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Abstract

Background: HIV-1 infected patients frequently have osteolytic bone disease, which is caused by the dysregulation
of the bone remodeling system that involves the interaction between osteoblasts and osteoclasts, but the
relationship between osteolytic disease and HIV-1 infection remains unclear. In this study we tested whether HIV-1
infection of osteoclasts affects their differentiation.

Results: We prepared human osteoclasts from CD14+ monocytes and examined them for their susceptibility to
HIV-1. Furthermore, we investigated the effect of HIV-1 infection on osteoclast differentiation. CD14-derived
osteoclasts were shown to express CD4, CCR5, and CXCR4 each at the similar level to that shown with macrophages.
R5-tropic HIV-1 and X4-tropic HIV-1 were found to infect CD14-derived osteoclasts and replicate in them. Furthermore,
HIV-1 infection induced formation of larger osteoclastst, enhanced the expression of mRNAs for three osteoclast specific
marker molecules (tartrate-resistant acid phosphatase, cathepsin K, and the calcitonin receptor), and up-regulated
osteoclast bone resorption activity.

Conclusions: Our results suggest that osteoclasts serve as a novel target for HIV-1 infection, which may enhance the
osteoclast differentiation contributing to the development of osteolytic disease in HIV-1-infected patients.

Keywords: HIV-1, Iinfection, Bone disease, Osteoclasts, Macrophages

Background

Over the past decades, the use of highly active antiviral

therapy (HAART) has succeeded in extending the life

span of the HIV-1-infected patients by dramatically re-

ducing mortality among the patients. However, the in-

creased average life span has given rise to long-term

complications of HIV-1 infection, resulting in cardiovas-

cular disease, hepatic toxicity, and metabolic disorder

[1,2]. Osteolytic bone disease has emerged as one of

these complications. Osteolytic bone disease, such as

osteoporosis or osteopenia, is characterized by reduction

of bone mineral density (BMD). One meta-analysis of

prevalence data on osteolytic disease demonstrated that

BMD reduction was observed in 67% of HIV-1-infected

patients [3]. Although the mechanisms underlying the

process of osteolytic disease in HIV-1-infected patients

are largely unclear, multiple risk factors are believed to

contribute to development of the osteolytic bone dis-

order. To date, HAART has been shown to cause bone

metabolism alterations, leading to BMD reduction [3].

Also, there is clear evidence of reduced BMD in HAART-

naïve HIV-1-infected patients [4,5], revealing that HIV-1

infection itself contributes to the development of osteo-

lytic disease.

Bone metabolism is strictly regulated by the bone

metabolic turnover, which is referred to as bone remod-

eling. Bone remodeling consists of the opposing func-

tions of the two cell types, osteoblasts, which produce

new bone, and osteoclasts, which resorb old bone. The

RANK (Receptor activator of NF-κB)/RANKL (RANK

ligand) system dominantly regulates osteoclast forma-

tion. RANKL is mainly expressed on the cell surface of

osteoblasts and stromal cells, and binding of RANKL to

the receptor RANK that exists on the cell surface of osteo-

clast progenitor cells derived from the monocytic popula-

tion leads to osteoclast differentiation [6]. Osteoclasts are
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giant multi-nucleated cells that have the well-developed

actin cytoskeleton firmly attached to the bone surface. In

the bone of the patients with osteolytic disease, excess for-

mation and abnormal bone resorbing activity of osteo-

clasts are frequently observed [7]. Interestingly, a recent

study shows that HIV-1 transgenic rats undergo severe

BMD reduction similar to osteoporosis probably through

the enhancement of osteoclast formation [8]. However, it

remains unclear how HIV-1 infection alters osteoclast for-

mation and functions, resulting in BMD reduction in

HIV-1-infected patients.

In this study we attempted to test the hypothesis that

osteoclast differentiation be affected by infection of oste-

oclasts with HIV-1, since osteoclasts are differentiated

from the myeloid-linage progenitor cells, like HIV-1 sus-

ceptible monocytes and macrophages.

