
Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 145–153,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Hitting the Right Paraphrases in Good Time

Stanley Kok

Department of Computer Science & Engineering

University of Washington

Seattle, WA 98195, USA

koks@cs.washington.edu

Chris Brockett

Microsoft Research

One Microsoft Way

Redmond, WA 98052, USA

chrisbkt@microsoft.com

Abstract

We present a random-walk-based approach to

learning paraphrases from bilingual parallel

corpora. The corpora are represented as a

graph in which a node corresponds to a phrase,

and an edge exists between two nodes if their

corresponding phrases are aligned in a phrase

table. We sample random walks to compute

the average number of steps it takes to reach

a ranking of paraphrases with better ones be-

ing “closer” to a phrase of interest. This ap-

proach allows “feature” nodes that represent

domain knowledge to be built into the graph,

and incorporates truncation techniques to pre-

vent the graph from growing too large for ef-

ficiency. Current approaches, by contrast, im-

plicitly presuppose the graph to be bipartite,

are limited to finding paraphrases that are of

length two away from a phrase, and do not

generally permit easy incorporation of domain

knowledge. Manual evaluation of generated

output shows that our approach outperforms

the state-of-the-art system of Callison-Burch

(2008).

1 Introduction

Automatically learning paraphrases, or alternative

ways of expressing the same meaning, is an ac-

tive area of NLP research because of its useful-

ness in a variety of applications, e.g., question an-

swering (Lin and Pantel, 2001; Ravichandran and

Hovy, 2002; Reizler et al., 2007), document sum-

marization (Barzilay et al., 1999; McKeown et al.,

2002), natural language generation (Iordanskaja et

al., 1991; Lenke, 1994; Stede, 1999), machine trans-

lation (Kauchak and Barzilay, 2006; Callison-Burch

et al., 2006; Madnani et al., 2007).

Early work on paraphrase acquisition has focused

on using monolingual parallel corpora (Barzilay and

McKeown, 2001; Barzilay and Lee, 2003; Pang et

al., 2003; Quirk et al., 2004). While effective, such

methods are hampered by the scarcity of monolin-

gual parallel corpora, an obstacle that limits both

the quantity and quality of the paraphrases learned.

To address this limitation, Bannard and Callison-

Burch (2005) focused their attention on the abun-

dance of bilingual parallel corpora. The crux of

this system (referred to below as ”BCB”) is to align

phrases in a bilingual parallel corpus and hypothe-

size English phrases as potential paraphrases if they

are aligned to the same phrase in another language

(the “pivot”). Callison-Burch (2008) further refines

BCB with a system that constrains paraphrases to

have the same syntactic structure (Syntactic Bilin-

gual Phrases: SBP).

We take a graphical view of the state-of-the-art

BCB and SBP approaches by representing the bilin-

gual parallel corpora as a graph. A node corresponds

to a phrase, and an edge exists between two nodes if

their corresponding phrases are aligned. This graph-

ical form makes the limitations of the BCB/SBP ap-

proaches more evident. The BCB/SBP graph is lim-

ited to be bipartite with English nodes on one side

and foreign language nodes on the other, and an

edge can only exist between nodes on different sides.

This neglects information between foreign language

nodes that may aid in learning paraphrases. Further,

by only considering English nodes that are linked

via a foreign language node as potential paraphrases,
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these approaches will fail to find paraphrases sepa-

rated by distances greater than length two.

In this paper, we present HTP (Hitting Time

Paraphraser), a paraphrase learning approach that is

based on random walks (Lovász, 1996) and hitting

times (Aldous and Fill, 2001). Hitting time mea-

sures the average number of steps one needs to take

in a random traversal of a graph before reaching a

destination node from a source node. Intuitively, the

smaller the hitting time from a phrase E to E′ (i.e.,

the closer E′ is to E), the more likely it is that E′ is

a good paraphrase of E. The advantages of HTP are

as follows:

• By traversing paths of lengths greater than two,

our approach is able to find more paraphrases

of a given phrase.

• We do not require the graph to be bipartite.

