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Abstract

How HIV replicates and causes destruction of the thymus, and how to restore thymic function, are 

among the most important questions of HIV-1 pathogenesis and therapy in adult as well as 

pediatric patients. The thymus appears to function, albeit at reduced levels, throughout the life of 

adults, to respond to T cell depletion induced by HIV and to be suppressed by HIV. In this review, 

we summarize recent findings concerning HIV replication and pathogenesis in the human thymus, 

focusing on mechanistic insights gleaned from studies in the SCID-hu Thy/Liv mouse and human 

fetal-thymus organ culture (HF-TOC) models. First, we discuss HIV viral determinants and host 

factors involved in the replication of HIV in the thymus. Second, we consider evidence that both 

viral factors and host factors contribute to HIV-induced thymocyte depletion. We thus propose 

that multiple mechanisms, including depletion and suppression of progenitor cells, paracrine and 

direct lytic depletion of thymocytes, and altered thymocyte selection are involved in HIV-induced 

pathology in the thymus. With the SCID-hu Thy/Liv mouse and HF-TOC models, it will be 

important in the coming years to further clarify the virological, cell biological, and immunological 

mechanisms of HIV replication and pathogenesis in human thymus, and to correlate their 

significance in HIV disease progression.
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HIV-1 PATHOGENESIS IN THE THYMUS DURING AIDS PROGRESSION

The decline of CD4+ T cells in the peripheral circulation is the hallmark of HIV-1 disease 

progression. A variety of mechanisms have been proposed to account for this loss [77]. 
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Analysis of T cell phenotypic changes during disease progression indicates that naive T cells 

(CD4+ and CD8+) are preferentially depleted, suggesting impairment of mature T cell 

replenishment [91]. Additionally, a failure to maintain T cell homeostasis has been 

correlated with onset of AIDS [74]. It has recently been reported that production of recent 

thymic emigrants (or naïve T cells) is impaired in HIV-1 infected patients, and suppression 

of HIV-1 replication with HAART results in a recovery of naïve CD4+ T cells [27]. These 

findings suggest that T cell development and replenishment potentials in the thymus may be 

suppressed by active HIV-1 infection.

The thymus has been shown to be an early site for HIV-1 infection [23, 73]. In the thymus, 

CD4 is expressed not only on mature (CD3+CD4+CD8−) T cells but also on less mature 

(CD3−/+ CD4+CD8+) thymocytes and intrathymic T progenitor (ITTP, CD3−CD4+CD8−) 

cells [35, 67]. Though not well studied during HIV-1 infection, thymic organs from HIV-1 

infected fetuses and pediatric patients show profound parenchymal damage and involution 

[25, 42, 49, 85, 87, 92, 97, 100]. T progenitor cells in the thymus are infected by HIV-1 and 

their depletion or malfunction may result in thymocyte depletion [96, 107, 110]. AIDS 

progression is accelerated in HIV-infected infants with abnormal thymus functions [65]. 

With thymus-mass imaging technologies, it has recently been shown that thymic mass is 

correlated with production of naïve T cells in HIV+ patients during HAART treatment [78, 

101]. Finally, thymus infection and destruction are characteristic of other well characterized 

lentiviral diseases in rhesus macaques and cats [8, 69].

MODELS TO STUDY HIV-1 REPLICATION AND PATHOGENESIS IN THE 

HUMAN THYMUS

A number of experimental models have been used to study HIV pathogenesis in the thymus. 

Although thymus pathology has been investigated in SIV/monkey [69], FIV/cat [8], human/

mouse chimeric organs [39, 113], or transgenic mice [43], these models either lack human 

thymocytes or human thymus stromal cells, or do not directly study HIV-1. Therefore, this 

review will focus on studies carried out in SCID-hu Thy/Liv mice and the HF-TOC model.

1. The SCID-hu Thy/Liv Mouse

The “SCID-hu Thy/Liv mouse” is constructed by engrafting fragments of human fetal liver 

and thymus into the immunodeficient C.B-17 scid/scid (SCID) mouse [76, 79]. The resulting 

“Thy/Liv” organ promotes long-term human T cell differentiation [68, 83]. Normal cell 

subpopulations (most of them resting) are represented within the organ in expected 

proportions, a normal TCR Vβ repertoire is displayed [111], and tolerance is induced 

towards both self major histocompatibility antigens and exogenously-provided 

superantigens [112, 114]. The Thy/Liv organ is permissive for infection with primary HIV-1 

isolates [82], but not by most tissue culture adapted (and attenuated) isolates such as Lai/

IIIB [109]. HIV infection of the Thy/Liv organ induces thymic involution and thymocyte 

depletion [2, 17, 62, 107]. These events are accompanied by histologic and biochemical 

evidence of thymocyte apoptosis [17, 107] and occur at a more accelerated pace with 

syncytium-inducing (SI, CXCR4-tropic) viral isolates than with non-syncytium-inducing 

(NSI, CCR5-tropic) isolates [50]. As observed in the SIV-infected rhesus macaque [54], 
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replication of HIV-1 in SCID-hu Thy/Liv mice depends on accessory functions such as Nef, 

Vpu and Vif [4, 46]. Therefore, the SCID-hu Thy/Liv mouse provides a relevant in vivo 

model to study HIV-1 replication and pathogenesis in an intact human hematolymphoid 

organ. In addition, the SCID-hu Thy/Liv mouse has been used to model hematopoietic stem 

cell based gene therapy by a number of groups [1, 16, 106].