Results

CD14-derived osteoclasts are susceptible to HIV infection

in vitro

We characterized human osteoclasts generated by cultur-

ing with recombinant M-CSF plus RANKL the CD14+

monocytes purified from PBMCs [9]. After 6 to 7 days, a

large number of osteoclast-like multinucleated cells

(MNCs) (Figure 1A). Further incubation with M-CSF plus

RANKL induced formation of larger MNCs after 7 to

14 days. The MNCs expressed tartrate-resistant acid

phosphatase (TRAP), a specific osteoclast marker [10]

(Figure 1A). Furthermore, the MNCs were able to re-

sorb bone in the pit formation assay (Figure 1B). These

results indicate that the MNCs were osteoclasts. In con-

trast, CD14+ cells cultured with M-CSF alone expressed

a monocyte marker, CD14 at the same level as osteo-

clasts, and a macrophage specific marker, CD71 at a

higher level than osteoclasts (Figure 1C), but not form-

ing any TRAP-positive MNCs (Figure 1A).

We examined expression of CD4, CXCR4, and CCR5,

receptors for HIV-1 infection, in CD14-derived osteo-

clasts and macrophages. Flow cytometry analysis showed

that CD14-derived osteoclasts expressed all of the recep-

tors on their cell surface, each at the similar level to that

in the macrophages (Figure 1C).

We then exposed CD14-derived osteoclasts or macro-

phages to a CCR5-tropic (R5) HIV-1 strain, JR-FL or a

CXCR4-tropic (X4) HIV-1 strain, NL4-3, in order to

examine whether or not human osteoclasts are infected by

HIV-1. The cells were immunostained with anti-HIV-1

p24 and anti-TRAP antibodies, 40 hours after the infec-

tion. In both cases, some macrophages and TRAP+-MNCs

were found positive with p24 staining (Figure 2A). CD14-

derived osteoclasts were infected by JR-FL and NL4-3 as

efficiently as the macrophages, though JR-FL infected both

CD14-derived macrophages and osteoclasts more effi-

ciently than NL4-3 (Figure 2B). The treatment of the cells

with tenofovir (TFV), a reverse-transcriptase inhibitor,

prevented JR-FL and NL4-3 infection of CD14-derived

macrophages and osteoclasts in a dose-dependent manner

(Figure 2A,C).

Furthermore, the levels of p24 in the supernatants of

osteoclast cultures rised in a time-dependent manner, al-

though the p24 levels in CD14-derived osteoclasts were

lower then those in macrophages (Figure 3A). The rises

of the p24 levels were suppressed by TFV treatment

(Figure 3B), and the supernatants had infectivity

(Figure 3C), indicating that JR-FL and NL4-3 replicates

in CD14-derived macrophages and osteoclasts. Taken

together, these data (Figures 2 and 3) indicate that

HIV-1 can infect CD14-derived osteoclasts and repli-

cate in them.

HIV-1 infection enhances osteoclast differentiation

To elucidate possible link between HIV-1 infection and

osteolytic disease, we tested whether HIV-1 infection

has any effects on osteoclast differentiation. Microscopic

analyses of the TRAP-stained cells revealed that MNCs

incubated with JR-FL were significantly increased in size

and number of nuclei per cell, in comparison with nor-

mal CD14-derived osteoclasts (Figure 4A). In contrast,

MNCs treated with TFV or incubated with aldrithiol-2

(AT-2)-inactivated JR-FL were similar to normal CD14-

derived osteoclasts.

We further analyzed mRNA expression of specific osteo-

clast markers, such as acid phosphatase 5 (ACP5) /TRAP,

cathepsin K (CTSK), and the calcitonin receptor

(CALCR) [11], in the cells infected with different doses

of JR-FL or AT-2-inactivated JR-FL (Figure 4B). In the

macrophages, these marker expression levels were very

low and there was no significant difference in their ex-

pressions between the uninfected and infected cells. In

contrast, all of the markers were expressed at high levels

in the uninfected CD14-derived osteoclasts and further

up-regulated by the viral infection in a dose-dependent

manner. However, infection with AT-2-inactivated JR-

FL did not significantly affect the maker expressions in

CD14-derived osteoclasts. TFV treatment suppressed

the enhancement of the maker expressions by JR-FL in-

fection in a dose-dependent manner without any effect

on the maker expression levels in the uninfected CD14-

derived osteoclasts (Figure 4C).