Edges can exist between nodes of different for-

eign languages if their corresponding phrases

are aligned. This allows information from for-

eign phrase alignments to be used in finding

English paraphrases.

• We permit domain knowledge to be easily in-

corporated as nodes in the graph. This allows

domain knowledge to favor good paraphrases

over bad ones, thereby improving performance.

In this paper, we focus on learning English para-

phrases. However, our system can be applied to

learning paraphrases in any language.

We begin by reviewing random walks and hitting

times in the next section. Then we describe our para-

phrase learning algorithm (Section 3), and report our

experiments (Section 4). We discuss related work in

Section 5. Finally, we conclude with future work

(Section 6).

2 Background

A directed graph consists of a set of nodes V , and a

set of edges E. A directed edge is a pair (i, j) where

i, j ∈ V . Associated with the graph is a |V | × |V |
adjacency matrix W . Each entry Wij in the matrix

is the weight of edge (i, j), or zero if the edge does

not exist.

In a random walk (Lovász, 1996), we traverse

from node to node via the edges. Suppose at time

step t, we are at node i. In the next step, we move

to its neighbor j with probability proportional to

the weight of the edge (i, j), i.e., with probability

Wij/
∑

j Wij . This probability is known as the tran-

sition probability from i to j. Note that the transition

probabilities from a node to its neighbors sum to 1.

The hitting time hij (Aldous and Fill, 2001) from

node i to j is defined as the average number of steps

one takes in a random walk starting from i to visit j
for the first time. Hitting time has the property of be-

ing robust to noise. This is a desirable property for

our system which works on bilingual parallel cor-

pora containing numerous spurious alignments be-

tween phrases (i.e., edges between nodes). However,

as observed by Liben-Nowell and Kleinberg (2003),

hitting time has the drawback of being sensitive to

portions of the graph that are far from the start node

because it considers paths of length up to∞.

To circumvent this problem, Sarkar and Moore

(2007) introduced the notion of truncated hitting

time where random walks are limited to have at most

T steps. The truncated hitting time hT
ij from node i

to j is defined as the average number of steps one

takes to reach j for the first time starting from i in a

random walk that is limited to at most T steps. hT
ij

is defined to be 0 if i = j or T = 0, and to be T if j
is not reach in T steps. As T →∞, hT

ij → hij .

In a recent work, Sarkar et al. (2008) showed that

truncated hitting time can be approximated accu-

rately with high probability by sampling. They run

M independent length-T random walks from node

i. In m of these runs, node j is visited for the first

time at time steps t1j , . . . , t
m
j . The estimated trun-

cated hitting time is given by

ĥT
ij =

∑m
k=1 tkj
M

+ (1−
m

M
)T (1)

They also showed that the number of samples of ran-

dom walks M has to be at least 1

2ǫ2
log 2n

d
in order

for the estimated truncated hitting time to be a good

estimate of the actual truncated hitting time with

high probability, i.e., for P (|ĥT
ij−hT

ij |≤ǫT )≥1− δ,

where n is the number of nodes in the graph, ǫ and δ
are user-specified parameters, and 0 ≤ ǫ, δ ≤ 1.

3 Hitting Time Paraphraser (HTP)

HTP takes a query phrase as input, and outputs a list

of paraphrases, with better paraphrases at the top of
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Figure 1: Graph created from English-French (E-F),

English-German (E-G), and French-German (F-G) bilin-

gual parallel corpora. Bold edges have large positive

weights (high transition probabilities).

the list. HTP also requires as input a set of bilin-

gual parallel corpora that have been processed into

phrase tables of the kind used in statistical machine

translation.

A bilingual parallel corpus is made up of sen-

tences in two languages. Two sentences that are

translations of one another are paired together, and

a phrase in one sentence is aligned with a phrase in

the other with the same meaning. From such align-

ments, we can count for a phrase E both the num-

ber of times it occurs (CountE), and the number of

times it is aligned with a phrase F in the other lan-

guage (CountE,F ). With these counts we can es-

timate the probability of F given E as P (F |E) =
CountE,F

CountE
.

