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Abstract

In this study, a new method to analyze HIV using a combination of autoen-

coder networks and genetic algorithms is proposed. The proposed method is

tested on a set of demographic properties of individuals obtained from the

South African antenatal survey. The autoencoder model is then compared

with a conventional feedforward neural network model and yields a classifica-

tion accuracy of 92% compared to 84% obtained for the conventional feedfor-

ward model. The autoencoder model is then used to propose a new method

of approximating missing entries in the HIV database using ant colony opti-

mization. This method is able to estimate missing input to an accuracy of

80%. The estimated missing input values are then used to analyze HIV. The

autoencoder network classifier model yields a classification accuracy of 81% in

the presence of missing input values. The feedforward neural network classifier

model yields a classification accuracy of 82% in the presence of missing input

values. A control mechanism is proposed to assess the effect of demographic

properties on the HIV status of individuals, based on inverse neural networks,

and autoencoder networks-based-on-genetic algorithms. This control mecha-

nism is aimed at understanding whether HIV susceptibility can be controlled
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by modifying some of the demographic properties. The inverse neural network

control model has accuracies of 77% and 82%, meanwhile the genetic algorithm

model has accuracies of 77% and 92%, for the prediction of educational level

of individuals, and gravidity, respectively. HIV modelling using neuro-fuzzy

models is then investigated, and rules are extracted, which provide more valu-

able insight. The classification accuracy obtained by the neuro-fuzzy model

is 86%. A rough set approximation is then investigated for rule extraction,

and it is found that the rules present simplistic and understandable relation-

ships on how the demographic properties affect HIV risk. The study concludes

by investigating a model for automatic relevance determination, to determine

which of the demographic properties is important for HIV modelling. A com-

parison is done between using the full input data set and the data set using the

input parameters selected by the technique for the HIV classification. Age of

the individual, gravidity, province, region, reported pregnancy and educational

level were amongst the input parameters selected as relevant for classification

of an individual’s HIV risk. This study thus proposes models, which can be

used to understand HIV dynamics, and can be used by policy-makers to more

effectively understand the demographic influences driving HIV infection.
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Chapter 1

Introduction to HIV Analysis

with Computational Intelligence

1.1 Introduction

Acquired Immunodeficiency Syndrome (AIDS) was first defined in 1982 (Root-

Bernstein 1998) to describe the first cases of unusual immune system failure

that were identified in the previous year. The Human Immunodeficiency Virus

(HIV) was later identified as the cause of AIDS. Since the identification of the

virus and the disease, very little has been effective in stopping the spread.

AIDS is now an epidemic, which at the end of 2003 had claimed an estimated

2.9 million lives (Poundstone et al. 2004). Epidemiology examines the role

of host, agent and environment to explain the incidence and transmission of

disease. Risk factor epidemiology examines the individual (demographic and
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social) characteristics of individuals and attempts to determine the factors that

place an individual at risk of acquiring a disease (Poundstone et al. 2004). In

this study, the demographic and social characteristics of individuals and their

behaviour are used to determine the risk of HIV infection; this is referred

to as “biomedical individualism” (Poundstone et al. 2004; Fee and Krieger

1993). The prevalence of infectious diseases is dependant on the nature of the

disease transmission. HIV is primarily transmitted sexually, hence the HIV

status in one person is dependant on that of others as well as exposures to

other individuals. Social factors therefore affect the risk of exposure, as well

as the probability of transmission of the disease and are necessary to under-

stand and model the disease. By identifying the individual risk factors that

lead to the disease, it is possible to modify social conditions which give rise to

these factors, and thus design effective HIV intervention policies (Poundstone

et al. 2004). Traditional control techniques (vector control, environmental con-

trol, curative cure) are insufficient for this epidemic whose speed is predom-

inantly determined by the sociological, cultural and economic factors rather

than simply biological factors (WorldBank 2002). It is thus imperative to de-

velop models that take into account the sociological, cultural and economic

factors. Analytical models based on mathematical models of HIV dynamics

have been proposed to try and understand the spread of HIV and the contrac-

tion thereof. Knorr and Srivastava (2005) proposed a model to evaluate the

intracellular and intercellular scale HIV dynamics of a person using available

patient data. Lurie et al. (1992) developed a decision analysis model for HIV

testing of health workers and hospital-based patients, which incorporated key
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elements of clinical decision-making. They yielded a model, which permitted

the evaluation of the economic burden of various policies and the identifica-

tion of data, which are critical for decision-making. Other models that have

been developed include HIV/AIDS Surveillance database (USCensusBureau

2004), the allocation by cost (ABC) model (WorldBankResources 2002), and

AVERT, which is a tool for estimating intervention effects on the reduction of

HIV transmission, developed by the Family Health International AIDS Control

and Prevention (AIDSCAP) Project (AIDSCAP 1998). Another model, AIM-

B (AIDS Impact Model for Business) developed by the Futures Group Europe

in conjunction with the Global Business Council on HIV and AIDS, was de-

veloped to help managers analyse how HIV/AIDS is affecting their business

and project, and how it will affect them in the future (FutureGroup 2002).