On the other hand, NL4-3 infection also increased in

size and number of nuclei, and enhanced the osteoclast

marker expessions, although its effects were less marked as

compared with JR-FL infection (Figures 4A,B and 5A,B).

Infection with AT-2-inactivated NL4-3 did not affect the

cell size and the marker expressions (Figure 5A,B). In

addition, TFV treatment inhibited the increase in size and

number of nuclei per cell and the enhancement of the

marker expression levels (Figure 5A,C).
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We finally performed a pit formation assay examining

the effect of HIV-1 infection on osteoclast bone resorption

activity. Microscopic images showed that pit areas pro-

duced by JR-FL or NL4-3-infected osteoclasts were larger

than those by the uninfected osteoclasts (Figure 6A). Pit

formation was enhanced by JR-FL infection and, to a lesser

extent, by NL4-3 (Figure 6A,B). Furthermore, TFV treat-

ment suppressed an increase in pit formation by viral in-

fection (Figure 6A,C). Accordingly, these results strongly

suggest that HIV-1 infection enhances osteoclast differen-

tiation and bone resoption activity.

Discussion

We here show that CD14-derived osteoclasts can be also

infected with HIV-1 like other myeloid-linage cell types,

such as monocytes and macrophages. In addition, HIV-1

can also replicate in CD14-derived osteoclasts. Our data

showed that CD14-derived osteoclasts were susceptible

to both R5 and X4 tropic HIV-1. R5 HIV-1 (JR-FL) in-

fects CD14-derived osteoclasts and macrophages and

replicates more efficiently than X4 HIV-1 (NL4-3). It is

unknown why there is a difference in efficiency of infec-

tion and replication between JR-FL and NL4-3, although

A M-CSF plus RANKL M-CSF

CD4 CXCR4 CCR5

OC

Mph

CD71

M-CSF

C

B

CD14

M-CSF plus RANKL

Figure 1 In vitro osteoclast formation and expressions of the receptors. (A) CD14+ monocytes isolated from the PBMCs from healthy
donors were cultured for 7 days with M-CSF plus RANKL, or M-CSF alone to generate osteoclasts and macrophages. The induced osteoclasts
(the left photo) and macrophages (the right photo) were fixed and stained for TRAP. TRAP-positive cells appeared as red cells. Scale bar, 100 μm.
(B) CD14+ monocytes isolated from the PBMCs from healthy donors were cultured for 10 days with M-CSF plus RANKL, or M-CSF alone on
calcium phosphate-coated wells. After removing the cells, formed pits (white area) were observed by microscopy. Scale bar, 300 μm. (C) Osteoclasts
(OC) and macrophages (Mph) induced by 7 days culture of CD14+ cells with M-CSF plus RANKL or M-CSF alone were harvested and immunostained
with anti-CD4, CXCR4, CCR5, CD14, and CD71 antibodies and analyzed by FACS. Pink histograms represent the cells stained with antibodies against
each receptor. Green histograms represent the cells stained with each isotype-matched control antibody.
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the extent of NL4-3 replication seems to be lower than

that of R5 HIV-1 [12]. However, both viruses can infect

CD14-derived osteoclasts and macrophages with similar

efficiency (Figure 2). On the other hand, HIV-1 less effi-

ciently replicates in CD14-derived osteoclasts compared

to macrophages, even though HIV-1 infects both the cell

types to the same extent. Why the infection and

replication rates are different remains unclear. One pos-

sible reason is that osteoclasts might produce a fewer

viral particles than macrophages due to the impairment

of some step after proviral integration in the HIV-1 life

cycle. The further study is needed.