HTP represents the aligned phrases as a graph. A

node corresponds to a phrase, and a directed edge

exists from node i to j if their corresponding phrases

are aligned. The weight of edge (i, j) is given by

P (j|i) which is computed as described in the previ-

ous paragraph.

Figure 1 gives an example of a graph created

from English-French, English-German, and French-

German parallel corpora. We use this figure to il-

lustrate the strengths of HTP. First, by using moder-

ately long random walks, HTP is able to find para-

phrases that are separated by long paths. For ex-

ample, there is a high probability path of length 4

(E1, F1, E2, F2, E3) from E1 to E3. Because of the

path’s high probability, it will appear in many of the

random walks starting from E1 that are sampled on

the graph, and thus E3 will be visited in many of

the samples. This causes the truncated hitting time

hT
E1E3

to be small, allowing HTP to find E3 as a

plausible paraphrase of E1. Second, by allowing

edges between nodes of different foreign languages

Table 1: The HTP algorithm.

function HTP (E,C, d, n,m, T, δ, l)
input: E, query phrase

C, tables of aligned phrases

d, maximum distance of nodes from E
n, maximum number of nodes in graph

m, number of samples of random walks

T , maximum number of steps taken by a

random walk

δ, probability that estimated truncated hitting

time deviates from actual value by a large

margin (see Equation 1)

l, number of top outgoing edges to select at

each node in a random walk

output:(E′

1
, . . . , E′

k
), paraphrases of E ranked in

order of increasing hitting times

calls: CreateGraph(E,C, d, n) creates graph G
from C containing at most n nodes that are

at most d steps from E
EstimateHitT imes(E,G, m, T, δ), estimates

the truncated hitting times of each node in G
by running m random walks

PruneNodes((E1, . . . , Ek), G), removes nodes

from G if their hitting times is equal to T .

AddFeatureNodes(G), adds nodes

representing domain knowledge to G

G← CreateGraph(E,C, d, n)
(E1, . . . , Ek)← EstimateHitT imes(E,G, m, T, δ)
G′←PruneNodes((E1, . . . , Ek), G)
G′′←AddFeatureNodes(G′)
(E′

1
, . . . , E′

k
)← EstimateHitT imes(E,G′′, m, T, δ)

return (E′

1
, . . . , E′

k
)

(i.e., by not requiring the graph to be bipartite), HTP

allows strong correlation between foreign language

nodes to aid in finding paraphrases. In the figure,

even though E4 and E5 are not linked via a com-

mon foreign language node, there is a high proba-

bility path linking them (E4, F3, G1, E5). This al-

lows HTP to find E5 as a reasonable paraphrase of

E4. Third, HTP enables domain knowledge to be

incorporated as nodes in the graph. For example,

we could incorporate the domain knowledge that

phrases with lots of unigrams in common are likely

to be paraphrases. In Figure 1, the “feature” node

represents such knowledge, linking E4 and E1 as

possible paraphrases even though they have no for-

eign language nodes in common. Note that such
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domain knowledge nodes can be linked to arbitrary

nodes, not just English ones.

The HTP algorithm is shown in Table 1. It takes

as input a query phrase and a set of bilingual phrase

tables. The algorithm begins by creating a graph

from the phrase tables. Then it estimates the trun-

cated hitting times of each node from the query node

by sampling random walks of length T . Next it

prunes nodes (and their associated edges) if their

truncated hitting times are equal to T . To the result-

ing graph, it then adds nodes representing domain

knowledge and estimates the truncated hitting times

of the nodes by sampling random walks as before.

Finally, it returns the nodes in the same language as

the query phrase in order of increasing hitting times.

3.1 Graph Creation

An obvious approach to creating a graph from bilin-

gual parallel corpora is to create a node for every

phrase in the corpora, and two directed edges (i, j)
and (j, i) for every aligned phrase pair i and j. Let

H refer to the graph that is created in this manner.

Such an approach is only tractable for small bilin-

gual parallel corpora that would result in a small

H , but not for large corpora containing millions of

sentences, such as those described in Section 4.1.