HIV/AIDS intervention are currently being designed and carried out in the

developing world, due to the huge infection rates. Sub-Saharan Africa is the

most affected region by the HIV/AIDS pandemic according to WHO statistics

(UNAIDS 2006), thus it is important to develop intervention policies. These

interventions are sometimes evaluated based on controlled trials. The process

of designing and evaluating the intervention policies can, however, be quite dif-

ficult and time-consuming using conventional mathematical models due to the

epidemiologic complexity of HIV/AIDS. It is thus necessary to have a model,

which provides assistance to those responsible for implementing prevention

studies. In this chapter, the data set to be used for the study is presented.

A background on artificial neural networks is also presented, which has been

used in HIV/AIDS analysis. Two network architectures are presented which
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are the multilayer perceptron (MLP) and the radial basis function (RBF). A

background on genetic algorithms is also presented since it is used in this study

to create a model for HIV analysis and classification. In conclusion, questions

not previously tackled by other models are presented and the contributions of

this work are discussed.

1.2 Data to be Used

1.2.1 Data Source

Demographic and medical data to be used for this research, came from the

South African antenatal seroprevalence survey of 2001 (HealthDept 2005).

This is a national survey, and any pregnant women attending selected public

health care clinics participating for the first time in the survey were eligible to

participate. Anonymity is guaranteed. The antenatal seroprevalence surveys

are used as the main source of HIV prevalence data worldwide, reasons for

this are that antenatal clinics are found throughout the world, and pregnant

women are ideal candidates for the study as they are sexually active.
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1.2.2 Missing Data

Out of the total data set cases, 5964 complete cases were selected, out of 6106

cases (97.68%) and the incomplete entries (142 cases - 2.33%) were discarded.

1.2.3 Variables

The variables obtained in the study are: race, region, age of the mother, age of

the father, education level of the mother, gravidity, parity, province of origin,

Rapid Plasma Reatin (RPR), region of origin, regional weighting parameter

(WTREV) and and HIV status (HealthDept 2005). The qualitative variables

such as race and region are converted into integer values. The age of mother

and father are represented in years. The integer value representing education

level represents the highest grade successfully completed, with 13 represent-

ing tertiary education. Gravidity is the number of pregnancies, complete or

incomplete, experienced by a female, and this variable is represented by an

integer between 0 and 11. Parity is the number of times the individual has

given birth, (for example, multiple births are counted as one) and this is not

the same as gravidity. Both these quantities are important, as they show the

reproductive activity as well as the reproductive health state of the women.

RPR refers to a screening test for syphilis for which HIV may cause a false

positive. The HIV status is binary coded; a 1 represents positive status, while

a 0 represents negative status. Thus the total number of input variables is 10,

shown in Table 1.1.
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Table 1.1: Summary of input and output variables

Input Variables Type Range

Age Group Integer 14-50

Age Gap Integer 1-7

Education Integer 0-13

Gravidity Integer 0-11

Parity Integer 0-40

Province Integer 1-9

Race Integer 1-5

Region Integer 1-36

RPR Integer 0-2

WTREV Continuous 0.638-1.2743

Output Variables

HIV Status Binary 0 or 1

1.2.4 Outliers

Age is the only variable with outliers. The standard age bracket used in

demographic studies relating to female fertility is 14-50 in African countries,

and this was used to extract outliers in mother’s age.
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1.2.5 Data set Used

The dataset was divided into three sets; training, validation and testing sets.

The sets were created by dividing the huge dataset into three equivalent small

datasets of 1988 entries each. The inputs used were; age of female, age gap,

educational level of female, gravidity, parity, province of origin, race, Rapid

Plasma Reatin (RPR)and region of origin. The training set is balanced to

consist of an equal number of positive outcomes as negatives, by duplicating

the positive entries. An alternative to oversampling the minority class is to

assign distinct costs to training examples, or by undersampling the majority

class (Hudson and Cohen 2000). Due to the limited size of the dataset, over

sampling the positive cases was used rather than undersampling the negative

cases to account for the biasing of the data set. The original training set

consisted of more negatives than positives with a ratio of 3:1. If the neural

network had been trained on this biased dataset, the predicted outcome would

always have been negative. This data was randomized and the inputs were

scaled between 0 and 1.