2. The Human Fetal-thymus Organ Culture (HF-TOC) Model

We and others have also used a human fetal-thymus organ culture (HF-TOC) system that is 

permissive for HIV infection and exhibits pathology similar to that observed in the SCID-hu 

Thy/Liv model [18, 28, 66, 80]. HF-TOC supports thymus growth for approximately 14 

days with normal thymus structure, thymocyte composition, and phenotypes (>70% 

CD4+CD8+ DP thymocytes). As in the Thy/Liv organ, the lab-adapted HIV-1 (IIIB or 

HXB2) fails to replicate in the HF-TOC model. It is possible to produce large numbers (50–

100) of thymus fragments from a single donor. Thus, although there may be diversity 

between thymus donors and culture conditions that could affect susceptibility to HIV 

replication and pathogenesis, with inclusion of proper controls there is consistency of donor 

tissues and environment within each experiment. The HF-TOC model is also readily 

amenable to biochemical and pharmacological manipulation (Figure 1). For example, HF-

TOC has been used to assess efficacy of antiviral agents, antibodies, and cytokines [18, 66]. 

These results indicate that this ex vivo model is useful for the systematic characterization of 

a variety of virological and biological agents.

HIV-1 REPLICATION IN THE THYMUS

NSI (R5) vs. SI (X4) HIV-1 Replication in the Thymus

Based on their coreceptor usage and replication in the MT2 T cell line (CXCR4+), HIV-1 

isolates are classified as either nonsyncytium-inducing (NSI, CCR5-tropic), that is 

associated with early stage of infection, or syncytium-inducing (SI, or CXCR4-tropic) 

associated with late stage of HIV-1 disease. Sequential viral isolates from patients 

eventually progressing to AIDS were studied for their ability to replicate and deplete 

thymocytes in SCID-hu Thy/Liv mice. NSI-R5 isolates obtained during the asymptomatic 

stage of disease show low levels of replication, while SI-X4 isolates from the same 

individuals obtained after progression to AIDS replicate rapidly and efficiently in SCID-hu 

Th/Liv mice [20, 50].

Consistent with replication studies with primary isolates, X4-tropic HIV clones (e.g., 

NL4-3) replicates to high levels in the thymus. R5-tropic clones such as BaL replicate very 

inefficiently, predominantly infecting stromal cells including DC and macrophages [11–14]. 

To confirm that co-receptor usage is the determinant for replication in the thymus, 

conversion of NL4-3 from an X4 to an R5 virus with env sequences from BaL [12] or 

JRCSF1 (L. Su, unpublished results) was associated with altered tropism for cell 

subpopulations within the Thy/Liv organ, and a slower rate of replication. Therefore, X4-

tropism seems to be a major determinant of HIV replication in the thymus.

1L. Su, unpublished results
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Thymocytes at various stages of differentiation express CXCR4 and CCR5 differently [13, 

58, 59]. CXCR4 is highly expressed on some hematopoietic progenitor cells and on almost 

all intrathymic T progenitors (CD3−CD4+CD8− or ITTP) in the thymus. Most DP and 

CD4+ thymocytes also express high levels of CXCR4. CCR5, however, is undetectable or 

low on most hematopoietic progenitors, intrathymic T progenitor cells, and thymocytes. As 

a result, no functional response to CCR-5 agonists was observed with human thymocytes 

[109, 118]. Therefore, X4-tropic HIV-1 isolates may simply have more target cells allowing 

for a more substantial and pervasive infection. However, dramatic differences are observed 

among diverse HIV-1 isolates that share the same pattern of coreceptor usage. For example, 

R5-tropic isolates from AIDS patients replicate more efficiently than R5 viruses isolated 

from the same patients before AIDS development [98]. As discussed below, intrinsic 

determinants of X4-tropic isolates are also involved in HIV replication and pathogenesis in 

the thymus [4, 46]. In addition, various cytokines appear to differentially affect replication 

of X4- or R5-tropic HIV isolates in thymocytes [86].

Other chemokine receptors with potential HIV coreceptor activity are also expressed in the 

thymus [70, 109]. For example, CCR8 has been suggested to contribute to replication of 

HIV in the thymus because the CCR8 ligand, I-309, partly suppresses replication of X4, R5 

and X4/R5-tropic HIV isolates in the thymus [70].

