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With the introduction of combination antiretroviral therapy (cART) AIDS dementia
complex (ADC) or HIV-associated dementia (HAD), as it was termed later, largely
disappeared in clinical practice. However, in the past few years, patients, long-term
infected and treated, including those with systemically well-controlled infection,
started to complain about milder memory problems and slowness, difficulties in
concentration, planning, and multitasking.

Neuropsychological studies have confirmed that cognitive impairment occurs in a
substantial (15–50%) proportion of patients.

Among HIV-1-infected patients cognitive impairment was and is one of the most feared
complications of HIV-1-infection. In addition, neurocognitive impairment may affect
adherence to treatment and ultimately result in increased morbidity for systemic
disease.

So what may be going on in the CNS after so many years of apparently controlled HIV-1-
infection is an urgent and important challenge in the field of HIV-medicine.

In this review we summarize the key currently available data. We describe the clinical
neurological and neuropsychological findings, the preferred diagnostic approach with
new imaging techniques and CSF-analysis. We try to integrate data on pathogenesis and
finally discuss possible therapeutic interventions.
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Introduction

Within years after the start of the epidemic it became clear
that many HIV-1-infected patients developed severe
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progressive cognitive and motor impairment in the final
months of their illness. This clinical syndrome was
characterized clinically and neuropathologically by Price
and Navia in 1986 and termed AIDS dementia complex
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(ADC) [1,2]. ADC causes symptoms in three areas:
cognition, motor function and behavior. Cognitive
impairment predominantly consists of mental slowing
and attention/memory deficits. Motor symptoms com-
prise slowness and loss of balance; behavioural changes are
characterized by apathy, social withdrawal and
mood disturbances.

Many studies confirmed the hypothesis that HIV-1 itself
was causing dysfunction and damage in the central
nervous system (CNS). Shortly after the primary
infection HIV-1 enters the brain in mononuclear cells,
and settles in perivascular macrophages and microglial
cells. Replication of HIV-1 in these cells leads to
immune-activation and the production of viral and
inflammatory proteins that eventually leads to cognitive
decline and motor dysfunction in a subset of patients.

With the introduction of combination antiretroviral
therapy (cART), ADC or HIV-associated dementia
(HAD), as it was termed later, largely disappeared in
clinical practice. Many clinical, pathological, and
cerebrospinal fluid (CSF) studies showed that antiretro-
viral drugs inhibit local virus-replication in the brain and
in doing so limit local damage. Even severely impaired
patients could improve after the initiation of treatment.
Some drugs likely did better than others, but in general
most combinations prevented the development of HAD.
HAD became a rare complication, occurring occasionally
in late-presenting as yet untreated patients, in patients on
treatment but with poor adherence, or in patients in
whom systemic and CNS-infection had an
unparalleled course.

However, in the past few years, patients, long-term
infected and treated, including those with systemically
well-controlled infection, started to complain about
milder memory problems and slowness, difficulties in
concentration, planning, and multitasking.

In recent years a new terminology has been developed to
classify a broadening clinical spectrum of neurocognitive
impairment, including milder abnormalities (Table 1) [3].
Neuropsychological studies have confirmed that cogni-
tive impairment occurs in a substantial (15–50%)
pyright © Lippincott Williams & Wilkins. Unautho

Table 1. Terminology.

HAND HIV Associated Neurocognitive Disease Umbr
ANI Asymptomatic Neurocognitive Impairment Cogn

inv
doe

MND Mild Neurocognitive Disorder Cogn
inv
pro

HAD HIV Associated Dementia Mark
the
imp

ADC AIDS Dementia Complex Form
MCMD Minor Cognitive Motor Disorder Form
proportion of patients [4,5]. It has, however, to be noted
that there is a current discussion about the prevalence of
neurocognitive dysfunction, which might be overesti-
mated because of very sensitive criteria when applying the
new terminology. In addition, compared to the first
decade of the epidemic, a shift has occurred in certain
demographic variables and risk factors, e.g. increased age,
lower transmission among drug users, which might affect
the proportion of patients with cognitive impairment.

Among HIV-1-infected patients cognitive impairment
was and is one of the most feared complications of HIV-1-
infection. In addition, neurocognitive impairment may
affect adherence to treatment and ultimately result in
increased morbidity for systemic disease [6]. So what may
be going on in the CNS after so many years of apparently
controlled HIV-1-infection is an urgent and important
challenge in the field of HIV-medicine.

In this review we summarize the key currently available
data. We describe the clinical neurological and neurop-
sychological findings, the preferred diagnostic approach
with new imaging techniques and CSF-analysis. We try
to integrate data on pathogenesis and finally discuss
possible therapeutic interventions. In doing so it will
become clear that there remains a broad research agenda
in this field for the years ahead.
Neuropsychology

The neuropsychological profile of post-cART HIV-
associated neurocognitive disorders (HAND) and its
similarity to the pre-cART subcortical profile is a subject
of debate. In recent years abnormalities of greater or lesser
extent have been demonstrated in many different
cognitive domains, resulting in an expanding phenotype
of HAND and a broadening neuropsychological profile
[5,7,8]. Despite this heterogeneity the strongest impaired
cognitive domains in HAND still fit the subcortical
profile with the core deficits being: mental slowness,
attention/memory deficits and impaired executive
functioning [8].
rized reproduction of this article is prohibited.
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The following cognitive domains are recommended to be
surveyed if HAND is suspected (as these are most
commonly associated with HAND) [3]: speed of
information processing, attention/working memory,
executive functioning, memory, verbal/language, sen-
sory-perceptual and motor skills (Table 2).