1.3 Neural Networks

The recent rapid advances in neural network technology in many pattern recog-

nition systems, as opposed to the conventional statistical theory, have been

attributed to the ability of these neural networks to model any kind of system,
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be it linear or non-linear. Due to the difficulty and complexity of all the various

statistical methods employed and the high level of expertise required for such

methods such as; moving averages and regression methods, there has been a

significant increase in usage of neural networks. This increase has also been

due to the fact that neural networks can be applied to virtually every field

in the industry, such as the medical field e.g. AIDS modelling, engineering

e.g. control of the product quality. Neural network has gathered enormous

momentum in recent years and this field of study is currently being introduced

in many universities with the industry demanding more products, which need

neural networks. This document constitutes a neural network design for:

• HIV classification from demographic properties

• Estimating missing data in the HIV demographic database

• Understanding the influence of demographic properties on HIV suscep-

tibility and

• Obtaining the relevance of demographic properties on HIV predictability.

Neural networks (NNs) were first introduced in the early 1940s based on the

understanding of neurology. An artificial neural network is a network con-

sisting of neurons and paths connecting the neurons (Bishop 1995). They are

interconnected assemblies of simple processing nodes whose functionality is

loosely based on the animal neuron. NNs can also be defined as generaliza-

tions of classical pattern-oriented techniques in statistics and engineering areas
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of signal processing, system identification and control. Fig. 1.1 (Bishop 1995)

shows a neural network model with the major components of the network.

Each input is multiplied by weights along its path and the weighted inputs

are then summed and biased. This weighted input is then biased by adding

a value unto the weighted input. The output of the summation is sent into a

function which the user specifies (linear, logistic). The output of the function

block is fed to the output neuron.

Figure 1.1: Architecture of a neuron

Neural networks (NNs) consist of simple processing units which communicate

with each other by sending signals over a large number of weighted connec-

tions. The various aspects of the NN models are; neurons (a set of processing

units); a state of activation for every unit, equivalent to the output of the unit;

connection between the units (each connection is defined by a weight which
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determines the signal the unit j has on unit k); a propagation rule (this deter-

mines the effective input of a unit from its external inputs); an external input

or bias for each unit; and a learning rule. NNs are adaptable systems that

can learn relationships through repeated presentation of data, and are capable

of generalizing to new, previously unseen data. For Fig. 1.1, the NN output

equation is (Bishop 1995):

Outputk =
∑

j

wijyj + bk (1.1)

Where wj represents the j-th layer’s weights, b represents the bias at the node,

yj represents the output at the j-th layer’s node and k represents the output

node.

Neural network has been motivated by the fact that scientists are challenged

to use machines more effectively for tasks currently solved by humans (Smith

2003; Orr 2006; Bishop 1995). Neural networks assist in systems where an al-

gorithmic solution cannot be formulated. NN possess the property of adaptive

learning which is the ability to learn how to do tasks based on the data given

for training or initial experience (Bishop 1995). They can create their own or-

ganization or representation of the information it receives during learning time

from the data observed and also possess the ability to represent any function

and are known as universal approximators (Bishop 1995). They are insensitive

to noise or unreliable data. There is also no restriction on the output type in

neural networks and require very short computational times for modelling of

systems.

10



Statistical techniques on handling data have many drawbacks which neural

networks do not possess (Smith 2003; Orr 2006). They impose restrictions on

the number of input data which NNs do not. The regressions are performed

using simple dependency functions (linear and logarithmic), which are quite

unrealistic. There is no need for intensive mathematical methods to transform

data for NN models meanwhile statistical methods require intensive mathemat-

ical transformations. NNs are non-linear hence are better able to account for

complexity of human behaviour and also give tolerance to missing or erroneous

values.

The integration of neural networks into the modern environment is a major

issue in industry. These results from the fact that NN sometimes become

unstable when applied to large scale problems and they also neglect the effect

of noise hence would tend not to react appropriately to sharp changes. There

is also the problem that neural networks are viewed as black boxes whose rules

are unknown.

1.3.1 Neural Network Architectures

There exist many kinds of network architectures, such as: (Haykin 1994)

• Multi-layer perceptron (MLP)

• Radial Basis Functions (RBF)
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• Recurrent Neural Networks (RNN)

• Hierarchical Mixture of Experts (HME) and

• Self-Organizing Maps (SOM)

Multilayer Perceptron

The simplest network architecture consists of a single layer with directed in-

puts, weighted connections to the output unit. These are very simple learning

algorithms which find the weights for linear and binary activation functions.

However, these algorithms can only work for a limited number of functions.