“HIV-1 reservoirs” have recently become a major obs-

tacle in HIV-1 eradication. These reservoirs can escape
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Figure 2 HIV-1 infection of osteoclasts. (A) The induced osteoclasts (OC) and macrophages (Mph) were incubated for 6 hours with R5-tropic
JR-FL (2.5 × 105 IFU/ml) or X4-tropic NL4-3 (2.5 × 105 IFU/ml) in the absence or presence of 4 μg/ml TFV. Forty hours after infection, the cells were
fixed and stained with anti-HIV-1 p24 and anti-TRAP antibodies. The green and red signals show expressions of HIV-1 p24 and TRAP, respectively.
The blue signals show nucleus stained with Hoechst 33258. Scale bar, 100 μm. (B) The induced osteoclasts and macrophages were infected with
JR-FL or NL4-3 at the indicated doses. Forty hours after infection, the cells were stained with anti-HIV-1 p24 and anti-TRAP antibodies. The number
of p24-positive and negative cells was counted. The bars show the ratio of p24-positive cells to total cells on a logarithmic scale. (C) The induced
osteoclasts and macrophages were infected with JR-FL (2.5 × 105 IFU/ml) or NL4-3 (2.5 × 105 IFU/ml) in the presence of TFV at the indicated
concentrations. Forty hours after infection, the cells were stained with anti-HIV-1 p24 and anti-TRAP antibodies. The number of p24-positive and
negative cells was counted. ND means not detected.
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the antiviral treatment and the host immune response,

persisting for a long period of time. Several candidates

for HIV-1 reservoirs, including resting CD4+ T cells,

monocytes/macrophages, astrocytes, and hematopoietic

progenitor cells, have been suggested so far [13]. Al-

though we do not have any evidence that human

osteoclasts can be infected with HIV-1 in vivo, our re-

sults suggest that osteoclasts may act as an HIV-1 reser-

voir. The limited viral replication in osteoclasts may

allow the cells to escape the host immune response.

Osteoclasts are crucial for keeping a normal state of

bone homeostasis. Recent studies reported that several
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Figure 3 HIV-1 replication in osteoclasts. (A) The induced osteoclasts (circles) and macrophages (triangles) were incubated for 6 hours with a
JR-FL or NL4-3 strain at the indicated doses and washed to remove free virus. Viral p24 concentration in the cell culture supernatants collected
on day 3, 6, and 9 was monitored by ELISA. (*p < 0.05, **p < 0.01 by t test between day 3 and each day in each cell type) (B) The induced osteoclasts
(black bars) and macropharges (white bars) were infected with JR-FL (2.5 × 105 IFU/ml) or NL4-3 (2.5 × 105 IFU/ml) in the presence of TFV at the
indicated concentrations. Viral p24 concentrations in the cell culture supernatants on day 6 (JR-FL) or day 9 (NL4-3) were measured by ELISA. (*p < 0.05,
**p < 0.01 by t test between None and each TFV sample) ND means not detected. (C) The supernatants from CD14-derived macrophages and
osteoclasts infected with JR-FL (2.5 × 105 IFU/ml) or NL4-3 (2.5 × 105 IFU/ml) in the absence or presence of 4 μg/ml TFV were collected on day 9 after
infection (shown in Figure 3C). MAGIC5 cells, susceptible to both R5 and X4 HIV-1, were incubated for 6 hours with each supernatant. Three days after
infection, the cells were fixed and stained with anti-p24 antibody and Hoechst 33258. The supernatant from the uninfected macrophages was used as
a control (Cont.). Scale bar, 100 μm.
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markers of bone resorption are markedly increased in

HIV-1-infected patients in comparison with healthy indi-

viduals [14], suggesting that osteoclasts are involved in

the development of osteolytic disorder in the HIV-1 pa-

tients. However, osteoclast formation and functions in

the bone of HIV-1-infected patients await further inves-

tigation. Our data showed that CD14-derived osteoclasts

became larger in size with more nuclei in a single cell

than normal CD14-derived osteoclasts after incubation

with HIV-1. The formation of larger osteoclasts is

None TFV

AT-2-treated 
    JR-FLNo virus

JR-FL
A

B

0

5

10

15

20

25

!" #" $" %" &" '" (" )" *" !+" !!"

0

10

20

30

40

50

60

!" #" $" %" &" '" (" )" *" !+" !!"

0

5

10

15

20

25

!" #" $" %" &" '" (" )" *" !+" !!"