Neuropsychological testing
Many different tests are available to evaluate each of these
cognitive domains (Table 2) and most of the large HIV
cohort studies have developed their own neuropsycho-
logical test battery.

As these test batteries are usually extensive and time-
consuming, there is a need for a rapid screening tool for
neurocognitive deficits. The Mini Mental State Exam-
ination (MMSE) is the most well-known cognitive
bedside test but has a limited usefulness for the detection
of HAND as it mainly detects cortical (as in Alzheimer’s
disease) instead of subcortical dysfunction [9].

The HIV Dementia Scale (HDS) tests four cognitive
domains (verbal memory recall, psychomotor speed,
visual construction and response inhibition) and has
originally been designed to detect HAD [10]. The
usefulness of the HDS for detecting milder cognitive
deficits is under investigation [4,11].

The HDS requires a certain amount of literacy and
language comprehension, which limits the usefulness of
this test. For this reason, the International HIV Dementia
Scale has been developed (IHDS), testing three cognitive
domains (psychomotor speed, motor speed and verbal
memory recall) [12]. The usefulness of the IHDS for
detecting milder cognitive deficits is still
under investigation.

Standardized and regularly administered symptom ques-
tionnaires likely also have a role in clinical screening.

Of note, these screening tests are no substitute for
performing a complete neuropsychological evaluation
which remains required for the diagnosis of HAND.
Neuroimaging

Many studies during the course of the HIV-epidemic
have proven neuroimaging to be both an essential
diagnostic tool in clinical HIV-neurology and useful in
enlarging insight in the pathogenesis of HIV-infection of
the CNS.

Computed tomography (CT) and magnetic
resonance imaging (MRI)
Cerebral atrophy and white matter abnormalities are the
two most common findings in HAD in early imaging
opyright © Lippincott Williams & Wilkins. Unauth
studies. While atrophy can be disclosed by both CT and
MRI, the latter is largely superior for the identification
and characterization of white matter abnormalities.
Atrophy is seen most often in the basal ganglia (especially
the caudate nucleus) and frontal white matter although
cortical regions have also been reported to be atrophic
[1,13]. Atrophy has been associated with advanced disease
stage and (to a lesser extent) with cognitive dysfunction in
early studies [13,14]. Post-cART studies demonstrate
stronger correlations between atrophy and cognitive
dysfunction [13,15,16]. Whereas one pre-cART pro-
spective study reports cerebral atrophy to be progressive
[14], no increase of atrophy has been described in a 7-year
follow-up study in post-cART years (likely indicating a
beneficial effect of cART) [17].

MRI in HAD frequently reveals patchy or diffuse, usually
symmetrical, periventricular white matter abnormalities
[18]. Small white matter abnormalities however have
been found in non-demented HIV-patients as well and
even in HIV-negative non-demented controls. There-
fore, earlier MRI-studies report a controversial relation-
ship between cognition and white matter abnormalities
and consider the latter to be non-specific [13,19,20].
Later MRI-studies though using advanced and more
sensitive MRI-techniques do demonstrate a relationship
between white matter abnormalities and cognition. MRI
white matter abnormalities also correspond to a
histopathological diagnosis of HIV-encephalitis [21].

Several more advanced MRI-techniques are hereby
discussed in detail:

Magnetic resonance spectroscopy (MRS)
MRS measures metabolite concentrations in different
brain regions. MRS-studies (pre and post-cART) in
patients with cognitive dysfunction have demonstrated
reduced levels of N-acetyl aspartate (NAA), a marker for
neuronal integrity, and increased levels of the glial
activation markers myoinositol (MI) and choline (CHO).
Glial activation (MI/CHO increase) indicates an inflam-
matory process and precedes neuronal loss (NAA
decrease). Abnormalities are found mainly in the frontal
white matter and basal ganglia [13,22–25]. The abnormal
metabolite profile is reported to improve with cART
[26–28]. MRS has proven to be more sensitive for early
cognitive impairment than SPECT or MRI [29,30].

Diffusion tensor imaging (DTI)
DTI, used in HIV-research since 2001 [31], is an MRI-
technique that measures water diffusion in tissues and
enables to visualize distribution and orientation of white
matter tracts. This technique is especially useful in
demonstrating subtle white matter abnormalities. DTI-
studies in HIV-patients report white matter abnormalities
diffusely in the brain and more specific in the frontal
white matter and corpus callosum, despite cART.
Abnormalities are correlated strongly with cognitive
orized reproduction of this article is prohibited.
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Table 2. Frequently used tests to examine different cognitive domains.