The limitations are overcome by adding one or more layers, known as hidden

layers which are nonlinear units between the input and the output. The archi-

tecture is a feedforward structure whereby each unit receives inputs only from

the lower layers units. Gradient methods are used to find the sets of weights

that work accurately for the practical cases. Backpropagation is also used to

compute derivatives, with respect to each weight in the network, of the error

function. The error function generally used in the neural network computation

is the squared difference between the actual and desired outputs. The activi-

ties for each unit are computed by forward propagation through the network,

for the various training cases. Starting with the output units, backward prop-

agation through the network is used to compute the derivatives of the error

function with respect to the input received by each unit. The representation

of such a network is shown in Fig. 1.2 (Bishop 1995). The learning algorithm
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Figure 1.2: Two-Layer Multilayer Perceptron Neural Network

and number of iterations determines how good the error on the training set

is minimized meanwhile the number of learning samples determines how good

the training samples represent the actual function. In multi-layer perceptron,

a number of layers are fully connected. The input to the activation function

then becomes a scalar product of the layer weight vector wi and input i, that

is (Bishop 1995):

Output = actfun(wi × i) (1.2)

The different kinds of activation functions with their equations are as shown in

Table 1.2. The perceptron learning rule is a method for finding the weights in

a network. The perceptron has the property that if there exist a set of weights

that solve the problem, then the perceptron will find these weights. This rule

follows a regression approach, that is, given a set of inputs and output values,

the network finds the best mapping from inputs to outputs. Given an input

value which was not in the set, the trained network can predict the most likely

output value. This ability to determine the output for an input the network was
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Table 1.2: Table of activation functions with the respective functions

Name Function

Linear A

Sigmoid 1
1+e−a

Tanh ea−e−a

ea+e−a

Exp ea

Softmax ea∑
j

ea
j
+e−a

j

not trained with is known as generalization. Multi-layer networks are known

as approximators. Two-layer networks with a sigmoid transfer function in the

hidden layer and linear transfer functions in the output layer can approximate

any function provided a sufficient number of hidden units are available (Bishop

1995). These hidden units make use of non-linear activation functions.

Radial Basis Function

These kinds of networks consist of 2 layers, stacked together. The first layer

with a Gaussian activation function and the second layer with a linear activa-

tion function. These networks are fast in training because the first layer can be

initialised with meaningful values and the second layer is found through ma-

trix inversion techniques (Haykin 1994). An iterative optimization technique is

then used to refine the solution. The computation nodes of the hidden layers of

such a network are different and serve a different purpose from the output layer

of the network as opposed to the MLP where the hidden and output layers
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share a common neuron model (Hassoun 1995). The hidden layer, as discussed

above, for the RBF network is non-linear and the output layer is linear hence

the inability to approximate non-linear functions whereas in MLP both layers

are non-linear (Haykin 1994). The RBF network has the architecture shown

in Fig. 1.3 represented by the following equations (Bishop 1995)

yk(x) =
n∑

j=0

wjkφj(x) + bj (1.3)

and

φj(x) = exp(−
‖ x− µj ‖

2

2σ2
j

) (1.4)

Where µ represents the centres and σ represents the widths of the network

(training parameters to be optimised).

Figure 1.3: Architecture of a Radial Basis Function Neural Network

Recurrent Neural Networks

In these networks, there is the presence of recurrent or loop connections. These

recurrent connections can, however, be unfolded to form feed-forward neural
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networks (Olurotimi 1994). These networks make efficient use of time varying

information but are, however, complex to design. This complexity arises from

the fact that in order to use backpropagation algorithms with such architecture,

there is a need to make the architecture feed-forward first, hence adding some

computational expense (Manolios and Fanelli 1994). The inputs and outputs of

this architecture are of arbitrary length sequences of vectors, not vectors. This

also makes the handling of the input and outputs difficult to follow (Connor

et al. 1994).

Hierarchical Mixture of Experts

These networks are built out of modules, experts and gates, of which can be

any of the other neural network types (Bishop 1995). The experts work on

the problem in a small domain; meanwhile, the gates mix the opinions of the

experts. The building of structure is data driven which poses a problem since

as the structure would tend to fit the particular data it was trained for hence

leading to over-fitting, which is a phenomenon to be avoided.

Self-Organizing Map Networks

SOM is mainly used in the biomedical field such as in coronary heart risk

assessment. It is relatively easy to implement and evaluate and is computa-

tionally cheap (Bishop 1995). However, SOM has the problem of overcrowding

and underutilization of the neurons in the network due to the fact that the
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size and shape of the network is fixed before the training phase begins.

1.3.2 Remarks on Network Architectures

The above sections have discussed briefly the different architectures available

for neural network. Each section has given the short-falls of the various net-

works. MLP are, however, the most appropriate network architecture for the

project at hand since RBF networks require more parameters than MLP, RNN

are complex to design due to the fact that they need to be unfolded (Bishop

1995), HME networks lead to over-fitting of the data and SOM networks have

the problem of overcrowding and underutilization of the neurons in the network

(Haykin 1994; Bishop 1995).