T Cell Line Adapted (TCLA) vs. Primary HIV-1 Isolates

Most lab-adapted HIV-1 isolates are attenuated to replicate in primary, resting cells and in 

the thymus models in vivo. For example, the Lai/IIIB isolate and its associated infectious 

molecular clones (e.g., HXB2) infect T cell lines (SI and X4-tropic), activated PBMCs in 

vitro, and even the tonsil histo-culture ex vivo ([37],2), but are replication-defective in vivo 

in the SCID-hu Thy/Liv mouse and ex vivo in HF-TOC [89, 108]. When a lab worker was 

accidentally infected by Lai/IIIB, infectious virus was isolated from plasma by coculture 

with primary PBMC, but not by infection of T cell lines [64, 115]. Replacement of an HXB2 

subgenomic fragment encoding the env ORF with the corresponding fragment from the lab 

worker isolate generates a recombinant virus (HXB/LW) which replicates in the SCID-hu 

and HF-TOC models. The specific in vivo replication determinants map to the V1-V3 region 

of the HXB/LW env gene. Interestingly, Nef is not required for HXB/LW to replicate 

efficiently in the thymus.

Macrophage-tropism and Replication in the Thymus

Multiple cell types, including dendritic cells and macrophages, accompany thymocytes in 

constituting the thymus. Because most primary HIV-1 isolates (R5, X4, or R5/X4), 

including HXB/LW, are able to infect macrophages, this capability could potentially be 

sufficient to allow for replication in the thymus. Interestingly, specific in vivo replication 

determinants in the V1-V3 loop region of HXB/LW Env [12, 80, 108] also determine its 

tropism for replication in monocyte-derived macrophages (MDM). However, a single amino 

acid in the V3 loop, an early A to T mutation associated with neutralizing antibody 

resistance [90], was essential for replication of the LW virus in the thymus but not for its 

2Duus and Su, unpublished observation.
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ability to infect MDM [80, 108]. The acquired in vivo replication ability was thus separable 

from the macrophage-tropism of the in vivo selected LW isolate. In addition, NL4-3 

replicates efficiently in the thymus models but does not display macrophage tropism. 

Together, these studies suggest that Env determinants independent of coreceptor usage and 

macrophage-tropism are involved in promoting HIV-1 replication in the thymus. The 

mechanism of Env-mediated HIV replication in the thymus may shed light on our 

understanding of HIV infection and replication in vivo.

HIV-1 PATHOGENICITY IN THE THYMUS

Viral Pathogenic Factors in the Destruction of the Thymus

Mutations of genes including nef or env in SIV and HIV-1 lead to reduced viremia in vivo 

and decreased disease progression, perhaps as a consequence of the lower viremia [3, 14, 42, 

54, 89]. Alterations and deletions in nef from patients have been associated with reduced 

viral load and long-term non-progression [26, 55, 75, 95]. Based on these results, 

“pathogenic” factors such as Env and Nef may also be considered “replication” factors and 

may affect pathogenesis indirectly by simply modulating viral loads in vivo. Transgenic 

mouse models with constitutive expression of Nef in CD4+ T cells and macrophages show 

CD4+ T cell depletion and other AIDS-like symptoms, suggesting that Nef may be a 

pathogenic factor [43]. However, the level and timing of transgenic Nef expression are 

different from HIV-1 infection in humans. In addition, murine host cells may respond 

differently to HIV-1 Nef proteins. Similarly, it has been reported that ectopic expression of 

Nef in human CD34+ progenitor cells impairs their T cell development in murine thymus 

organs [113]. However, the level and timing of transgenic Nef expression are different from 

HIV-1 infection in humans. In addition, murine host cells may respond differently to HIV-1 

Nef proteins. Therefore, whether Nef is a factor for pathogenicity as well as for replication 

in patients remains unclear.

Separation of Viral Replication and Pathogenesis: Env and Nef as Pathogenic Factors

Comparison of HIV-1 isolates attenuated in vitro with in vivo-derived pathogenic revertants 

will help identify important viral determinants for replication and pathogenesis. One 

example demonstrating that viral factors can mediate pathogenicity is found in the SHIV 

model (SIV/HIV-env chimeric genome). SHIV variants with enhanced replication and 

pathogenicity have been isolated from monkeys that were serially infected with 

nonpathogenic SHIV recombinant viruses [51]. Mutations in the HIV env gene contributed 

to enhanced replication in monkeys. Interestingly, env determinants have also been defined 

that specifically contribute to CD4+ T cell depletion (i.e., pathogenicity), but not replication, 

in monkeys, suggesting that these Envs are intrinsically pathogenic [30].

As discussed above, the specific in vivo replication determinants of HXB/LW map to the 

V1-V3 region of Env. We further demonstrate that HXB/LW replicates to high levels in the 

thymus with no significant thymocyte depletion. Restoration of nef in the recombinant 

HXB/LW genome restores its pathogenic activity with no significant effect on replication 

[28]. Thus, the replication defect of the attenuated Lai/IIIB isolate can be recovered in vivo 

by mutations in the env gene without an associated pathogenic phenotype (i.e., the LW env 
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protein may have reduced intrinsic pathogenic activity), and Nef can function in the 

HXB/LW clone as a pathogenic factor that does not affect replication in the thymus.