Therefore we approximate H with a graph H ′ that

only contains nodes “near” to the node representing

the query phrase. Specifically, we perform breadth-

first search starting from the query node up to a

depth d, or until the number of nodes visited in the

search has reached a maximum of n nodes. Some

nodes at the periphery of H ′ have edges to nodes

that are not in H ′ but are in H . For a periph-

ery node j that has edges to nodes j1, . . . , jk out-

side H ′, we create a “dummy” node a, and replace

edges (j, j1), . . . , (j, jk) with a single edge (j, a)
with weight

∑k
x=1 Wj,jx . We also add edges (a, j)

and (a, a) (each with a heuristic weight of 0.5). The

dummy nodes and their edges approximate the tran-

sition probabilities at H ′’s periphery. Our empirical

results show that this approximation works well in

practice.

3.2 Graph Pruning

After H ′ is created, we run M independent length-

T random walks on it starting from the query node

to estimate the truncated hitting times of all nodes.

Figure 2: Feature nodes representing domain knowledge.

Feature nodes are shaded. The bold node represents a

query phrase. (a) n-gram nodes (b) “syntax” nodes (c)

“not-substring/superstring-of” nodes.

A node in H ′ may have many outgoing edges, most

of which may be due to spurious phrase alignments.

For efficiency, and to reduce the noise due to spuri-

ous edges, we select among a node’s top l outgoing

edges with the highest transition probabilities, when

deciding which node to visit next at each step of a

random walk

For each random walk k, we record the first time

that a node j is visited tkj . Using Equation 1, we es-

timate the truncated hitting time of each node. Then

we remove nodes (and their associated edges) that

are far from the query node, i.e., with times equal

to T . Such nodes either are not visited in any of the

random walks, or are always visited for the first time

at step T .

3.3 Adding Domain Knowledge

Next we add nodes representing domain knowledge

to the pruned graph. In this version of HTP, we im-

plemented three types of feature nodes.

First, we have n-gram nodes. These nodes cap-

ture the domain knowledge that phrases containing

many words in common are likely to be paraphrases.

For each 1 to 4-gram that appears in English phrases,

we create an n-gram node a. We add directed edges

(a, j) and (j, a) if node j represents an English

phrase containing n-gram a. For example, in Fig-

ure 2(a), “reach the objective” is connected to “ob-
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jective” because it contains that unigram. Note that

such nodes create short paths between nodes with

many n-grams in common, thereby reducing the hit-

ting times between them.

Second, we have “syntax” nodes, which repre-

sent syntactic classes of the start and end words of

English phrases. We created classes such as inter-

rogatives (“whose”, “what”, “where”, etc.), articles

(“the”, “a”, “an”), etc. For each class c, we cre-

ate syntax nodes ac and a′c to respectively represent

the conditions that a phrase begins and ends with a

word in class c. Directed edges (ac, j) and (j, ac)
are added if node j starts with a word in class c (sim-

ilarly we add (a′c, j) and (j, a′c) if it ends with a word

in class c). For example, in Figure 2(b), “the objec-

tive is” is linked to “starts with article” because it

begins with “the”. These syntax nodes allow HTP to

capture broad commonalities about structural distri-

bution, without requiring syntactic equivalence as in

Callison-Burch 2008 (or the use of a parser).

Third, we have “not-substring/superstring-of”

nodes. We observed that many English phrases (e.g.,

“reach the objective” and “reach the”) that are super-

strings or substrings of each other tend to be aligned

to several shared non-English phrases in the bilin-

gual parallel corpora used in our experiments. Most

such English phrase pairs are not paraphrases, but

they are linked by many short paths via their com-

mon aligned foreign phrase, and thus have small

hitting times. To counteract this, we create a “not-

substring/superstring-of” node a. The query node i
is always connected to a via edges (i, a) and (a, i).
We add edges (a, j) and (j, a) if English phrase j
is not a substring or superstring of the query phrase

(see Figure 2(c)).