1.4 Genetic Algorithms

Genetic algorithms (GAs) are algorithms that are used to find global approxi-

mate solutions to complex problems, which are inspired by biological evolutions

(Michalewicz 1996). GA is inspired by Darwin’s theory of natural evolution

(Holland 1975). GAs have been proven to yield good results for various opti-

mization problems such as scheduling routines, adaptive control, transporta-

tion problems, travelling salesman problems and optimal control problems. In

genetic algorithms, the learning process is considered as a competition among

a population of individuals (Davis 1991). The individuals are selected based
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on the evaluation of a fitness function, which evaluates the contribution of the

individuals to the next generation of solutions. New populations of individuals

forming the candidate solutions are then created through the genetic processes

of reproduction and mutation.

GA was chosen as the main optimization technique in this research due to its

superiority over the other optimization techniques (Michalewicz 1996). GAs

differ from conventional optimization methods since it focuses on a population

of candidate solutions rather than on a single candidate solution. The popula-

tion of candidate solutions go through a process of reproduction of individuals

which favour the individuals with better fitness values than the other individ-

uals in the previous generation (Michalewicz 1996). GAs offer an alternative

method to the existing conventional optimization methods, where these meth-

ods are inappropriate. Genetic algorithms are able to provide more feasible and

optimum solutions than conventional optimization methods. They transform

the optimization problem into an appropriate form unlike other evolutionary

programs that leave the problem unchanged.

The genetic algorithm is implemented as follows:

1. Generate a population of candidate solutions randomly

2. Calculate the fitness values for each of the candidates in the population

3. Perform genetic processes (reproduction, crossover, and mutation) on the

fittest individuals to generate new candidate solutions.
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4. Evaluate the new fitness values for the new population of candidate in-

dividuals

5. Iterate to step 3 until the optimum solution is found.

Another important step in the implementation process is the determination of

the various parameters required by genetic algorithm such as the population

size, and the probabilities of applying genetic operators. These operations in-

clude; Encoding, Evaluation, Crossover, Mutation and Decoding. These oper-

ations are performed on the population of candidate solutions until a stopping

criterion is attained. The standard stopping criteria used to stop the proce-

dure is a given number of iterations, which is also known as the number of

generations. This ensures that the procedure eventually stops even if a global

optimum or a convergence point is not reached. Another stopping criterion

for the procedure is when the best solution does not change over a specified

number of iterations. This happens when an optimum solution has been found.

The third stopping criterion is when the average fitness of the generation is

the same or is close to the fitness of the best solution. More details on genetic

algorithm background can be found in Goldberg (1989); Davis (1991).

In this research, the genetic algorithms operative parameters such as; Crossover

parameter, mutation parameter, algorithm, and training steps was obtained

through experimentation. For HIV classification, the gene representation was

binary meanwhile for the other continuous optimization tasks using fitness

functions, the continuous gene was used.
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1.5 Statement of the Problem

Section 1.1 gave an introduction on HIV/AIDS. A lot of data is collected all

over the world from HIV/AIDS surveys. Statistical and Analytical methods

have been proposed to better understand the spread of HIV, which as statistics

show is rampant. The emergence of Artificial Intelligence methods (Neural

networks in particular) in recent years have offered a computational approach

to modelling, which is likely to be very beneficial. These methods are capable

of using large data sets and deriving relationships from these data. A question

that thus arises is: how do we use computational intelligence to model HIV

from the existing demographic data? The demographic data collected in the

various antenatal clinics worldwide are survey based. These surveys sometimes

contain missing entries whereby an individual does not fill some of the questions

posed. For instance, in Table 1.1, the educational level of the first record and

the age of the fourth record may not be available. A question that arises in

this case is how do we know the educational level for the first record? Are

there any mechanisms in place for HIV modelling to predict or approximate

the missing data based on the relationship that exists between the variables

in the database? What impact does the missing data have on the overall

modelling? Upon creating a model for HIV modelling using computational

intelligence, another important question that arises is: what are the effects of

changes in the demographic properties on the HIV susceptibility of individuals?

Is it possible to create a model to understand how changing the demographic

properties affect the HIV susceptibility? The demographic surveys use generic
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questions for the individuals, some of which are not necessarily important

for the modelling process. A question that arises is: Is it possible to create a

model which depicts the importance and relevance of the different parameters?

The last question recognized is: do neuro-fuzzy models, which have not been

investigated for HIV modelling offer better results than other conventional

neural networks models and how do the rules obtained by the neuro-fuzzy

model compare to rough set rules?

The aim of this research is thus to:

1. Create a model based on computational intelligence to model HIV from

demographic data.

2. Create a model to estimate missing data in the HIV database and to

understand the impact of such missing data

3. Create a computational model to understand how the demographic prop-

erties influence the HIV susceptibility of individuals.