Nef mediates multiple effects on target cells in vitro: it down-regulates CD4 and MHC class 

I from the infected-cell surface, enhances virion infectivity, and alters multiple T cell 

signaling pathways (reviewed in [23, 35, 87]). These activities of Nef have been mapped to 

distinct functional domains of the protein [35]. Different Nef alleles with distinct immune-

modulatory activities have recently been reported to correlate with HIV-1 disease 

progression [22]. However, the in vivo relevance of these different Nef activities remains 

unclear. In the NL4-3 virus, which requires Nef for optimal replication in the thymus, the 

ability of Nef to down-regulate CD4 seems to be required for pathogenesis [105]. Because 

restoration of Nef in the HXB/LW genome restores pathogenic activity without affecting 

viral replication, this system will be invaluable for dissecting which functional domains of 

Nef are specifically required for pathogenicity in human thymus and to further examine 

mechanisms of Nef-mediated pathogenesis in vivo. Our preliminary results suggest that a 

novel Nef activity, independent of its activities in down-regulating CD4, MHC class I or 

promoting HIV infectivity, is implicated in thymocyte depletion.3 The HXB/LW virus will 

also be valuable to study mechanisms of HIV-1 env-mediated pathogenesis in thymus.

The Effect of Coreceptor Tropism on Thymus Depletion

To reiterate the important findings discussed above, it is clear that X4 or SI HIV-1 isolates 

replicate at higher pace and are more pathogenic in the thymus than R5 or NSI isolates [11, 

50], potentially due to the relative size of the susceptible cell populations. It has been 

demonstrated that the V1-V3 region of Env is a mediator of viral replication and 

pathogenicity in the thymus [12, 20]. However, there are differences in the ability to deplete 

thymocytes within each subset of isolates that share coreceptor usage. Late R5 isolates from 

AIDS patients are reported to be more pathogenic than earlier R5 isolates from the same 

patients, suggesting an evolution of viral pathogenicity without a coreceptor change for 

CXCR4 [98], although the same “pathogenic” R5 isolates are very attenuated in comparison 

with X4 isolates [14]. Even X4 isolates have demonstrated varying degrees of pathogenicity. 

The HXB2 clone (derived from Lai/IIIB) is X4 tropic, yet is replication deficient and thus 

non-pathogenic in the thymus [80, 108]. The LW12.3 env, when cloned into HXB2 

(HXB/LW, X4-tropic), demonstrates high levels of replication, yet it is non-pathogenic [28]. 

Therefore, although most studies suggest that X4 or SI isolates are more pathogenic in the 

thymus, there are distinct exceptions, suggesting that other determinants are involved in 

HIV-mediated thymocyte depletion.

Mechanisms of HIV-1 Induced Thymus Destruction

While different viral factors contribute to HIV replication and pathogenesis, the result of 

pathogenic infection is depletion of thymocytes through mechanisms that remain 

incompletely determined. Clues to understanding this depletion come from several 

experimental fronts (Figure 2). First, a profound loss of progenitor cell activity is observed 

in the context of HIV infection of the thymus [48, 60, 107]. Second, direct lysis of HIV-

3D’Agostin R and Su L (2003). The 10th conference on retroviruses and oportunistic infection. Boston.
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infected cells may be involved in thymocyte depletion. Third, death of bystander cells 

mediated by viral and host pathogenic factors may contribute to depletion. Finally, abnormal 

T cell maturation has been reported due to host and viral paracrine factors that mediate 

perturbation of all thymocytes [52, 53, 66]. We consider each of these scenarios.

Bystander Inhibition of Hematopoietic Progenitor Cell Function in HIV-infected Thymus

Recent studies using the Thy/Liv model have indicated that colony forming activity of 

CD34+ HSPC is lost before thymocyte depletion and occurs in the absence of productive 

infection [48, 60, 61]. Because the colony forming activity was partially recovered upon 

administration of antiretroviral drugs in parallel with a decrease in viral load, this suggests 

bystander inhibition of function dependent on viral replication [60, 61].

An attractive mechanism for bystander inhibition of progenitor cells would be perturbation 

of the stromal environment necessary for proper selection and differentiation of developing 

thymocytes. Thymic epithelial cells (TECs) in the cortex mediate positive selection of DP 

(CD4+CD8+CD3+/−) thymocytes, while bone marrow derived macrophages and dendritic 

cells in the cortical-medullary junctions and medulla help eliminate overly reactive single 

positive mature thymocytes by negative selection. Interaction between these stromal cells 

and developing thymocytes is essential for proper thymocyte differentiation, and thus 

infection and depletion of thymic stromal cells by HIV could have devastating 

consequences. TECs were shown to endocytose virus and contain viral RNA, although 

productive infection could not be demonstrated [104]. Interestingly, degenerating TECs 

were also observed by electron microscopy and immunohistochemistry in the absence of 

detectable viral RNA [104]. While infection of thymic dendritic cells in culture didn’t result 

in productive infection, virus could be transmitted by coculture with CD4+ T cells, and 