Cogntitive domain Cognitive domain and HAND Tests

Speed of information
processing

Slowing of mental processes continues to be one of the most
frequent cognitive abnormalities in HIV-1 infection [4,8].
As mental speed facilitates most if not all cognitive and motor
processes, slowness is by some authors even regarded as the
key deficit which in turn leads to defects in other cognitive
domains [144].

Trail making test A

Stroop color-word
Symbol digit modalities test
Digit symbol (WAIS/WAIS-R)
Simple reaction time
Choice reaction time

Attention/working memory Attention and working memory are two closely related cognitive
functions with the working memory (the ability to create a
memory for temporary processing and storage of information)
being highly dependent on attentional function. As a result of this
close functional relationship, attentional deficits frequently occur
simultaneously with working memory deficits [8,145,146].

Digit span (WAIS-R)

Paced auditory serial addition test
Letter-number sequencing (WAIS-III)

Executive functioning Many different aspects of executive dysfunction (such as reasoning,
planning, complex problem solving and set shifting between
tasks and strategies) are reported in HAND [8,145].

Wisconsin card sorting test

Trail making test B
Stroop color-word
Halstead category test

Memory The episodic memory (storing personally experienced episodes and
events) is one of the various components of the memory as a whole.
The episodic memory is divided in a retrospective (experienced
events in the past) and a prospective part (the ability to execute a
future intention or ‘‘remembering to remember’’), the latter requiring
intact executive functions as well (e.g. planning and set shifting).
In HAND especially the prospective episodic memory and learning
of new information are reported to be impaired [8,147].

California verbal learning test

Hopkins verbal learning test
Brief visuospatial memory test
Rey-Osterrieth complex figure
Visual reproduction WMS
Logical memory WMS
Story learning Halstead-Reitan battery
Rey auditory verbal learning test
Memory for intentions screening test

Verbal/language The most frequently identified language defect in HAND is fluency
impairment, although this may be the result of other cognitive
impairments such as slowness or executive dysfunction [8,145].

Boston naming test

Category fluency (animals)
Letter fluency
Action/verbal fluency

Sensory-perceptual The interpretation and integration of visual, auditory or sensory
stimuli takes place in this cognitive domain. Abnormalities in
this predominantly cortical domain are less frequently
observed in HAND.

Tactile form recognition right and left

Speech sound perception test
Motor skills Severe motor abnormalities (e.g. chorea, myoclonus, dyskinesia,

dystonia) were seen frequently in the pre-cART era and formed
one of the three cardinal symptoms in HAD. Although
severe deficits are rare in the post-cART era, more milder
impairments (slowing, incoordination) are still prevalent in
HAND [8,145,148].

Finger tapping dom/nondom hand

Grooved pegboard dom/nondom hand
Grip strength
Timed gait
Unified Parkinson’s disease rating scale

Note: Computerized testing (such as CogState or CalCap) is another possibility to evaluate different cognitive domains [149,150].
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Table 3. Potentially useful CSF-markers of HIV-1 CNS infection
[151].

Virological Markers
HIV-1 RNA
Env/pol sequence analysis for compartmentalization

Host Response Markers
Markers of Inflammation

White Blood Cells
Cytokines and Chemokines

Tumor Necrosis Factor-a
Monocyte Chemotactic Protein-1 (MCP-1)/CCL2
Interferon-g inducible Protein-10 (IL-10)/CXCL10
Macrophage Inflammatory Protein-a (MIP1-a)/CCL3,

MIP1-b/CCL4, RANTES/CCL5
Fractalkine / CX3CL1

Neopterin
Beta-2 Microglobulin

Proteases
Matrix Metalloproteases
Urokinase Plasminogen Activator (uPA) and soluble receptor

(sUPAr)
Neurotoxic Host Factors

Quinolinic Acid and Tryptophan
Glutamate
Nitric Oxide (NO)

Markers of Apoptosis
Fas and Fas-Ligand

Markers of CNS Damage
Neuronal Markers

Neurofilament Protein Light Chain (NFL)
Tau Protein
Solubile Amyloid Protein Precursor (sAPP) a/b
14-3-3 Protein
deficits [13,26,32–34], but the sensitivity for early
changes is controversial.

Functional MRI (fMRI)
fMRI measures neuronal activity during specific neu-
ropsychological tasks (which are performed while in the
scanner). This technique is used in HIV-research since
1998 [35] and most studies demonstrate increased
neuronal activation in cognitively impaired patients,
which is regarded as a compensatory mechanism resulting
from decreased cerebral efficiency [13,26,36]. fMRI
abnormalities correlate strongly with increased glial
markers (MI/CHO) in frontal white matter and basal
ganglia, indicating a subcortical inflammatory process
[37].

Perfusion MRI (pMRI)
pMRI measures cerebral blood flow and volume and is
used in HIV-research since 2000 [38]. Most studies report
decreased cerebral blood flow or volume in cognitively
unimpaired and especially impaired patients [13,26,39].

Magnetization transfer imaging (MTI)
MTI has appeared useful for the detection of damage in
normal appearing white matter (on regular MRI), having
the potential to visualize subtle abnormalities. It has been
proven useful in neurodegenerative diseases such as
multiple sclerosis [13]. MTI is used in HIV-research since
1997 [40] and has demonstrated white matter abnorm-
alities diffusely in different brain regions, correlating with
cognitive impairment [41].