With the addition of the above, each node rep-

resenting an English phrase can have four kinds

of outgoing edges: edges to foreign phrase nodes,

and edges to the three kinds of feature nodes. Let

fphrase, fngram, fsyntax, fsubstring denote the distri-

bution of transition probabilities among the four

kinds of outgoing edges. Note that fphrase +
fngram + fsyntax + fsubstring = 1.0. These values

are user-specified or can be set with tuning data. An

outgoing edge from English phrase node i that orig-

inally had weight (transition probability) Wij will

now have weight Wij × fphrase. All k edges from i

to n-gram nodes will have weight
fngram

k
. Likewise

for edges to the other two kinds of feature nodes.

Each of the k outgoing edges from a feature node is

simply set to have a weight of 1

k
.

After adding the feature nodes, we again run M
independent length-T random walks to estimate the

truncated hitting times of the nodes, and return the

English phrase nodes in order of increasing hitting

times.

4 Experiments

We conducted experiments to investigate how HTP

compares with the state of the art, and to evaluate

the contributions of its components.

4.1 Dataset

We used the Europarl dataset (Koehn, 2005) for

our experiments. This dataset contains English

transcripts of the proceedings of the European

Parliament, and their translations into 10 other

European languages. In the dataset, there are

about a million sentences per language, and En-

glish sentences are aligned with sentences in the

other languages. Callison-Burch (2008) aligned

English phrases with phrases in each of the

other languages using Giza++ (Och and Ney,

2004). We used his English-foreign phrasal align-

ments which are publicly available on the web at

http://ironman.jhu.edu/emnlp08.tar. In addition, we

paired sentences of different non-English languages

that correspond to the same English sentence, and

aligned the phrases using 5 iterations of IBM model

1 in each direction, followed by 5 iterations of HMM

alignment with paired training using the algorithm

described in Liang et al. (2006). We further used the

technique of Chen et al. (2009) to remove a phrase

alignment F -G (where F and G are phrases in dif-

ferent foreign languages) if it was always aligned

to different phrases in a third “bridge” foreign lan-

guage. As observed by Chen et al., this helped to

remove spurious alignments. We used Finnish as the

bridge language; when either F or G is Finnish, we

used Spanish as the bridge language; when F and

G were Finnish and Spanish, we used English as

the bridge language. In our experiments, we used

phrases of length 1 to 4 of the following six lan-

guages: English, Danish, German, Spanish, Finnish,
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and Dutch. All the phrasal alignments between each

pair of languages (15 in total) were used as input to

HTP and its comparison systems. A small subset of

the remaining phrase alignments were used for tun-

ing parameters.

4.2 Systems

We compared HTP to the state-of-the-art SBP sys-

tem (Callison-Burch, 2008). We also investigated

the contribution of the feature nodes by running HTP

without them. In addition, we ran HTP on a bipartite

graph, i.e., one created from English-foreign phrase

alignments only without any phrase alignments be-

tween foreign languages.

We used Callison-Burch (2008)’s implemen-

tation of SBP that is publicly available at

http://ironman.jhu.edu/emnlp08.tar. SBP is based

on BCB (Bannard and Callison- Burch, 2005) which

computes the probability that English phrase E′ is a

paraphrase of E using the following formula:

P (E′|E) ≈
∑

C∈C

∑

F∈C

P (E′|F )P (F |E) (2)

where C is set of bilingual parallel corpora, and F is

a foreign language phrase. Representing phrases as

nodes, and viewing P (E′|F ) and P (F |E) as tran-

sition probabilities of edges (F,E′) and (E,F ), we

see that BCB is summing over the transition prob-

abilities of all length-two paths between E and E′.

All E′ paraphrases of E can then be ranked in or-

der of decreasing probability as given by Equation 2.

The SBP system modifies Equation 2 to incorporate

syntactic information, thus:

P (E′|E) ≈
1

|C|

∑

C∈C

∑

F∈C

P (E′|F, synE))P (F |E, synE) (3)

where synE is the syntax of phrase E, and

P (E′|F, synE)) = 0 if E′ is not of the same syntac-

tic category. From Equation 3, we can see that SBP

constrains E′ to have the same syntactic structure

as E. To obtain the syntactic structure of each En-

glish phrase, each English sentence in every parallel

corpus has to be parsed to obtain its parse tree. An

English phrase can have several syntactic structures

because different parse trees can have the phrase as

their leaves, and in each of these, SBP associates the

Table 2: Scoring Standards.