PDCs are productively infected by HIV in the thymus [54]. Thus, thymic stromal cells (DC, 

macrophages and TEC) can be infected by HIV and/or are potentially affected as bystanders 

in the absence of infection. Due to technical limitations, it is not clear whether the HIV-1 

infected thymic stromal cells are still functional in supporting long-term de novo human T 

cell development, although efficient inhibition of HIV-1 replication in patients can lead to 

increased production of TREC+ (naïve) T cells [27]. In SCID-hu Thy/Liv mice, HAART 

treatment leads to transient recovery of thymocyte production although it is not clear 

whether it is possible to fully and stably restore the function of HIV-depleted thymus organs 

[116].

Direct Infection and Depletion of ITTP Progenitor Cells by HIV

Profound depletion of thymocytes could ensue if progenitor cells responsible for 

regenerating the thymocyte subpopulations are targeted for infection and destruction. 

Consistent with the observation that some CD34+ progenitor cells express low levels of 

CD4, a fraction of these progenitors contain HIV DNA after infection in the Thy/Liv model 

[61]. CD34+ HSPC cells differentiate to common lymphoid progenitor cells (CLP) and 

intrathymic T progenitor cells (ITTPs) which express CD4 and CXCR4 and are susceptible 

to efficient infection by X4-tropic isolates [67, 107]. R5-tropic viruses that show slow 

replication and pathogenesis are also capable of infecting ITTPs, but only late in infection 

and probably as a result of HIV-induced R5 expression on those cells [11].

Meissner et al. Page 7

Curr HIV Res. Author manuscript; available in PMC 2015 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ITTPs differentiate into immature DP (CD4+CD8+CD3+/−) thymocytes which populate the 

thymic cortex and account for the majority of lymphocytes present within the fetal and adult 

thymus [67]. DP thymocytes are transcriptionally active and express high levels of CXCR4, 

providing fertile ground for HIV infection [58]. DP cells are preferentially depleted in the 

Thy/Liv, HF-TOC, and SIV models. However, as observed with ITTPs and CD34+ 

progenitors, infection of DP thymocytes does not necessarily result in cell death. HIV DNA 

has been observed in CD8+ cells in the periphery, and while transient expression of CD4 

during activation could explain susceptibility of these cells to direct infection [56], infection 

in the thymus of DP cells may occur prior to differentiation. In support of this, infection of 

DP thymocytes both in vitro and in vivo generates HIV DNA+ CD8 cells [19, 57]. If 

infection of any of the immature thymocytes does not result in cell death, naïve quiescent 

CD4+ and CD8+ progeny could harbor latent HIV. Accordingly, activation of naïve single 

positive cells derived from infected DP cells led to reactivation of HIV gene expression and 

viral production [19]. Thus, intrathymic T progenitor and immature DP precursors are 

directly susceptible to infection and depletion, although death does not necessarily follow 

infection, potentially allowing for latent transmission. The differential ability of R5/NSI and 

X4/SI viruses to infect the abundant, immature thymocyte population may explain the 

greater degree of replication and pathogenesis achieved by X4/SI viruses [11, 12, 20, 50].

Mechanisms of Thymocyte Death: Apoptosis vs. Necrosis

Extensive depletion of thymocytes is caused by HIV-1 infection of the thymus, yet the 

mechanism to explain how thymocytes actually die remains incompletely described despite 

considerable effort. Two important questions remain to be answered. First, how do 

thymocytes die in response to HIV-1 infection (apoptosis, necrosis, or other)? Second, are 

all dead or dying thymocytes productively infected with HIV-1 (lytic infection vs. paracrine 

killing)?

Most thymocytes in a physiological setting die by apoptosis characterized by cell shrinkage, 

chromosomal condensation, and inter-nucleosomal cleavage of DNA [104]. The majority of 

DP thymocytes undergo apoptosis by neglect due to lack of TCR expression or its 

interaction with self MHC, and by induction of apoptosis due to overreactivity between TCR 

and MHC-self antigens. Because basal expression of the anti-apoptotic Bcl-2 protein is low 

in DP thymocytes, they seem especially susceptible to apoptosis relative to their more 

mature single positive progeny. Infection by HIV could presumably hasten or amplify the 

normal mechanisms responsible for thymocyte death. Alternatively, HIV could directly kill 

cells via lysis during viral production or by inducing bystander apoptosis.