N
o

n
e

2
.5

0
.2

5

2
5

N
o

n
e

2
.5

0
.2

5

2
5

2
.5

0
.2

5

2
5 104 IFU/ml

OC treated with 

AT-2-reated JR-FL

Mph infected 

with JR-FL

OC infected 

with JR-FL

OC treated with 

At-2-treated JR-FL

Mph infected 

with JR-FL

OC infected 

with JR-FL

N
o

n
e

N
o

n
e

OC treated with 

AT-2-treated JR-FL

Mph infected 

with JR-FL

OC infected 

with JR-FL

R
e

la
ti

v
e

 e
x

p
re

s
s

io
n

ACP5/TRAP

1.0

R
e

la
ti

v
e

 e
x

p
re

s
s

io
n

1.0

R
e

la
ti

v
e

 e
x

p
re

s
s

io
n

1.0

CTSK

CALCR

C

0

5

10

15

20

25

!" #" $" %" &" '" ("

0

10

20

30

40

50

60

!" #" $" %" &" '" ("

0

5

10

15

20

25

!" #" $" %" &" '" ("

N
o

n
e 41 TFV 

(µg/ml)N
o

n
e 41

0
.2

5

No virus OC infected 

with JR-FL

N
o

n
e 41 TFV 

(µg/ml)N
o

n
e 41

0
.2

5

No virus OC infected 

with JR-FL

N
o

n
e 41 TFV 

(µg/ml)N
o

n
e 41

No virus OC infected 

with JR-FL

R
e

la
ti

v
e

 e
x

p
re

s
s

io
n

R
e

la
ti

v
e

 e
x

p
re

s
s

io
n

R
e

la
ti

v
e

 e
x

p
re

s
s

io
n

ACP5/TRAP

CTSK

CALCR

104 IFU/ml

104 IFU/ml

Figure 4 Effect of R5 HIV-1 infection on osteoclast differentiation. (A) CD14+ monocytes were cultured for 6 days with M-CSF plus RANKL.
The cells were infected with JR-FL (2.5 × 105 IFU/ml) in the absence or presence of 4 μg/ml TFV or with AT-2-inactivated JR-FL (2.5 × 105 IFU/ml).
Five days after infection, the cells were fixed and stained for TRAP. Scale bar, 300 μm. (B) CD14+ monocytes were cultured for 6 days with M-CSF
plus RANKL (OC) or M-CSF alone (Mph). The cells were infected with JR-FL or with AT-2-inactivated JR-FL at the indicated doses. Five days after
infection, total RNA was prepared and the expressions of the osteoclast markers, such as ACP5/TRAP, CTSK, and CALCR, were analyzed by quantitative
real-time RT-PCR. (C) CD14+ monocytes were cultured for 6 days with M-CSF plus RANKL (OC) or M-CSF alone (Mph). The osteoclasts were infected
with JR-FL in the presence of TFV at the indicated doses. Five days after infection, the expressions of ACP5/TRAP, CTSK, and CALCR were analyzed by
quantitative real-time RT-PCR. (B, C) The relative mRNA expression level of each marker is shown as fold induction in comparison to the expression in
the uninfected macrophages. The data were standardized by the level of β-actin expression in each sample. (*p < 0.05, **p < 0.01 by t test).
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unlikely to have resulted from syncytium formation in-

duced by HIV-1 infection, because expressions of several

osteoclast specific markers, which are closely related to

the bone-resorbing activity of osteoclasts [10,15,16],

were elevated in CD14-derived osteoclasts incubated

with HIV-1. In fact, a pit assay showed that HIV-1

infection enhanced bone resorption activity of CD14-

derived osteoclasts. These results strongly suggest that

HIV-1 infection enhances osteoclast differentiation and

functions. TFV treatment and AT-2-treated inactivation

of the HIV-1 replication activity inhibited the enhance-

ment of an increase in cell size and the marker
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Figure 5 Effect of X4 HIV-1 infection on osteoclast differentiation. (A) CD14+ monocytes were cultured for 6 days with M-CSF plus RANKL.
The cells were infected with NL4-3 (2.5 × 105 IFU/ml) in the absence or presence of 4 μg/ml TFV or with AT-2-inactivated NL4-3 (2.5 × 105 IFU/
ml). Five days after infection, the cells were fixed and stained for TRAP. Scale bar, 300 μm. (B) CD14+ monocytes were cultured for 6 days with M-CSF
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the uninfected macrophages. The data were standardized by the level of β-actin expression in each sample. (*p < 0.05 by t test).
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expressions in CD14-derived osteoclasts. In addition, JR-FL

infection facilitated osteoclast differentiation more than

NL4-3 infection, which is less effective to osteoclasts than

JR-FL infection. These indicate that HIV-1 replication

might be required for the enhancement of osteoclast differ-

entiation. Taken together, the enhancement of osteoclast

differentiation by HIV-1 infection is likely to contribute to

BMD reduction observed in HIV-1-infected patients.