Nuclear medicine techniques: single photon
emission computed tomography (SPECT) and
positron emission tomography (PET)
SPECT measures the uptake of radiotracers (usually
99Tc) in the brain, which reflects the cerebral blood flow.
Early SPECT-studies show cortical and subcortical areas
of hypoperfusion. Although the correlation with
cognitive function is controversial [13,22,26,42], these
changes in perfusion seem to precede abnormalities found
with CT or MRI [26]. In later SPECT-studies similar
findings of reduced blood flow are reported. Remarkable
is the report of increased cerebral blood flow among
patients with severe cognitive deficits, which is thought to
reflect active inflammation [26,43].

PET measures (glucose)metabolism in different brain
regions. Early PET-studies showed hypometabolism in
the basal ganglia, which was relatively specific for HAD
[13,22,26]. Later studies revealed a characteristic time
course with hypermetabolism in early neurocognitive
disease developing into hypometabolism during advanced
disease [13,26,44].

In conclusion, as white matter abnormalities have in
many studies been related to cognitive impairment,
opyright © Lippincott Williams & Wilkins. Unauth
promising techniques are those visualizing white matter
in detail, such as DTI.
CSF-markers

Many potential CSF-markers have been studied in HIV-
1-infected patients for management of CNS HIV-
infection - including diagnosis, prediction, assessment
of disease activity and response to treatments - and
provide insight into underlying pathogenic mechanisms.

CSF-markers can practically be classified into virological,
host response and CNS tissue damage markers (Table 3).
However, no single marker has so far proved to be reliable
for practical purposes. The mechanisms leading from
HIV-1-infection of the CNS to tissue dysfunction and
neurocognitive impairment are not straightforward and
abnormal levels of CSF-markers are often also present in
patients with asymptomatic HIV-1 infection or other
CNS pathological conditions. Nonetheless, the use of
several CSF-markers in combination could be useful to
recognize HIV-related neurocognitive dysfunction,
including milder forms (MND and ANI), both in
untreated and treated patients.

In the absence of treatment, CSF HIV-1-RNA levels usually
remain stable in neurologically asymptomatic patients
orized reproduction of this article is prohibited.
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over several years [45], but tend to increase with clinical
disease progression. Levels are highest in patients with
HAD or HIV-encephalitis [46,47], irrespective of plasma
viremia, supporting the view that, in these conditions,
CSF-virus is mainly derived from productive infection of
macrophages and microglial cells within the CNS.
Infection of these cells leads to the release of soluble
factors which can be measured in CSF.

Among these factors, the chemokine CCL2 (or mono-
cyte chemotactic protein-1, MCP-1), and neopterin, a
product of the guanosine triphosphate metabolism, both
produced by activated macrophages and other mono-
nuclear phagocytes, have been well-characterized for
their potential to serve as disease marker. In HIV-1-
positive, neurologically asymptomatic patients, CSF
CCL2 levels are similar to or slightly higher than those
found in HIV-negative controls [48], whereas levels of
neopterin are already abnormally elevated [47]. Signifi-
cantly higher CSF levels of both CCL2 and neopterin are
found in patients with HAD and HIV-encephalitis
[47,49]. CSF concentrations of both markers correlate
with CSF HIV-1-RNA levels, but less with their
respective levels in plasma, strongly arguing for intrathecal
origin [47,49,50].

Among markers of tissue damage, NFL, the light chain of
neurofilament, a major structural component of axons,
appears one of the most promising [51]. The highest levels
are found in patients with HAD or opportunistic CNS-
infections. However, concentrations can also be increased
in neurologically asymptomatic patients with advanced
systemic disease stage, suggesting subclinical axonal injury
already at this stage.

Untreated patients initiating cART show a decrease of all
these markers within weeks after starting therapy in both
asymptomatic and neurologically impaired patients.

Different dynamics of HIV-1-RNA decay is observed
between CSF and plasma: either parallel or slower in CSF
[52–55], reflecting the principal source of virus-
replication (systemic vs. intrathecal) [52]. CCL2,
neopterin and NFL levels decrease upon treatment –
more markedly in HAD patients, with higher baseline
concentrations - in parallel with CSF HIV-1-RNA
[47,56] [personal observationPC], suggesting that, by
reducing viral replication in the brain, treatment
interferes locally with the inflammatory process and
consequent tissue damage.

In patients on cARTwith sustained systemic HIV-1-RNA
suppression to undetectable levels, the relationship
between CSF HIV-1-RNA and neurological status
doesn’t seem to be maintained [57], with low or
undetectable CSF HIV-1-RNA levels frequently
observed in neurologically impaired patients on cART
[58]. Indeed, suppression of CSF replication is observed
pyright © Lippincott Williams & Wilkins. Unautho
not only in patients showing full systemic responses, but
also in a large proportion of patients failing to respond
systemically [59] and it seems to be maintained for years,
also when ultrasensitive methods, i.e., with limit of
detection of <2–2.5 copies/mL, are used [60,61]. The
opposite scenario, CSF ‘‘escape’’ in patients with
suppressed plasma replication occurs in approximately
10% [62], and may disclose an active brain process and be
associated with neurological symptoms and cognitive
impairment [63]. CSF-markers of macrophage-activation
may remain abnormally elevated in treated patients with
suppressed replication in both CSF and plasma [64,65].