Early studies performed in the Thy/Liv model indicated that the morphological features of 

thymocytes in HIV-infected thymuses were consistent with apoptosis, including nuclear 

condensation and loss of cellular DNA [17]. While DNA fragmentation was observed by 

TdT-FACS staining, the DNA ladder characteristic of completed apoptosis was not observed 

in cells from infected implants [17, 50, 107]. Upregulation of Fas/FasL has not been 

observed in the Thy/Liv model or in the HF-TOC model, although evidence from the SIV 

macaque model supports apoptotic mechanisms for thymocyte depletion [93]. Infection with 

SIV results in a slight, but detectable, upregulation of Fas on thymocytes and a more striking 
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decrease in both the frequency of Bcl-2 expressing cells and the magnitude of Bcl-2 

expression per cell. This correlates with the increase in TdT and Phi Phi Lux (a caspase 

substrate) staining observed during depletion.

Bergeron et al. address the mechanism of thymocyte death by applying supernatants from 

infected thymic dendritic cells to purified CD4+ and CD8+ thymocytes and show that cell 

death ensues without accumulation of trypan blue positive cells, suggesting rapid decimation 

or engulfment [7, 10]. Because cyclohexamide incubation inhibits this death, an active 

apoptotic process rather than passive necrosis is suggested. In support of these findings, 

blocking Fas and TNFR signaling reduced the extent of cell death, implicating classical 

apoptotic mediators in these in vitro studies. However, the DNA ladder characteristic of 

apoptosis was observed neither before nor during thymocyte depletion, again arguing 

against classical apoptotic induction [7]. In addition, Jameson et. al observed little apoptotic 

activity at the height of CD4+ cell depletion in the Thy/Liv model [47]. During peak loss of 

CD4+ thymocytes, with about 10% of thymocytes productively infected, a high viral DNA 

load was observed, suggesting that direct lytic killing of thymocytes may be responsible for 

the rapid depletion. During the latter phases of infection, some apoptosis was observed. It is 

suggested that direct lysis and necrosis were responsible for initial depletion, followed by a 

secondary wave of apoptosis due to a perturbed thymic microenvironment and cytokine 

network late in infection.

Although these studies have attempted to understand how HIV induces thymocyte depletion, 

the question of how thymocytes actually die remains incompletely answered. While the data 

alternatively suggest that apoptosis or necrosis may be responsible, variation in the 

experimental conditions and differences in viral load may contribute to the observed 

discrepancies [17, 47, 50, 107]. An intriguing possibility is that a novel form of cell death 

may be involved which features characteristics of both apoptosis and necrosis, or 

“aponecrosis” as characterized by initiation of apoptosis with eventual death by necrosis 

without completion of the apoptotic cascade [33]. It is possible that the mechanism of HIV 

induced cell death may vary depending on the strength and nature of the insult as is seen in 

other cell systems [34].

Mechanisms of Thymocyte Depletion: Direct Lytic Infection vs. Indirect Paracrine 
Mechanisms

Both direct and indirect mechanisms are probably involved in HIV-induced thymocyte 

depletion. Support for the lytic infection model can be found from extensive studies 

performed in primary CD4+ cells in vitro. Functional envelopes were found to induce cell 

death by direct necrosis in expressing cells with little bystander depletion [21]. Such a 

mechanism could presumably be responsible for thymocyte depletion in the context of high 

viral loads and efficient and extensive infection, although the env gene did not seem to play 

a major role in the cytolysis of CD4+ T cells in PBMCs [71].

In support of the paracrine hypothesis, the majority of TUNEL positive cells in infected 

Thy/Liv organs were not infected with HIV, as determined by semiquantitative PCR [107]. 

The aforementioned bystander inhibition of progenitor cell activity is clearly indicative of 

paracrine inhibition [48, 60, 61]. Furthermore, in contrast to a linear depletion of thymocytes 
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predicted by the direct lytic infection model, a threshold level of HIV replication is required 

to achieve significant thymocyte depletion [20, 107], consistent with aacumulation of 

paracrine mediators of thymocyte depletion during HIV infection. Furethermore, since 

CCR5 is expressed on so few cells in the thymus, pathogenesis mediated by R5 tropic 

viruses obtained from AIDS patients was likely indirect [98]. In addition to the reported 

induction of IFNα, IL10 and other IFN-inducible factors in the HIV-infected thymus [53, 

66], infected thymic dendritic cells in vitro were also shown to produce a heat labile 

cytotoxic agent capable of killing uninfected thymocytes [7].

A similar bystander phenomenon is observed in the peripheral T cell population in HIV+ 

patients and in SIV-infected macaques, with gross immune activation and loss of function 

that cannot be explained by direct infection alone [32]. Lymph nodes from infected patients 

or macaques show apoptosis primarily in the uninfected bystander population. In the thymus 

of SIV infected macaques, while the majority of infected cells were observed in the medulla, 

consistent with CCR5 usage, the greatest number of apoptotic cells (DP thymocytes) were 

observed in the cortex [93, 117]. Indeed, while viral RNA could be detected in the cortex, 

viral protein could not, suggesting that the observed apoptosis was predominantly in 

nonproductively infected thymocytes. Uninfected CD4+ T cells may also be eliminated by 

interactions with viral or host proteins. HIV infection of target cells leads to formation of 

multinucleated syncytia with uninfected, CD4+ bystander cells [72, 102]. The formation of 

syncytia is a direct consequence of interactions of gp120/gp41 with CD4 and the chemokine 

receptor coreceptors [9]. In addition, cross-linking of CD4 with soluble gp120 followed by 

CD3 cross-linking has been shown to lead to activation-induced cell death [6, 31, 38]. 