Although how HIV-1 infection facilitates osteoclast dif-

ferentiation remains unclear, direct and indirect mechanism

may be involved. A recent study shows that recombinant

Tat protein enhances osteoclast differentiation induced by

RANKL plus M-CSF, suggesting that Tat protein secreted

from the infected cells may affect osteoclast formation

[17]. In addition to the viral components, inflammatory

cytokines produced by HIV-1 infection may enhance
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Figure 6 Effect of HIV-1 infection on bone resorption activity of osteoclasts. (A) CD14+ monocytes isolated from the PBMCs from healthy
donors were cultured for 6 days with M-CSF plus RANKL, or M-CSF alone on calcium phosphate-coated wells. Then, the cells were infected with
JR-FL (2.5 × 105 IFU/ml) or NL4-3 (2.5 × 105 IFU/ml) in the absence or presence of 4 μg/ml TFV. Five days after infection, formed pits (white area)
were observed by microscopy. Scale bar, 300 μm. (B) The induced osteoclasts (for 6 days culture with RANKL plus M-CSF) were infected with
JR-FL or with NL4-3 at the indicated doses. Five days after infection, the pit areas were measured. (C) The induced osteoclasts (for 6 day culture
with RANKL plus M-CSF) were infected with JR-FL (2.5 x 105 IFU/ml) or with NL4-3 (2.5 × 105 IFU/ml) in the presence of TFV at the indicated
concentrations. Five days after infection, the pit areas were measured. (*p < 0.05 by t test).
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osteoclastogenesis. Formation of osteoclasts and their

bone-resorbing activity are enhanced by various kinds of in-

flammatory cytokines, such as IL-1, IL-6, and TNF-α [18].

Further elucidation of the molecular mechanisms under-

lying the HIV-1 infection-mediated enhancement of osteo-

clastogenesis is needed.

Conclusions

We have shown the susceptibility of CD14-derived oste-

oclasts to HIV-1 and the enhancement of osteoclast dif-

ferentiation and function by HIV-1 infection. Thus,

these suggest that HIV-1 infection of osteoclasts is one

of the causative factors for the development of osteolytic

bone disease, such as osteoporosis or osteopenia, in

HIV-1-infected patients.

Methods

Cell culture and preparation of osteoclasts and

macrophages

HEK293FT and MAGIC5 cells were maintained in

Dulbecco’s modified Eagle’s medium (DMEM) supple-

mented with 10% fetal bovine serum (FBS). For prepar-

ation of osteoclasts and macrophages, CD14+ monocytes

were isolated with a purity percentage >95% by using the

MACS CD14 Microbeads (Miltenyi Biotech), from periph-

eral blood mononuclear cells (PBMCs) prepared from two

different healthy male donors by Ficoll-Paque (GE Helth-

care) density gradient centrifugation. Informed consent

for all procedures was obtained from both donors. Cells

were cultured for 7 days in Osteoclast Precursor Basal

Medium (Lonza) containing 10% FBS with recombinant

human macrophage colony-stimulating factor (M-CSF)

(33 ng/ml; Peprotech) plus human RANKL (50 ng/ml;

Peprotech) or with M-CSF alone. This study was approved

by the Ethics Committe of the Institute of Medical

Science, The University of Tokyo (Reference number: 24-

68-0304).

Pit formation assay

CD14+ monocytes were cultured for 10 days with M-

CSF or with M-CSF plus RANKL in Bone Resorption

Assay kit 24 (PG Research). After removing cells with

5% NaClO, pit formation was observed with a micro-

scope and photographed. The pit areas were measured

with ImageJ [19].