One of the current challenges is to understand the
principal cause of this persistent intrathecal immune-
activation, whether it is ongoing low-grade viral
replication in brain tissue, rather than systemic
immune-activation, chronically established tissue damage
or presence of other CNS conditions.

Historically, CSF-markers of HIV-induced neurocogni-
tive impairment were studied to differentiate HAD from
opportunistic infections. However, current differential
diagnosis involves many novel potential causes of
cognitive impairment, such as aging, with its physio-
logical changes and associated pathological conditions,
primarily Alzheimer’s disease [66–68], HCV co-infec-
tion [69], metabolic complications [70] and possible
toxicity of treatments [71]. In this new scenario it is
essential that CSF-markers can recognise whether HIV-
1-replication and consequent immune-activation is the
main cause of neurocognitive impairment, in order to
optimize management.

Other CSF-markers, in addition to those described,
appear promising both for patient management and
pathogenesis studies (Table 3), including the soluble
urokinase plasminogen activator receptor (suPAR), a
novel marker of immune-activation [72]; the tau protein
and the soluble forms of the amyloid precursor protein
(sAPP alpha and beta), all markers of tissue damage [68].
In addition, the use of new, high-throughput technol-
ogies, such as proteomics and metabolomics, may enable
to search for known or unknown molecules, possibly
present at abnormal concentrations in the CSF of patients
with HAND [73,74].
Neuropathology

Two specific neuropathological conditions that result
from HIV-1-infection of the brain were defined in 1991:
HIV-encephalitis (HIVE) and HIV-leukoencephalopathy
(HIVL) [75]. The hallmark of HIVE and HIVL is the
presence of multinucleated giant cells (MGCs) that are
formed by fusion of infected and activated macrophages.
Other features of HIVE and HIVL are activated
rized reproduction of this article is prohibited.
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macrophages and microglial cells, the latter sometimes
forming microglial noduli (MGN), reactive astrogliosis
and white matter pallor [75,76]. HIVE and HIVL are
overlapping entities but in HIVL white matter damage is
the dominating feature. In most HIV-1-infected brains
the virus itself is detected in various regions [77], though
preferentially in the basal ganglia, hippocampus, white
matter and frontal cortex [75–77]. Further and probably
resultant neuropathologic findings include injury and loss
of dendrites, synapses and neurons, resulting macro-
scopically in brain atrophy [76,78,79].

To define the neuropathological substrate of cognitive
impairment, efforts were made to correlate cognitive
functioning with these neuropathological abnormalities.
In pre-cART studies, the strongest correlations were
demonstrated between cognitive dysfunction and
increased expression of brain tissue markers of macro-
phage/microglial activation and between cognitive
dysfunction and signs of neurodegeneration. Abnorm-
alities such as HIV viral load, HIVE and HIVL were only
loosely correlated with cognitive impairment [78–86].
The pathological correlate of HAND in the cART-era
has not been defined, however, high-level macrophage/
microglial-activation, similar to that observed in pre-
cART studies, is also observed in cART-treated patients
[87].

Brain tissue viral load is significantly lower among cART-
treated patients with HIVE [88]. Otherwise, post-cART
autopsy studies (although sparse and probably subjected to
post-mortem exam selection bias) still report an HIVE
incidence of 11–30% [84,89,90]. Compared with a pre-
cART incidence of 10–54% this is only a moderate
decrease, if any at all. So called minimal non-specific
abnormalities are even reported more frequently in post-
cART studies, but their significance remains to be
clarified [84,89,91]. In two large post-cART cohort
autopsy studies the CNS remains the second most
frequently affected organ [89,92]. These observations are
remarkable, considering that other neuropathologic
abnormalities such as opportunistic infections and
malignancies within the CNS have decreased significantly
since the introduction of cART.
Pathogenesis

The pathogenic mechanisms behind CNS dysfunction in
HIV-1-infection remain to a certain extent unclear.
There are discrepancies between the distribution and
number of HIV-1-infected cells and the severity of the
clinical course and brain tissue pathology which support
other mechanisms than direct viral cytotoxicity as a cause
of CNS damage.
opyright © Lippincott Williams & Wilkins. Unauth
HIV-1 enters the CNS early following infection [93,94],
primarily by means of monocytes and lymphocytes
infected before trafficking across the blood-brain barrier
(BBB). After entry, a chronic productive HIV-1-infection
of macrophages and microglial cells is established.
Normally, microglial cells express CD4-antigen at low
levels, but they are likely to up-regulate the expression
during cellular activation [95]. Besides CD4, macro-
phages and microglia also express CCR5 on their surface.