0 Clearly wrong; grammatically incorrect, or

does not preserve meaning

1 Minor grammatical errors (e.g., subject-verb

disagreement or wrong tense), or meaning is

largely preserved but not completely

2 Totally correct; grammatically correct and

meaning is preserved

phrase with all subtrees that have the phrase as their

leaves. SBP thus offers several ways of choosing

which syntactic structure a phrase should be asso-

ciated with. In our experiments, we used the best

performing method of averaging Equation 3 over all

syntactic structures that E is associated with.

4.3 Methodology

To evaluate performance, we used 33,216 En-

glish translations from the Linguistic Data Con-

sortium’s Multiple Translation Chinese (MTC) cor-

pora (Huang et al., 2002). We randomly selected

100 1- to 4-grams that appeared in both Europarl

and MTC sentences (excluding stop words, num-

bers, and phrases containing periods and commas).

For each of those 100 phrases, we randomly se-

lected a MTC sentence containing that phrase. We

then replaced the phrase in the sentence with each

paraphrase output by the systems, and evaluated the

correctness of the paraphrase in the context of the

sentence. We had two volunteers manually score

the paraphrases on a 3-point scale (Table 2), using

a simplified version of the scoring system used by

Callison-Burch (2008). We deemed a paraphrase

to be correct if it was scored 1 or 2, and wrong

if it was scored 0. Evaluation was blind, and the

paraphrases were presented randomly to the volun-

teers. The Kappa measure of inter-annotator agree-

ment was 0.62, which indicates substantial agree-

ment between the evaluators. We took the average

score for each paraphrase.

The parameters used for HTP were as follows

(see Table 1 for parameter descriptions): d =
6, n = 50, 000, m = 1, 000, 000, T = 10, δ =
0.05, l = 20, fphrase = 0.1, fngram = 0.1, fsyntax =
0.4, fsubstring = 0.4. (ǫ≤ 0.03 with these values of

n, m, T, and δ.)
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Table 3: HTP vs. SBP.

HTP SBP

Correct top-1 paraphrases 71% 53%

Correct top-k paraphrases 54% 39%

Count of correct paraphrases 420 145

Correct paraphrases 43% 39%

Table 4: HTP vs. HTP without feature nodes.

HTP HTP-

NoFeatNodes

Correct top-1 paraphrases 61% 41%

Correct top-k paraphrases 43% 29%

Count of correct paraphrases 420 283

Correct paraphrases 43% 29%

4.4 Results

HTP versus SBP. Comparison between HTP and

SBP is complicated by the fact that the two systems

did not output the same number of paraphrases for

the 100 query phrases. HTP output paraphrases for

all the query phrases, but SBP only did so for 49

query phrases. Of those 49 query phrases, HTP re-

turned at least as many paraphrases as SBP, and for

many it returned more.

To provide a fair comparison, we present results

both for these 49 query phrases, and for all para-

phrases returned by each of the systems. The up-

per half of Table 3 shows results for the 49 query

phrases. The first row of Table 3 reports the per-

centage of top-1 paraphrases from this set that are

correct, while the second row reports the percentage

of correct top-k paraphrases from this set, where k is

the number of queries returned by SBP, and is lim-

ited to at most 10. The value of k may differ for

each query: if SBP and HTP return 3 and 20 para-

phrases respectively, we only consider the top 3. On

the third and fourth rows, we present the number

of correct paraphrases and the percentage of correct

paraphrases among the top 10 paraphrases returned

by HTP for all 100 queries and the corresponding

figures for the 49 queries for SBP. (When a sys-

tem returned fewer than 10 paraphrases for a query,

we consider all the paraphrases for that query.) It

is evident from Table 3 that HTP consistently out-

performs SBP: not only does it return more cor-

rect paraphrases overall (420 versus 145), it also has

Table 5: HTP vs. HTP with bipartite graph.