4. Create a model based on neuro-fuzzy networks to model HIV from de-

mographic data and compare with a model based on rough sets for rules

extraction.

5. Create a model which depicts the relevance and importance of the survey

parameters with respect to HIV modelling, and reduces the demographic

input space.

21



The methods presented earlier, which have been implemented for HIV using

standard statistical analysis, have not investigated the use of autoencoder net-

works for classification. To the best of our knowledge, these methods do not

investigate the impact of missing information in their analysis. These methods

also have a shortcoming in that even though some use demographic proper-

ties, the influence of these properties are seldomly investigated. The relevance

of the HIV parameters used, as well as significant information, such as rules,

contained in the database for HIV analysis have been seldom looked into.

1.6 Importance of the Research

As earlier stated in previous sections, demographic data are collected world-

wide to better understand the spread of HIV. Different analytical and statisti-

cal models have been developed to model HIV as presented in Section 1.2. In

this research, computational intelligence methods are utilized to model HIV

and offer another approach into HIV modelling. In surveys, it is virtually

impossible to have a complete database with no missing entries. Missing en-

tries affect modelling to a great effect since most models depend on complete

datasets. The other main contributions of this research are:

• Introducing a new research direction into missing data approximation

and analysis through neural networks, evolutionary computing and swarm

intelligence (Ant Colony Optimization).
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• Providing a model to understand the effect of demographic properties on

HIV susceptibility, which can subsequently be used by decision-makers

and policy-makers to understand how to control the spread of HIV through

demographic properties more effectively.

• Investigating the use of neuro-fuzzy models, rough sets approximation

and fuzzy rule extraction for HIV modelling.

• Providing a model which diminishes the effective demographic input di-

mensionality required for HIV modelling. This is important since it

results in less time being spent capturing information, which is not im-

portant for HIV modelling, thereby saving resources. This model also

yields how relevant the demographic input parameters are in driving HIV

infection.

1.7 Structure of the Thesis

Chapter 1 of this thesis has presented the research question as well as the

research contributions. A background on the tools to be used for the proposed

methodologies has been proposed. These tools include neural networks and

genetic algorithms. A thorough analysis on neural networks as well as genetic

algorithms has been presented. The dataset to be used in this research has

also been presented in this chapter.

Chapter 2 describes the proposed method for modelling HIV from demographic
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properties. A background on modelling HIV using computational intelligence

is presented. The proposed method for modelling HIV is then presented, as

well as an introduction to autoencoder neural networks, which are used in this

model. The results obtained are then presented and a conclusion is drawn.

Chapter 3 presents a proposed method to estimate missing data in the HIV

database using ant colony optimization. The chapter begins by presenting

missing data models that have been previously proposed. Ant Colony Op-

timization (ACO) is then introduced and the methodology proposed is pre-

sented. The results obtained are then presented together with remarks and

conclusions.

Chapter 4 presents a methodology proposed to understand the demographic

influences on HIV susceptibility. An adaptive control model is proposed and a

background on adaptive control implementation is presented. The results for

this section are then presented, together with concluding remarks.

Chapter 5 presents a proposed method for modelling HIV from demographic

characteristics using neuro-fuzzy modelling. A background on neuro-fuzzy

models and rough set theory is first presented. The neuro-fuzzy method pro-

posed is then presented and compared to the method implemented in Chapter

2. The fuzzy rules extracted are also presented herein and the rules extracted

are compared to those extracted from a rough set model approach. Concluding

remarks are then drawn.
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Chapter 6 presents an automatic relevance determination methodology based

on computational intelligence to determine which of the parameters obtained

from the surveys are important for the HIV modelling process. The relative

relevance of the demographic parameters is presented and the input space is

reduced. A background on automatic relevance determination is presented.

The results obtained are then presented together with concluding remarks.

Finally, Chapter 7 presents the overall conclusion, which shows how the re-

search questions have been answered. Furthermore, possible future research

work is proposed in this chapter.
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Chapter 2

Autoencoder Networks for HIV

Classification

2.1 Introduction

This section introduces a new method to analyze HIV using a combination of

autoencoder networks and genetic algorithms. A model is also proposed based

on conventional feedforward neural network. The proposed method is tested

on a set of demographic properties of individuals obtained from the South

African antenatal survey. The autoencoder network model was found to out-

perform the conventional feedforward neural network models, as a much better

classifier. Neural networks have been successfully used for medical informatics,

for decision making, clinical diagnosis, prognosis, and prediction of outcomes

such as in Tandon et al. (2006), Alkan et al. (2005), Sawa and Ohno-Machado
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(2003), Szpurek et al. (2005), and Tan and Pan (2005) and for classification.