The CNS-infection leads to a chronic intrathecal
immune-activation that is present during the entire
infectious course [96] and while viral products may have
direct toxic effects against neurons or astrocytes, the
primary mechanism of neuronal damage is likely a result
of the inflammatory process initiated by HIV-1-infected
cells [97]. Macrophages and microglia act as both the
major targets for HIV-1-replication and a source of
neurotoxins [98]. Secreted cellular products such as
cytokines, quinolinic and arachidonic acids and nitric
oxide can have neurotoxic effects, and chemokines and
pro-inflammatory cytokines promote further cell-acti-
vation and recruitment of additional macrophages and T-
cells, thereby amplifying HIV-1-induced neurotoxicity
[99].

Astrocytes can be infected (and perhaps even more
extensively than previously thought [100]) by HIV-1, but
the infection is generally non-productive with restricted
viral gene expression [101]. However, astrocytes may
indirectly contribute to the neuropathogenesis by
activation and/or dysfunction leading to increased
cytokine production, reduced uptake of neurotoxins
and impairment of the BBB [102]. Dysfunction of the
BBB may be the priming event in the pathogenesis of
HAD [103]; increased BBB-permeability is a consistent
finding in HAD [104] but also commonly found in early
HIV-disease where it correlates to the degree of
intrathecal immune-activation [105].

Neurons are not infected, but neuronal loss and decreased
synaptic and dendritic density are, together with
microglial and astrocyte proliferation and activation,
commonly found and closely associated with HAD [106].

HIV-1-related neurodegeneration is also linked to
intrathecal immune-activation [51] and signs of axonal
disruption forecast the development of HAD [107]. Some
reports suggest a similarity between pathogenesis of HIV-
1 brain injury and Alzheimer’s disease (AD), because of
the deposition of amyloid plaques and precursor proteins
in both conditions. However, the plaques observed in AD
are typically intraneuronal, whereas these are both intra-
and extra-neuronal in HIV-1 infection [108]. Patients
with HAD have abnormal CSF-biomarkers of amyloid
and tau metabolism [109] (like in AD), but the pattern
differs from AD [68]. These differences imply separate
underlying pathogenetic pathways of brain injury in HIV-
orized reproduction of this article is prohibited.
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1-associated neurodegeneration and AD. Chronic
immune-activation has an essential part in HIV-1
neuropathogenesis and it is commenced and driven by
the CNS viral infection.

cART often has a dramatic beneficial effect on
neurological and neurocognitive dysfunction in subjects
with HAD supporting that a substantial share of
symptoms relates to active, reversible toxic processes
[110]. However, symptoms are not always totally reversed
and persistent intrathecal immune-activation [65] and
detectable CSF viral load [59] [Edén, in press] also after
several years of otherwise effective treatment indicate an
ongoing active process within the brain as well during
successful antiretroviral therapy.

Compelling evidence from several studies demonstrate
that HIV-1-infection in the CNS is compartmentalized
from the systemic infection, although to varying degrees
at different stages of the infection [111–113]. It is
important not to overlook the CNS when discussing
HIV-1 persistence and eradication strategies, as the brain
may act as a sanctuary for latent or slowly replicating virus.

The consequences of the chronic, low-grade, CNS
immune-activation have not yet been elucidated although
concerns have been raised about an increased risk of
HAND and/or other neurocognitive complaints, such as
AD and vascular dementia, in the aging HIV-1-
infected population.
Risk factors and comorbidities

Several risk factors and associated physiological and
pathological conditions have been identified in patients
with cognitive impairment – listed in Table 4. In
particular, the consistent association with low nadir CD4
cell count suggests that previous CNS damage might be
relevant in the pathogenesis of HAND [114]. On the
other hand, both physiological aging and several current
pathological conditions may themselves be associated
with cognitive, neurological or psychiatric dysfunction
and thus contribute to a various extent to sustain the
picture of neurocognitive impairment. Practically, the
pyright © Lippincott Williams & Wilkins. Unautho

Table 4. Risk factors and conditions/comorbidities associated with neuro

Risk factors

CD4 nadir [114]
Aging [156,157]
Microbial translocation [152,159]
Anaemia [162]
Thrombocytopenia [164]
Host genetic factors [115,116]
Viral genetic factors [117]
presence of any of these conditions may confound the
diagnosis of HAND.

In addition, individuals may also genetically be more
susceptible to develop cognitive problems. For example,
the E4 isoform of apolipoprotein E (APOE) has been
linked, especially in the elderly, to an increased risk of
HAD [115], and polymorphisms of CCL2 and its
receptor CCR2 seem associated with neuropsychological
abnormalities [116]. Finally, viral (genetic) factors might
also affect neurotoxicity; the influence of viral subtypes
on cognitive functioning is under investigation but not
yet elucidated [117–119].
Interventions

cART
Zidovudine (the first approved antiretroviral drug for
HIV) has been proven to have beneficial effects on
cognitive functioning [120,121]. After the introduction
of cART in 1996 many studies have reported additional
improvements on cognitive functioning [122–128].
Some patients however only stabilize or show incomplete
recovery on cART [124,127] and a small proportion of
patients even deteriorates cognitively despite cART
[128].

cART and the CNS
cART entry into the CNS is hampered by the BBB.
Drugs easily passing the BBB and affecting (macrophages
in) the CNS are so called neuroactive drugs.