HTP HTP-

Bipartite

Correct top-1 paraphrases 62% 58%

Correct top-k paraphrases 46% 41%

Count of correct paraphrases 420 361

Correct paraphrases 43% 41%

higher precision (43% versus 39%)

HTP and SBP respectively took 48 and 468 sec-

onds per query on a 3 GHz machine. The times are

not directly comparable because the systems are im-

plemented in different languages (HTP in C# and

SBP in Java), and use different data structures.

HTP without Feature Nodes. Both HTP and HTP

minus feature nodes output paraphrases for each of

the 100 query phrases. Table 4 compares perfor-

mance in the same manner as in Table 3, except that

the “top-1” and “top-k” results are over all 100 query

phrases. We see that feature nodes boost HTP’s per-

formance, allowing HTP to return more correct para-

phrases (420 versus 283), and at higher precision

(43% versus 29%).

HTP with Bipartite Graph. Lastly, we investi-

gate the contribution of alignments between foreign

phrases to HTP’s performance. HTP-Bipartite refers

to HTP that is given a set consisting only of English-

foreign phrase alignment as input. HTP-Bipartite

does not return paraphrases for 5 query phrases.

Thus, in Table 5, the “top-1” and “top-k” results are

for the 95 query phrases for which both systems re-

turn paraphrases. From the better performance of

HTP, we see that the foreign phrase alignments help

in finding English paraphrases.

5 Related Work

Random walks and hitting times have been suc-

cessfully applied to a variety of applications.

Brand (2005) has used hitting times for collabora-

tive filtering, in which product recommendations to

users are made based on purchase history. In com-

puter vision, hitting times have been used to de-

termine object shape from silhouettes (Gorelick et

al., 2004), and for image segmentation (Grady and

Schwartz, 2006). In social network analysis, Liben-

Nowell and Kleinberg (2003) have investigated the
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use of hitting times for predicting relationships be-

tween entities. Recently, Mei et al. (2008) have used

the hitting times of nodes in a bipartite graph cre-

ated from search engine query logs to find related

queries. They used an iterative algorithm to compute

the hitting time, which converges slowly on large

graphs. In HTP, we have sought to obviate this issue

by using truncated hitting time that can be computed

efficiently by sampling random walks.

Several approaches have been proposed to learn

paraphrases. Barzilay and Mckeown (2001) acquire

paraphrases from a monolingual parallel corpus us-

ing a co-training algorithm. Their co-trained classi-

fier determines whether two phrases are paraphrases

of one another using their surrounding contexts. Lin

and Pantel (2001) learn paraphrases using the dis-

tributional similarity of paths in dependency trees.

Ibrahim et al. (2003) generalize syntactic paths in

aligned monolingual sentence pairs in order to gen-

erate paraphrases. Pang et al. (2003) merge parse

trees of monolingual sentence pairs, and then com-

press the merged tree into a word lattice that can sub-

sequently be used to generate paraphrases. Recently,

Zhao et al. (2008) used dependency parses to learn

paraphrase patterns that include part-of-speech slots.

In other recent work, Das and Smith (2009) use a

generative model for paraphrase detection. Rather

than outputing paraphrases of an input phrase, their

system detects whether two input sentences are para-

phrases of one another.

6 Conclusion and Future Work

We have introduced HTP, a novel approach based

on random walks and hitting times for the learning

of paraphrases from bilingual parallel corpora. HTP

works by converting aligned phrases into a graph,

and finding paraphrases that are “close” to a phrase

of interest. Compared to previous approaches, HTP

is able to find more paraphrases by traversing paths

of lengths longer than 2; utilizes information in the

edges between foreign phrase nodes; and allows do-

main knowledge to be easily incorporated. Empir-

ical results show its effectiveness in learning new

paraphrases.

As future work, we plan to learn the distribution

of weights on edges to phrase nodes and feature

nodes automatically from data, rather than tuning

them manually, and to develop a probabilistic model

supporting HTP. We intend also to apply HTP to

learning paraphrases in languages other than English

and investigate the impact of the learned paraphrases

on resource-sparse machine translation systems.
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