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DISCUSSION

Human immunodeficiency virus type 1 (HIV-1) has been shown to encode a small basic protein
known as the transactivator of transcription (Tat) (Rice and Mathews, 1988) and as recently
reviewed (Spector et al., 2019). Tat is a multifunctional protein, though it is primarily responsible
for recruitment of the host positive transcription elongation factor b (P-TEFb) by interaction with
an RNA stem-loop designated the transactivation response (TAR) element, which is encoded by
the viral long terminal repeat (LTR) (Dingwall et al., 1989; Li et al., 2011; Khoury et al., 2018).
This interaction leads to efficient transactivation of HIV-1 and this function has been shown to
be contained within the first exon of Tat (residues 1–58) (Kuppuswamy et al., 1989; Link et al.,
2019). A number of other functional properties have been associated with Tat and many of these
activities have been noted once the protein resides in extracellular space (Khan et al., 2019). In
this regard, Tat has been shown to be secreted through a number of different mechanisms, as
previously reviewed (Mele et al., 2018) which are dependent on residues at positions 11 and 49–
51 and their interactions with phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2), a lipid in the
plasma membrane (Rayne et al., 2010b). Tat secretion is a highly active process, and concentrations
of extracellular Tat have been found (200 pg/ml to 6.5 ng/ml) in the cerebral spinal fluid (CSF) of
HIV-1-infected patients who are well-suppressed on antiretroviral therapy (Johnson et al., 2013;
Henderson et al., 2019). Within the central nervous system (CNS), extracellular Tat can recruit
peripheral immune cells that has been shown to lead to low levels of chronic inflammation through
activation of bystander cells and release of pro-inflammatory cytokines, such as interleukin (IL)
1 beta (IL-1β), IL-6, and monocyte chemoattractant protein 1 (MCP-1) from monocytes and
macrophages (Hofman et al., 1994; Albini et al., 1998; Hudson et al., 2000; Pulliam et al., 2007;
Rayne et al., 2010a; Bachani et al., 2013). Additionally, Tat has been shown to be directly neurotoxic
through hyper-activation of neurons (Fields et al., 2015), which contributes to the development
of HIV-1-associated neurocognitive disorders (HAND) (Gaskill et al., 2017). These functional
properties, however, are dependent on the amino acid mutations present at a number of different
Tat residues.

HIV-1 is predisposed to genetic variation, which is caused by factors such as the error-prone viral
reverse transcriptase in conjunction with an array of selective pressures including the host immune
response (Li et al., 2012). Tat, which is subject to genetic variation (Dampier et al., 2016) during
the course of HIV disease, may also result in a number of alterations in amino acid residues that
have been associated with altered function. One such example of a functional alteration would be
a reduction in LTR transactivation (Boven et al., 2007; Ronsard et al., 2017), which can occur with
only a single residue mutation, such as position 11 substitutions to either alanine, phenylalanine, or
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leucine (Yezid et al., 2009), a glutamine substitution at position
50 (Brès et al., 2002), or an alanine substitution at position 51
(Van Duyne et al., 2008). As discussed, HIV-1 Tat has been shown
to be encoded by two exons, which after being alternatively
spliced and translated, results in a 101 amino acid protein. We
(Link et al., 2019), and others (Jeang et al., 1999; Marcello et al.,
2001; López-Huertas et al., 2010; van der Kuyl et al., 2018), have
demonstrated that the most prevalent Tat length within subtype
B HIV-1-infected patient samples has been shown to be Tat 101
(>85%), while other widely used forms of Tat, including Tat 86
and Tat 72, occur at much lower frequencies. It is important to
note that Tat 86 is still found in patient sequences albeit at a
low occurrence as we have previously shown (Link et al., 2019)
(CARES Cohort 15.38/207.01; 7.42% and LANL 58.91/1483;
3.97%) and as reported with the BEEHIVE Cohort (7/291; 2.4%)
(van der Kuyl et al., 2018). They have also shown that in an
analysis of Tat sequences in LANL from other subtypes that
Tat 86 might be more dominant in subtypes D; 43/56 (76%) of
subtype D viruses, 3/4 (75%) of subtype H viruses, 22/812 (2.7%)
of subtype B viruses, and 3/382 (0.8%) of subtype C viruses; but
not in subtypes A (0/130), F (0/32), G (0/6) or J/K (0/15) (van der
Kuyl et al., 2018). However, this may be due to the small number
of sequences available for each of these subtypes. We observed
a similar trend when examining the world-wide distribution of
subtype B sequences and found certain countries, such as France,
had a reduced number of sequences submitted to LANL, resulting
in their most frequent length being Tat 86 (Link et al., 2019).
Given this observation, the following discussion has examined
functional alterations that have been observed between Tat 86
and Tat 101, primarily from studies using subtype B or C. In
order to accurately understand the biological properties that can
be influenced by Tat, it would seem important to utilize the most
prevalent and biologically relevant protein.