Marwala (2001) used a probabilistic committee of neural networks to classify

faults in a population of nominally identical cylindrical shells and obtained

an accuracy of 95%, in classifying eight classes of fault cases. Ohno-Machado

(1996) depicted the limitation on the accuracy of the neural network model

due to lack of data balance and increased the accuracy by using sequential

neural networks. Lisboa (2002) assessed the evidence of healthcare benefits in

using neural networks. Fernandez and Caballero (2006) used artificial neural

networks to model the activity of cyclic urea HIV-1 protease inhibitors. They

showed that artificial neural networks were capable of representing the non-

linearity in the HIV model. Lee and Park (2001) applied neural networks to

classify and predict the symptomatic status of HIV/AIDS patients based on

publicly available HIV/AIDS data. A study was also performed to predict the

functional health status of HIV/AIDS patients defined as “in good health”

or “not in good health”, using neural networks (Sardari and Sardari 2002).

Laumann and Youm (1999) used the racial and ethnic group differences to

model the prevalence of the disease and succeeded in relating the demographic

properties to the transmission of the disease. Poundstone et al. (2004) related

demographic properties to the spread of HIV. Poundstone’s work justifies the

use of such demographic properties in creating a model to predict the HIV

status of individuals, as is done in this study. The above models concluded

that ANN performed well in HIV classification problems. The methodology

presented here aims at using demographic and social factors, to predict the

HIV status of an individual, using autoencoder neural networks.
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2.2 Background

2.2.1 Autoassociative Networks

Autoassociative networks are models where the network is trained to recall the

inputs (Lu and Hsu 2002). This network thus predicts the inputs as outputs,

whenever inputs are presented. These networks have been used in a number

of applications such as Atalla and Inman (1998), Frolov et al. (1995), Smauoi

and Al-Yakoob (2003), and Hines et al. (1998). An autoassociative neural

network encoder (or simply known as autoencoder) consists of an input and

output layer with the same number of inputs and outputs, hence the name au-

toassociative, combined with a narrow hidden layer (Lu and Hsu 2002). The

networks will be trained using HIV/AIDS demographic data. The hidden layer

attempts to reconstruct the inputs to match the outputs, by minimizing the

error between the inputs and the outputs when new data is presented. The

narrow hidden layer forces the network to reduce any redundancies, but still

allows the network to detect non-redundant data. However, it must be noted

that for missing data estimation it is absolutely crucial that the network must

be as accurate as possible and that this accuracy is not necessarily realized

through few hidden nodes as is the case when these networks are used for

data compression. It is therefore crucial that some process of identifying the

optimal architecture be used. Genetic algorithm is used in this study to find

the optimal autoencoder architecture by finding the global optimum solution

30



(Holland 1975). Preliminary research showed that genetic algorithms outper-

formed line search optimization methods (Leke, Marwala, Tim and Lagazio

2006a; Leke, Tim, Marwala and Lagazio 2006). The auto-encoder neural net-

work architecture used in this study is shown in Fig. 2.1.

Figure 2.1: Architecture of an Autoassociative Neural Network

2.2.2 Classification as a Statistical Pattern

The goal of our classification is to develop an algorithm, which will assign an

individual, represented by a vector x describing the demographic, social and
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behavioural characteristics of that individual, to one of the HIV classes, C1

or C2 (where C1, C2 represents the status of an individual, which may be

positive or negative). The data on which the model is based upon contains

demographic examples of individuals, as well as the classes to which those

individuals belong. The output of the classification system is assigned to the

variable y. The classification model is therefore required to map the inputs

x1, ..., xd to the output y. A mathematical function describes this mapping,

and since it cannot be explicitly determined, the data is used to determine the

parameters. This can be written as follows:

{y} = f({x}, {w}) (2.1)

Here w is the mapping weights and x represents the demographic input pa-

rameters and y represents the HIV status. In this study, autoencoder neural

networks are used to obtain the functional mapping, and supervised learning

is used to obtain the parameters. In the case of autoencoder networks, the net-

works are trained to recall the inputs, hence the functional mapping equation

can be represented as:

{x} = f({x}, {w}) (2.2)

The purpose of the classification model is to design the decision surface to

assign new inputs to one of the classes (Bishop 1995).

32



2.2.3 The Confusion Matrix

The mean square error (MSE)is insufficient as a classification accuracy mea-

sure, as it indicates only an error function that can be minimized by optimiza-

tion methods, but does not give an indication of the classification accuracy.

In medical diagnosis in particular, it is necessary for a more detailed accuracy

analysis, including the number of false positives, false negatives, true positives

and true negatives. The confusion matrix shows the cross-classification of the

predicted class against the true class. By splitting misclassifications into the

different cells of the matrix, it is possible to assign a cost of making that par-

ticular misclassification (Hand et al. 2001). The confusion matrix is given in

Eqn 2.3 (Hand et al. 2001).