Several studies have shown an association between the use
of neuroactive drugs (defined in different ways) and good
neurocognitive performance [123,129]. To better define
and quantify CNS-effectiveness, a CNS penetration
effectiveness (CPE) score, based on individual drug
ranking, was more recently proposed [130–132]. Each
individual antiretroviral drug has been given a score
between 1 and 4; summing up the individual scores results
in the CPE-score, with higher scores indicating more
CNS-effectiveness. Regimens with higher CPE-scores
have been correlated with neuropsychological improve-
ment [128,133]. Reversely, a low CPE-ranking is
associated with an 88% increase in the odds of detectable
rized reproduction of this article is prohibited.

cognitive impairment in HIV-1-infection.

Conditions/Comorbidities

HCV co-infection [152–155]
Substance or alcohol abuse [152,158]
Cardiovascular disease and metabolic disorder [152,160,161]
Depression and other psychiatric conditions [163]
Alzheimer’s Disease and other neurodegenerative CNS diseases
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CSF viral load [130]. One contrasting smaller study
reports less neurocognitive improvement in patients with
high CPE-rankings [134].

Though efforts have been made to develop this tool to
optimize treatment, there are limitations of the CPE-
score and it is not yet validated for clinical use. The most
important limitation is the amount of data available for
each drug; inevitably, only some have been classified
based on clinical information; others have been classified
based only on pharmacokinetic or chemical features.
Secondly, other factors may be of importance for the
efficacy of cART in the CNS, such as genotypic resistance
[63]. Furthermore, since it was first reported, several
adjustments have been made to the CPE-scoring system,
resulting in renewed versions. The CPE-scoring system
will probably evolve further in the coming years, and large
prospective studies will be required to establish the full
value of this approach for clinical management.

Adverse effects of cART
Direct evidence for cART-related neurotoxicity is sparse
[135]. Some nucleoside reverse transcriptase inhibitors
are known (as is HIV-1-infection itself) to cause
mitochondrial dysfunction in peripheral tissues (liver,
heart, muscles) [135]. Whether or not neuronal damage as
a result of mitochondrial dysfunction occurs is unknown.
One MRS-study reports a decrease in NAA (a marker for
neuronal integrity) in patients using didanosine and/or
stavudine [136], indicating neuronal damage possibly as a
result of mitochondrial dysfunction. In addition, in vitro
research showed protease inhibitors to cause proteasome
dysfunction resulting in intracellular accumulation of
toxic proteins, possibly causing cell damage [137].

The non-nucleoside reverse transcriptase inhibitor
efavirenz frequently causes neuropsychiatric side effects
such as bad dreams, sleep disorders, dizziness, and anxiety.
These effects usually subside after the first few weeks of
therapy, but may persist in a minority of cases [138].
However, a negative effect of efavirenz on cognitive
functioning in both short and long term has not been
demonstrated [139].

Structured treatment interruptions (STIs) lead to viral
rebound, deteriorating immune-function and worsening
CSF-markers [140] and subsequently to increased
incidence of opportunistic infections and death. How-
ever, the effect of STIs on cognitive function is
controversial, which is interesting in the context of
cART-neurotoxicity. One study investigating treatment
interruptions reported cognitive stability for 6 months,
despite worsening immunosuppression and viral rebound
[141]. Another study investigating patients with high pre-
entry and nadir CD4 who discontinued cART reported a
modest neuropsychological improvement following
interruption [71]. These results could support a degree
of cART-neurotoxicity.
opyright © Lippincott Williams & Wilkins. Unauth
In the long term, as nadir CD4 has been recognized as a
risk factor for developing HAND, STIs (resulting in
decreasing CD4-counts) nevertheless might cause cog-
nitive decline. Of note, intermittent antiretroviral therapy
has clearly been associated with a higher risk of mortality
from non-AIDS morbidity and mortality than continuous
cART [142].

Adjunctive agents
Several non-cARTagents have been investigated in vitro,
in animal models and in humans (Table 5). However, so
far the results of these trials are disappointing (as is the case
in trials for other neurodegenerative diseases). None of
them have offered a substantial solution in treating
cognitive disorders in HIV-1 [135,143].
Discussion

Do we see new cognitive problems in HIV-1-
infected individuals?
Yes, studies from different parts of the world, including
large cohorts, report abnormal scores on neuropsycho-
logical assessments in 15–50% of patients.

Neuropsychological test batteries differ between studies
and there is discussion on what is an abnormal test result.
Patients with cognitive complaints show worse test results
than those without.

What is the character of the abnormalities
found?
The abnormalities found on neuropsychological assess-
ments are milder than in full-blown HAD. In essence the
core abnormality is slowness; patients do poor on all tests
with a time-factor in it. The longer-term course of these
cognitive impairments however is not known yet.

Which diagnostic tests are useful in the clinical
setting?
Neuropsychological assessment, CSF-examination and
MRI of the brain are important tools and accessible in
many clinical settings. Neuropsychological examination
will more reliably reveal the presence and character of
neurocognitive disturbances. Virological, host response
and CNS tissue damage CSF-markers may be helpful to
diagnose CNS immune-activation and HIV-RNA load
in particular reflects more directly to what extent the
process is HIV-driven. DTI, providing detailed infor-
mation of the integrity of the white matter, may become
an important marker in the future.