Induction of FAS and FAS ligand (and TNF/TNFR) has been implicated in the gp120-

mediated cell death of CD4+ and CD8+ cells [44, 45, 84]. Whether these activities are 

manifest in the thymus remains unclear, but together these results suggest that paracrine 

mechanisms may contribute to HIV-1 pathogenesis in the thymus.

A potential source of paracrine factors is viral proteins. Soluble viral proteins (Env or 

virions) alone or in the context of defective virions are detectable in the serum of HIV+ 

patients, and many of these proteins could act as paracrine factors to induce cell signaling or 

death. Because the role of viral proteins in induction of thymocyte cell death has not been 

extensively examined, we refer the reader to a review of mechanisms by which viral proteins 

mediate apoptosis in peripheral lymphocytes [31]. Of the 9 HIV encoded proteins, Env and 

Nef have received the most attention in the context of pathogenesis. While Env has been 

proposed to act as a superantigen in the context of thymic selection, analysis of TCR 

diversity in the Thy/Liv model has indicated random loss of Vβ repertoire due to thymocyte 

depletion rather than restricted Vβ loss indicative of a superantigen like effect [15, 63]. 

Indeed, these results are consistent with a role of HIV in perturbing T cell development 

through immature thymocyte depletion. Application of recombinant viral proteins in HF-

TOC will help determine their potential role in hastening paracrine death of thymocytes.

In accordance with the results showing upregulation of IFNα associated genes, MHC class I 

is upregulated on all thymocytes, particularly DP thymocytes, during infection in both the 

Thy/Liv and HF-TOC models [68]. IFNα secretion by type 2 predendritic cells (pDC2 or 

PDC) upon infection was recently demonstrated in HF-TOC [53, 66]. Though IFNα was 
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able to prevent infection by NL4-3 when added exogenously, endogenous production was 

insufficient to control viral replication and pathogenesis. Because ITTPs and DP cells 

express the highest levels of IFNα receptors, they may be particularly susceptible to this 

mechanism of paracrine modulation alone or in combination with other viral or host 

pathogenic factors [53].

MHCI upregulation has also been observed on thymic stromal cells, which may result in 

abnormal selection of thymocytes. DP thymocytes themselves can also participate in 

negative selection, suggesting that upregulation of MHCI may have detrimental 

consequences for their brethren in accordance with the avidity model of selection. Indeed, 

CD8loCD3+ SP thymocytes are generated in HIV-depleted thymus organs [54].

PERSPECTIVES

Studies of HIV replication and pathogenesis using the thymus models have greatly advanced 

our understanding while leaving many of the original questions regarding mechanism of 

pathogenesis unresolved. First, we must continue to identify viral determinants and host 

mediators of replication and pathogenesis. While cell tropism and accompanying replication 

levels tend to correlate with pathogenesis, the X4 tropic virus HXB/LW can replicate to high 

levels in HF-TOC without causing significant thymocyte depletion. Therefore other intrinsic 

properties of different HIV isolates and the response of the host must contribute to 

pathogenesis. Through viral genetics using replication competent, pathogenicity defective 

viruses like HXB/LW, we can define the pathogenic determinants of the virus essential for 

thymocyte depletion. Application of recombinant viral proteins, such as conformationally-

sound Env within AT-2-inactivated virions [31, 94] or reconstituted in liposomes [41], to 

HF-TOC will also facilitate dissection of viral determinants. This analysis can be extended 

to assess the contribution of other viral products aside from Nef and Env on cytokine 

secretion and cell function in the microenvironment of the thymus using recombinant 

proteins.

Second, while several host factors appear to be involved in paracrine perturbation of thymic 

function, many undoubtedly remain to be discovered. Which host factors induced by HIV 

infection in the thymus contribute to cell death? Applying proteomics to compare proteins 

expressed in thymuses infected with the nonpathogenic HXB/LW virus or a pathogenic 

virus should help identify these factors. The utility of the HF-TOC model, which allows for 

the addition of components such as blocking antibodies or cytokines directly to the culture 

media, will help verify any identified factors.