It appears that most HIV-1 Tat investigations have utilized
Tat 86, however, the accuracy of this statement has not been
examined. In order to quantify the frequency of particular Tat
truncations in the literature, a meta-analysis of publicly available
publications was performed for the last 10 years. A PubMed
search was performed using the following parameters: (HIV-1
Tat) NOT “review”[Publication Type], 2009/01/01 to 2018/12/31,
and free full text. At the time this manuscript was drafted, there
were 973 publications, which were then read and assessed for
their utilization of different forms of Tat (Figure 1). There were
an additional 407 publications that were not publicly available
and thus were not assessed, due to access limitations. The results
included expression of Tat within animal models, plasmids, or
purified recombinant proteins, as well as molecular simulations
and sequencing studies. One of the more prominent uses of Tat
was as a fusion peptide for intracellular trafficking of another
protein. This was listed as Tat peptides (PEP), however, this also
included a number of additional minor truncations, such as Tat
82 (Dutta and Roy, 2015). Publications that did not explicitly
state the length of Tat or the molecular clone it was derived
from were listed as Tat length not stated in publication (LNS)
[18.29% (178 of 973)] (Supplemental Table 1). There were a few
results that examined SIV rather than HIV, and those were not
included in Figure 1. As shown, 40.18% (391 of 973) of the

FIGURE 1 | Distribution of the different Tat lengths used in the literature from

2009 to 2018. The 101 residue Tat was not the most frequently utilized Tat

length variant in the literature from publicly available publications on PubMed.

The parameters used on the PubMed search were: (HIV-1 Tat) NOT

“review”[Publication Type], 2009/01/01 to 2018/12/31, and free full text. The

number of publications per year were converted into a percentage (y-axis), and

the total number of publications was listed above the figure. Refer to

Supplemental Table 1 for more information regarding the categories of Tat.

Tat length not stated in publication (LNS); Tat peptides (PEP).

publications used Tat 86, while only 15.51% (151 of 973) used Tat
101. Over each of the 10 years there was an average of 24 more
Tat 86 papers relative to Tat 101. A paired Student’s t-test of the
number of publications for Tat 101 compared to Tat 86 each year
over this 10-year period was statistically significant (p < 0.0001).
The results of this meta-analysis supports the statement that Tat
86 is used more frequently than Tat 101 even though it has
been encountered much less frequently in HIV-1-infected patient
samples. Furthermore, a surprising number of publications did
not clearly describe the length of Tat in the study, which may
affect our understanding of Tat functionality.