What is going on in the brain?
Chronic immune-activation, HIV-driven or caused by
other conditions such as aging (or a combination), might
be the mechanism behind the cognitive problems we see
orized reproduction of this article is prohibited.
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Table 5. Adjunctive agents.

Psychostimulants HIV-infection of the CNS causes hypoactivation of the dopaminergic system [165]. Psychostimulants
are known to stimulate the dopaminergic system and have thus been investigated in patients with
HIV-related cognitive impairment.

Methylphenidate and dextroamphetamine have shown to improve cognitive function though this effect
seems short-lived and may be a result of relieving depressive symptoms [166,167]. As these agents
are known to cause dependence, it might not be appropriate to prescribe these agents to patients
with a history or a risk of substance abuse.

Selegiline Selegiline is a MAO-B inhibitor and speculated to reduce oxidative stress and to have
neuroprotective properties. Though two small studies report selegiline to improve cognitive
functioning [168,169], three larger studies report no significant effect [170,171].

Valproic acid VPA is supposed to have neuroprotective properties by inhibiting neuronal loss, stimulating neurogenesis
and reducing neurotoxicity of HIV-infected macrophages [172]. On the other hand has VPA shown
to induce microglial apoptosis and activate HIV replication in microglial cells [173,174]. One small
study demonstrated a trend toward cognitive improvement and a significant improvement in MRS brain
metabolite profile [175]. A negative effect of VPA on cognitive functioning though has been reported in
HIV-patients using VPA for a longer period of time and in higher dosages [176].

Lexipafant Lexipafant supposedly inhibits platelet-activating factor (PAF), which is an inflammatory mediator
contributing to neuronal injury. A randomized trial reports merely a trend towards cognitive
improvement [177].

Calcium channel blocker Preventing excitotoxicity using a calcium channel blocker has been investigated in HAND, showing
only a trend towards neurocognitive improvement [178].

Memantine Memantine, an NMDA antagonist, supposedly has neuroprotective properties [179,180], but two trials
have shown no significant cognitive improvement [181,182].

Minocycline Minocycline is a broad-spectrum antibiotic and a member of the tetracycline family. Aside from
antimicrobial properties it is supposed to have the ability to inhibit microglial activation and HIV
replication and to exhibit antioxidative and neuroprotective properties [183–186]. A trial in
humans is being conducted but not yet published.

Lithium Lithium is used for depression and bipolar disorder and is supposed to have neuroprotective
properties [187]. One small studie reports cognitive improvement (though this effect may also be the
result of improving depressive symptoms), another small study solely reports improvements on
neuroimaging [188,189].

Antioxidants Inflammation results in free radicals leading to oxidative stress and cell damage. Antioxidants, inhibiting
this oxidative stress, have been investigated and are still under investigation in treating HAND. Examples
are CPI-1189, OPC-14117, thioctic acid and nutritional components such as vitamin C and E, green tea
derived EGCG and curcumin [190–195]. The few agents that have been studied on humans have
not shown convincing improvements on neurocognitive functioning. Thioctic acid has even shown
a negative effect on cognition [169].

Serotonin reuptake inhibitor In a cohort study serotonin reuptake inhibitors (in particular sertraline, citalopram and trazodone) are
associated with lower CSF viral load and better neurocognitive performance, but this effect may
also be the result of improving depressive symptoms [196].

Nanoparticles Nanoparticles or nanocarriers may increase the penetration of antiretroviral drugs through the BBB
and facilitate drug transport into the brain. Subsequently they may increase the bioavailability of
ART in the brain.

The use of nanotechnology for the treatment of HIV and the CNS is yet to be further investigated
[197,198].
today. But many uncertainties remain. The clinical course
of the cognitive impairment is unknown; it might be the
result of a process that has been going on for years or there
could be a subacute deterioration in which viral control in
the CNS is suddenly lost. We do not know whether this
will in the end happen in all HIV-infected individuals or
in a subset of patients at risk. We may have missed an
ongoing CNS replication in systemically well-controlled
patients. We still do not know how to manage patients
with low-level detectable HIV-1-RNA in the CSF. CSF,
MRI and neuropathological studies have provided
information about the localization, the character and
the magnitude of the pathology that is present in
cognitive impairment though this information is frag-
mented and so far unable to elucidate and interconnect all
aspects related to cognitive impairment.

The HIV-neurology research agenda
In the coming years the clinical course of these
impairments should be followed closely in large cohorts
pyright © Lippincott Williams & Wilkins. Unautho
of patients. Risk factors and conditions other than HIV
that could lead to neurocognitive dysfunction need to be
defined more accurately.

More CSF-parameters need to be assessed and new MRI-
techniques will hopefully provide us with more
information on the white matter pathology, blood flow
and vascular changes. For all antiretroviral drugs, CNS/
CSF-penetration studies should be performed, as well as
clinical trials comparing different antiretroviral regimens.
Promising adjunctive treatments should also selectively be
studied. These efforts are essential to understand what is
going on in the brain in longstanding HIV-1-infection
and to prevent dysfunction and provide optimal manage-
ment and cure.
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