∫ 1

0
Gt−r(x, v) bi(u(t, x)

)
drdv, (4.3)

where Gt(x, y) is the Green kernel for the heat equation with Neumann boundary conditions
(see Walsh [19]).

For the linear form of (4.1) [i.e., b ≡ 0 and σ ≡ Id (the d × d identity matrix)], Mueller
and Tribe [16] found necessary and sufficient conditions (in terms of the dimension d) for
its solution u to hit points or to have double points of various types. Wu and Xiao [20]
further studied the fractal properties of the sample paths of u. In particular, they obtained
the Hausdorff dimensions of the level sets and the set of double times of u.

More generally, Dalang, Khoshnevisan and Nualart [5] studied hitting probabilities for
the non-linear equation (4.1) by providing sufficient conditions and necessary conditions for
a Borel set F ⊆ Rd to be polar for the processes {u(t, x), t ∈ [0, T ], x ∈ [0, 1]}, {u(t, x), x ∈
[0, 1]} (t ∈ (0, T ] is fixed) and {u(t, x), t ∈ [0, T ]} (x ∈ [0, 1] is fixed). They also determined
the Hausdorff dimensions of the range and level sets of these processes.

In the following, we show that the hitting probability results of Dalang, Khoshnevisan and
Nualart [5] can be derived from Theorem 2.1. Moreover, we apply Theorems 2.3 and 2.5 to
further determine the Hausdorff dimension of inverse images of the processes u = {u(t, x), t ∈
[0, T ], x ∈ [0, 1]}, ut = {u(t, x), x ∈ [0, 1]} (t ∈ (0, T ] is fixed) and ux = {u(t, x), t ∈ [0, T ]}
(x ∈ [0, 1] is fixed). As shown by Proposition 5.1 in [5], it is sufficient to consider these
problems for the solution of equation (4.1) in the following drift-free case [i.e., b ≡ 0]:

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) + σ Ẇ . (4.4)

The solution of (4.4) is the mean zero Gaussian random field u = {u(t, x), t ∈ [0, T ], x ∈ [0, 1]}
with values in Rd defined by

u(t, x) =
∫ t

0

∫ 1

0
Gt−r(x, y) σW (dr, dy), ∀ t ∈ [0, T ], x ∈ [0, 1]. (4.5)

Moreover, since the matrix σ is invertible, a change of variables shows (see the proof of
Proposition 4.1 in [5]) that v := σ−1u solves the following uncoupled system of SPDE

∂v

∂t
(t, x) =

∂2v

∂x2
(t, x) + Ẇ . (4.6)
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Note that both processes u and v have the same hitting probability and Hausdorff dimension
properties. Therefore, without loss of generality, we will assume that σ = Id in (4.4).

The following is a consequence of Lemmas 4.2 and 4.3 of Dalang, Khoshnevisan and
Nualart [5].

Lemma 4.1 Let u = {u(t, x), t ∈ [0, T ], x ∈ [0, 1]} be the solution of (4.4). Then for every
t0 ∈ (0, T ), there exist positive and finite constants c4,1 , . . . , c4,5 such that the following hold:

(i) For all t ∈ I = [t0, T ]× [0, 1], we have c4,1 ≤ E[u(t, x)2] ≤ c4,2 and

c4,3

(
|t− s|1/4 + |x− y|1/2

)2
≤ E

[(
u(t, x)− u(s, y)

)2
]

≤ c4,4

(
|t− s|1/4 + |x− y|1/2

)2
.

(4.7)

(ii) For all (t, x), (s, y) ∈ I,

Var
(
u(t, x)

∣∣u(s, y)
) ≥ c4,5

(
|t− s|1/4 + |x− y|1/2

)2
. (4.8)

In other words, Lemma 4.1 states that the Gaussian random field u satisfies Conditions
(C1) and (C2) with H1 = 1/4 and H2 = 1/2.