Tat is a multifunctional protein and premature truncations
such as Tat 72 or 86 have been demonstrated to alter its
functional properties. Studies observed that expression of Tat
101 significantly altered mitochondrial DNA transcription,
mitochondrial content, and their distribution within peripheral
blood lymphocytes in comparison to Tat 72 (Rodríguez-Mora
et al., 2015). Additional studies arrived at a similar conclusion
where they observed that Jurkat cells expressing Tat 101 had
altered cell morphology, proliferation, chemotaxis, polarization,
and actin polymerization, but these effects were not present in
cells expressing Tat 72 (López-Huertas et al., 2010). Furthermore,
the second exon of Tat has also been demonstrated to be
critical in reducing host innate responses, such as downregulating
interferon-stimulating genes (Kukkonen et al., 2014). When
examining the cellular gene modulation of different Tat lengths
in THP-1 cells, a monocytic cell line, and in human primary
monocyte-derived macrophages, it was found that an HIV-1SF2
molecular clone expressing only the first exon of Tat (Tat 72)
significantly increased the RNA and protein of innate response
genes, such as Stat-1,MX2, and IRF-7, when compared to Tat 101,
which resulted in a downregulation of these genes (Kukkonen
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et al., 2014). Tat 101 has also been demonstrated to induce ten-
fold more IL-2 secretion vs. the amount that Tat 72 was capable
of in Jurkat cells (Johnson et al., 2013).

Another example related to the functional properties of the
second exon of Tat has been the dependence on the NF-κB-
associated motif, ESKKKVE, which localize to residues 86–92 in
HIV-1 subtype B Tat and would not be contained in the Tat 72
or Tat 86 versions of the protein. Expression of Tat 101 increased
anti-apoptotic proteins, such as BCL2, and was demonstrated to
cause a delay in FasL-mediated apoptosis of human peripheral
blood lymphocytes as well as Jurkat cells (López-Huertas et al.,
2013). This effect was not seen when examining Tat 72, to which
the authors concluded was dependent on the NF-κB-associated
motif, Tat 86 was not tested. Further characterization of this
motif has also demonstrated that the molecular clone HIV-189.6
expressing Tat 72 replicated at significantly lower levels than Tat
101-expressing HIV-189.6 in human primary blood lymphocytes
(Mahlknecht et al., 2008). Additional mutations were made
within and downstream of the ESKKKVE motif in the Tat 101-
expressing virus and also demonstrated the necessity for the
glutamic acids (positions 92, 94, and 96) and lysines (positions 88,
89, and 90) in this particular activity. Tat function is commonly
assessed via an LTR transactivation assay, but as shown in this
publication, LTR transactivation may not be indicative of viral
replication if the Tat 101 protein is not used.

These results demonstrate that within the past decade,
investigations have favored the use of Tat 86. While this may not
alter transactivation function of Tat, particularly within a plasmid
expression system (Link et al., 2019), there may be alterations in
other mechanisms, as described above. As we have discussed, the
biological relevance of Tat length within animal models may be
another key distinguishing assay to assess differences in function.
Animal models are crucial for understanding Tat, specifically
due to Tat being measurably expressed in patients with low-to-
undetectable viremia or without detecting other HIV-1 proteins
(Johnson et al., 2013; Henderson et al., 2019). Tat animal models
often employ direct injection of Tat 72 or 86 into the brain
(Aksenov et al., 2001, 2003; Cass et al., 2003; Fitting et al., 2008;
Agrawal et al., 2012), however, this is not the only method of
Tat exposure. Mice have also been exposed to repeated intranasal
administration of Tat 86 and were able to demonstrate trafficking
of Tat into the CNS, via the olfactory bulb (Pulliam et al., 2007).
However, this model was not examined with Tat 101, and it is
unknown if the trafficking patterns would be similar. In order to
more closely model neurocognitive impairment within patients,
use of a chronic exposure animal model that continuously
expresses Tat may be of particular importance in determining
the in vivo functional properties of Tat 101 vs. other length
Tat proteins.