Tartrate-resistant acid phosphatase (TRAP) staining and

immuno-staining of cells and flow cytometry

TRAP staining was carried out with TRAP-staining kit

(Primary Cell Co.). For immunostaining, cells were fixed

with 4% paraformaldehyde. Then, cells were permeabilized

and blocked with PBS containing 2% bovine serum albu-

min (BSA) and 0.01% Tween 20, and incubated with anti-

HIV p24 antibody (clone Kal-1; Dakocytomation) and

anti-TRAP antibody (Santa Cruz). After being washed,

cells were further incubated with Alexa Fluor 488 anti-

mouse IgG (Molecular Probes), Alexa Fluor 546 anti-

rabbit IgG (Molecular Probes), and Hoechst33258

(Molecular Probes). The images of fluorescence were

acquired by fluorescent microscopy using a BZ-8000

(Keyence). For flow cytometry, cells were harvested

with 10 mM EDTA/PBS. After preincubation with a

human Fc receptor blocking reagent (MBL), cells were

stained with the corresponding antibodies. Fluorescence

was analyzed with a FACSCalibur (Becton Dickinson).

The following antibodies were used for staining: fluores-

cein isothiocyanate (FITC) -labeled anti CD4, CD184/

CXCR4, CD195/CCR5, CD14, and CD71. In addition, the

following isotype controls were used as negative controls

for staining for each receptor: FITC-labeled mouse IgG1

for CD4, FITC-labeled rat IgG1 for CXCR4, and FITC-

labeled rat IgG2a for CCR5. All of the antibodies except

for CD14 and CD71 (Miltenyi Biotech) were obtained

from MBL.

Viral preparations and infection

HEK293FT cells were transfected with a JR-FL [20] or

NL4-3 [21] vector using Lipofectamine 2000 (Invitro-

gen). Two days after transfection, the supernatants were

collected and centrifuged to remove the cells. Titration

of viral solution was performed by HIV-1 p24 quantifica-

tion using the HIV-1 p24 ELISA kit (ZeptoMetrix). In-

fectious units (IFU) of each virus stock were determined

by p24 immuno-staining of infected MAGIC5 cells, sus-

ceptible to both R5 and X4 tropic HIV-1 [22]. Inacti-

vated viruses were prepared by incubating the viral

supernatants with 500 mM aldrithiol-2 (Sigma) at 4°C

overnight [23]. For infection of macrophages and osteo-

clasts, cells were incubated for 6 hours with JR-FL or

NL4-3, washed three times with OPBM, and further cul-

tured for the indicated times. Tenofovir (Selleckchem) was

added at the indicate concentrations 30 min before infec-

tion and added again after washing with OPBM. After de-

tection of infected cells by p24 immuno-staining, the

number of infected macrophages and osteoclasts in total

1000 to 3000 cells was counted to determine the infectious

rates. The levels of p24 in the supernatants were measured

by HIV-1 p24 ELISA (XpressBio). For infection of

MAGIC5 cells, cells were incubated for 6 hours with the

supernatants in 6 or 9 days cultures of the IR-FL- or NL4-

3-infected macrophages and osteoclasts, washed three

times with fresh medium, and further cultured for 3 days.

Quantitative real-time PCR

Total RNA was reverse transcribed with Primescript RT

reagent kit (TAKARA) using oligo dT primers. Real-

time RT-PCR analysis was performed using a TP870

thermal cycler (TAKARA) and SYBR Premix Ex Taq II
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(TAKARA). The level of β-actin expression in each sample

was used to standardize the data. The following primer

sets were used: ACP5 (5′-GTGTGCAAGACATCAATG

ACAACAG-3′, 5′-TCTTGAAGTGCAGGCGGTAGA

A-3′), CTSK (5′-GTCTGAGAATGATGGCTGTGGA-3′,

5′-CATTTAGCTGCCTTGCCTGTTG-3′), CALCR (5′-G

AACTACGTGACCTCTGCAAGACAA-3′, 5′-AACAGC

TAGGTCCTGCCCAATG-3′), and ACTB(5′-TGGCACC

CAGCACAATGAA-3′, ′-CTAAGTCATAGTCCGCCTA

GAAGCA-3′).

Statistical analysis

The P values were calculated with the Student’s t test

with Microsoft Excel software, with two-tailed distribu-

tion and two-sample unequal variance parameters.
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