Proof It follows from (4.5) that

E
[
u(t, x)2

]
=

∫ t

0
dr

∫ 1

0

(
Gt−r(x, v)

)2
dv.

It can be verified that the function σ2(t, x) := E
[
u(t, x)2

]
is continuous in (t, x) and positive

on I. This implies the first conclusion of the lemma. The inequality (4.7) is the same as
(4.11) in Lemma 4.2 of Dalang, Khoshnevisan and Nualart [5].

To prove (4.8), we note that Lemma 4.3 of Dalang, Khoshnevisan and Nualart [5] shows
that

detCov
(
u(t, x), u(s, y)

) ≥ c4,6

(
|t− s|1/4 + |x− y|1/2

)2
. (4.9)

Hence (4.8) follows from (3.16), (4.9) and the fact that E[u(s, y)2] ≤ c4,2 for all t ∈ I. This
proves Lemma 4.1. ¤

Remark 4.2 Lemma 4.1 implies that, for every fixed t ∈ [t0, T ], the Gaussian process
ut = {u(t, x), x ∈ [0, 1]} has the following properties:

c4,1 ≤ E[ut(x)2] ≤ c4,2 , ∀x ∈ [0, 1], (4.10)

c4,3 |x− y| ≤ E
[(

ut(x)− ut(y)
)2

]
≤ c4,4 |x− y|, ∀x, y ∈ [0, 1] (4.11)

and
Var

(
ut(x)

∣∣ut(y)
) ≥ c4,5 |x− y|, ∀x, y ∈ [0, 1]. (4.12)

This shows that the Gaussian process ut satisfies the two-point local nondeterminism with
index H2 = 1/2. Similarly, for every fixed x ∈ (0, 1], the Gaussian process ux = {u(t, x), t ∈
[t0, T ]} satisfies the two-point local nondeterminism with H1 = 1/4.

Hence we can apply Theorem 2.1 to recover the results of Dalang, Khoshnevisan and
Nualart [5] on the hitting probabilities of the solution to (4.1). The following theorem, which
extends the Hausdorff dimension results in [5], is a consequence of Theorems 2.3 and 2.5.
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Theorem 4.3 Let u =
{
u(t, x), t ∈ [0, T ], x ∈ [0, 1]

}
denote the solution to (4.1) and let

F ⊆ Rd be a Borel set. The following conclusions hold:

(i) If dimHF ≥ d− 6, then

∥∥dimH

(
u−1(F )∩I

)∥∥
L∞(P) =

{
2− 1

4(d− dimHF ) if 0 ≤ d− dimHF < 4,
3− 1

2(d− dimHF ) if 4 ≤ d− dimHF ≤ 6.
(4.13)

(ii) If dimHF ≥ d− 2, then for every fixed t ≥ t0 we have

∥∥dimH

(
u−1

t (F ) ∩ [0, 1]
)∥∥

L∞(P) = 1− 1
2
(
d− dimHF

)
. (4.14)

(iii) If dimHF ≥ d− 4, then for every fixed x ∈ [0, 1] we have

∥∥dimH

(
u−1

x (F ) ∩ [0, T ]
)∥∥

L∞(P) = 1− 1
4
(
d− dimHF

)
. (4.15)

If, in addition, F is bounded and satisfies Condition (S), then the equalities without ‖ ·‖L∞(P)
in (4.13)–(4.15) hold with positive probability.

Proof As we mentioned earlier, it is sufficient to prove the results for the case of b ≡ 0 and
σ = Id in (4.1). Therefore, the conclusions follow from Theorem 2.3, Theorem 2.5, Lemma
4.1 and Remark 4.2. ¤
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Hermine Biermé: MAP5, Université Paris Descartes, 45 rue des Saints-Pères, 75006
Paris, France
E-mail: hermine.bierme@math-info.univ-paris5.fr
URL: http://www.math-info.univ-paris5.fr/˜bierme/
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