To our knowledge, there are no transgenic animal models
that express Tat 101 (Soontornniyomkij et al., 2016; Langford
et al., 2018; Green et al., 2019). The iTat model, which expresses
Tat in a doxycycline-dependent manner that models chronic
exposure, is a widely utilized model of HAND, however, it also
does not express the Tat 101 protein (Fan et al., 2016; Langford
et al., 2018). Similarly, the rtTA-Tat mouse model also expresses
Tat 86 under the control of a glial fibrillary acidic protein

(GFAP) promoter, which has resulted in low levels of chronic
inflammation (Bruce-Keller et al., 2008; Dickens et al., 2017).
These mice were observed for an entire year, leading to noticeable
reductions in brain volume and alterations in synaptic and axonal
damage. Another model that mimics chronic HIV-1 exposure
was assessed by infecting human cell reconstituted SCID mice
and monocyte-derived macrophages. This model utilized a
macrophage-tropic HIV-1 molecular clone expressing either Tat
72 or Tat 101, and it was observed that the second exon of Tat was
required for efficient replication within macrophages (Neuveut
et al., 2003). While molecular alterations caused by genetic
variation of Tat, specifically Tat length, have been characterized
in in vitro cell culture systems, behavioral alterations have
not been characterized. Various behavioral tests are available,
such as: open field, elevated plus mazes, marble burying tests,
acoustic startle response, and pre-pulse inhibition, which are
used for determining anxiety-like responses and correlating body
flinching to neuronal damage, respectively (Fitting et al., 2008;
Paris et al., 2014, 2015). While behavior alterations have been
examined in Tat 72 and 86 in mice and rats, to our knowledge,
there have not been investigations to determine if different Tat
lengths, specifically Tat 101, will cause detectable alterations in
animal behavior.

As previously mentioned, Tat is synthesized by two exons,
primarily resulting in a protein of 101 amino acids, however,
early clinical isolates of subtype B HIV-1 Tat encoded for a
86 amino acid variant, which led to the prominent use of Tat
72 and 86 in a multitude of studies. Based on this literature
meta-analysis, we were able to conclusively demonstrate that
although the most biologically relevant, Tat 101 is not the most
frequently used variant. There does not appear to be an increase
in the number of publications that utilize the Tat 101 (Figure 1),
however, as stated above, functional differences of Tat have been
observed when using different length variants. Therefore, due
to recent publications focused on subtype B Tat length (van
der Kuyl et al., 2018; Link et al., 2019), and the functions that
are associated with the second exon of Tat, it is the opinion of
the authors that future studies utilize both Tat 86 and Tat 101
whenever possible, but if only one can be used to use Tat 101 to
ensure biological relevance to the studies performed (Jeang et al.,
1999; Marcello et al., 2001; López-Huertas et al., 2010; van der
Kuyl et al., 2018; Link et al., 2019).
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Supplemental Table 1 | Publication results from a PubMed search for HIV-1 Tat

from 2009 to 2018. Reported here are the publications used for the analysis in

Figure 1. The parameters used on the PubMed search were: (HIV-1 Tat) NOT

“review”[Publication Type], 2009/01/01 to 2018/12/31, and free full text. 973

publications were examined for their utilization of Tat, whether they were: a

recombinant protein, expressed within an animal model, derived from a plasmid,

or used in a molecular simulation. Publications that did not explicitly state the

length of Tat utilized or the molecular clone that it was derived from were listed as

Tat length not stated in publication (LNS). The majority of HIV-1 transgenic animal

models are Tat 86, however, if it was not explicitly stated it was reported as LNS.

There were publications that were not accessible and those were listed as No

access to publication (NAP). Additionally, publications that are listed as Tat

peptides (PEP) refers to any truncations of Tat that are not 72 or 86 residues in

length. Publications that solely examined the sequences of patients (i.e., Did not

utilize a molecular clone that would express Tat, a recombinant protein, a

transgenic animal model, or an expression vector) were listed as No Tat used in

this publication (NTU) and not included in Figure 1 (n = 124). Publications that

examined SIV rather than HIV were listed as SIV and were also not included in

Figure 1 (n = 3). Abbreviation used in this document are: PEP, Tat peptide; 72,

Tat 72; 86, Tat 86; 101, Tat 101; NTU, No Tat used in this publication; LNS, Tat

length not stated in publication, and NAP, no access to publication.
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