Third, much work remains to be done to determine the precise mechanism of thymocyte cell 

death. While necrosis and apoptosis both appear to contribute, the specific signaling 

pathways which are responsible remain largely uncharacterized. By applying specific 

inhibitors of cell death and signaling pathways in HF-TOC, we can begin to address this 

issue. Additionally, using technology allowing for production of conformationally reliable 

proteins such as envelope, we can begin to dissect their effect on signaling outside of the 

context of the complicated viral infection.
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Fourth, suppressor or regulatory T cells have reemerged as immune modulators capable of 

negatively regulating a variety of responses through either cell/cell contact or through the 

secretion of soluble mediators (reviewed in [100]). From 5–10% of human CD4+ SP 

thymocytes are CD4+CD25+ with characteristics of a regulatory cell population, 

characterized by CTLA4, TNFR2, and CCR8 expression, lack of proliferation and cytokine 

secretion after stimulation through CD3, and ability to inhibit the proliferation of 

CD4+CD25− cells after CD3 stimulation by modulating IL-2 production in a cell contact 

dependent manner that utilizes CTLA4 and TGFβ [5]. Does HIV infection of the thymus 

result in preferential depletion or sparing of these cells relative to normal αβ CD4+ 

thymocytes? Does perturbation of the stromal environment by R5 or X4 tropic viruses affect 

development of CD4+CD25+ T cells which could contribute to the anergy observed in the 

periphery of HIV-infected patients? We and others have observed increased production of 

IL-10 and type 1 interferons in the HIV-infected thymus [53, 66], which in the context of 

normal thymic TCR stimulation could potentially affect the production of T regulatory cells. 

The SCID-hu Thy/Liv mouse and HF-TOC models are amenable to initially address these 

hypotheses.

Finally, many questions about thymic function, particularly regarding stromal cells, remain 

unresolved. Are infected stromal cells capable of supporting normal selection and 

differentiation of thymocytes? Are thymocytes that traverse an HIV-infected thymus normal 

in function or do they show increased susceptibility to anergy or deletion in the periphery? 

For example, MHC class I upregulation leads to selection of CD8 mature single positive 

thymocytes with lower expression of CD8 to allow escape from negative selection, which 

could result in increased threshold for activation in the periphery and predisposition to 

anergy [52]. Efforts to improve the current SCID-hu Thy/Liv or HF-TOC model to allow for 

analysis of experimentally altered stromal cells as well as thymocytes would facilitate the 

study of these questions.
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Fig. (1). HIV-1 replication and pathogenesis in the human fetal thymus organ culture (HF-TOC) 
model and the SCID-hu Thy/Liv mouse
A. Human fetal thymus fragments containing about 4 intact thymic lobules are transferred 

onto organ culture membranes (Millipore) floating on HF-TOC media. HIV-1 supernatant is 

added drop-wise to each fragment to initiate the infection. Viral replication is monitored by 

measuring thymocyte cell associated p24 or virion-associated p24 or RT activity in culture 

media. Various biological and pharmacological agents can be tested in the cultured media 

[18, 28, 66].

B. An HF-TOC fragment after 12 days in culture on the membrane.

C. Relative HIV-1 replication and thymocyte depletion in HF-TOC and SCID-hu Thy/Liv 

mice. While SCID-hu Thy/Liv mice need 3–6 months to be constructed, HF-TOC can be set 

up on the day of the infection. HIV-1 (NL4-3) replication peaks at 9–10 days post infection 

in HF-TOC and at 3 weeks post infection in SCID-hu Thy/Liv mice. HIV-induced 

thymocyte depletion is detectable at 7 days post infection in HF-TOC and at 2 weeks post 

infection in SCID-hu Thy/Liv mice. As in SCID-hu Thy/Liv mice, HXB2 fails to replication 

in HF-TOC [18, 28, 81].
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Fig. (2). Direct and indirect mechanisms involved in the depletion of thymocytes
A. Direct infection of CD4+ thymocytes and progenitor cells by HIV-1. Thymocytes 

expressing CD4 and CXCR4 are direct target of X4-tropic HIV isolates. Infected 

thymocytes may die (via necrotic and/or apoptotic pathways) or survive to carry the HIV 

provirus to their progenies (latent infection in mature, resting SP CD4 or CD4 thymocytes). 

Thymic stromal cells may also be infected and depleted. For R5-tropic isolates, thymic 

stromal cells and a small number of thymocytes expressing CD4 and CCR5 are first 

infected. At late stage of infection, CCR5 may be induced on T progenitor cells and 

thymocytes to allow a second phase of replication in thymocytes.

B. Indirect mechanism of thymocyte depletion. Infection of thymocytes and stromal cells 

leads to production of viral proteins and host factors, which interact with T progenitor cells 

and thymocytes to lead to depletion. Viral factors such as env (gp120 or virion-associated 

gp120–gp41) may interact with CD4 and CXCR4/CCR5 to affect thymocyte survival. 

Destruction of thymic epithelial cells may also contribute to thymocyte maturation and 

selection. In addition, host cytokines such as IFNα, IL10 and IP10 are induced directly or 

indirectly after HIV infection in the thymus. MHC class I induction on thymocytes may 

affect their survival and maturation, as illustrated by the generation of CD8lowCD3+ mature 

thymocytes [52, 53, 66, 81]. In the presence of viral proteins, host cytokines and altered 

stromal cells, thymocytes with high levels of MHCI may be induced to die via apoptosis, 

necrosis, or aponecrosis mechanisms.
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