TN FP

FN TP



 (2.3)

Where: TN = True Negatives, FP = False Positives, FN= False Negatives and

TP = True Positives.

The rows represent the true classes and the columns represent the predicted

classes. The ideal solution has no false positives, nor false negatives, so the

diagonal entries are at a maximum. Usually, as is true for this case, the cost of

misclassification is difficult to determine. Using the quantities in the confusion

matrix, it is possible to derive the Receiver Operating Characteristic or ROC

curve. It is also possible to get the accuracy for the measurements from the

confusion matrix which will be used to qualify the network and the results

obtained.
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2.2.4 Receiver Operator Characteristics and Accuracy

The neural network classifiers produce a continuous output indicative of the

probability that the element belongs to a class. A threshold is applied to con-

vert this output to predict class membership, and the value of the threshold

affects performance. For an instance in a two-class classifier there are four

possible outcomes: true positive, where the instance is positive and is classi-

fied as positive; true negative, where the instance is negative and is classified

as negative; false positive, where the instance is negative but is classified as

positive; and false negative, where the instance is positive but is classified as

negative. These outcomes are often summarised in a confusion matrix, where

the entries along the major diagonal represent correct decisions, and the entries

off the diagonal are the errors. Other quantities are derived from the possible

outcomes. The True Positive Rate (hit rate or sensitivity) is defined in Eqn

2.4, and the False Positive Rate (false alarm rate), or specificity is defined in

Eqn 2.5 (Hand et al. 2001; Lavrac 1999).

TruePositiveRatio =
TP

TP + FN
(2.4)

FalsePositiveRatio =
FP

FP + TN
(2.5)

The True Positive Ratio (Hand et al. 2001; Lavrac 1999) is plotted against the

False Positive Ratio for different threshold values. The accuracy in general is

the number of correctly classified out of the total number of cases. An ROC

curve demonstrates several things:

1. It shows the tradeoff between sensitivity and specificity (any increase in
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sensitivity will be accompanied by a decrease in specificity).

2. The closer the curve follows the left-hand border and then the top-border

of the ROC space, the more accurate the test.

3. The closer the curve comes to the 45-degree diagonal of the ROC space,

the less accurate the test.

4. The slope of the tangent line at a cutpoint gives the likelihood ratio (LR)

for that value of the test.

5. The area under the curve is a measure of the accuracy. The accuracy

depends on how well the test separates the group being tested into the

two classes. The curve always goes through two points (0,0 and 1,1).

(0,0) is where the classifier finds no positives, that is the classifier always

gets the negative cases right but gets all positive cases wrong. (1,1) is

where the classifier finds no negatives, that is the classifier gets all the

positives right but gets all the negatives wrong.

A typical example of an ROC curve is shown in Fig. 2.2.

From Fig. 2.2, there are three ROC curves. Curve A has a larger area under

the curve and is considered as the best classifier amongst the three, meanwhile

curve C has an area under the curve (AUC) of 0.5 and is the worst classifier

amongst the three. An AUC of 0.5 means that the model classifiers half of

the samples right, which is the probability of guessing right giving two choices.

Hence, the curve C represents a model which can be obtained by guesswork.
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Figure 2.2: ROC Curve Example

The AUC can be computed using the trapezoidal rule in mathematics. A

perfect classifier moves from point (0,0) to point (0,1) and then moves from

point (0,1) to point (1,1) such that the AUC is 1. The closer the AUC tends

towards 1, the better the classifier.

Model Selection

Plotting the True Positive Ratio on the y-axis against the False Positive Ratio

on the x-axis results in the ROC curve, which depicts the trade-offs between

true positives and the costs (false positives). Perfect classification occurs at the

point (0,1) on the ROC space, while (0,0) indicates that the classifier never

issues positive classifications, and (1,1) represents a classifier always issuing

positive classification (Fawcett 2003). The threshold can therefore be selected
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according to the misclassification costs: if a classification should only be made

if there is strong evidence, then a classifier in the lower left hand side should be

selected. Conversely, if the aim is for the classifier to be sensitive to possible

positive cases, the upper right hand corner shows the classifiers that make

positive classifications even if evidence is low.

Model Evaluation

Random performance manifests as the diagonal line y = x, and a classifier

guessing 50% of the time is positioned at (0.5,0.5) on the plot. The area under

the ROC curve (AUC) has often been used to compare classifiers, with a max-

imum of area of 1 and minimum of 0. The AUC is a useful method since it

does not depend on the decision threshold, and is invariant to prior class prob-

abilities. Since all random classifiers appear on the diagonal, all performing

classifiers should have an area greater than 0.5. Statistically, the AUC is the

probability that the classifier will rank a randomly chosen positive instance

higher than a randomly chosen negative instance (Fawcett 2003). The area

under the ROC curve is a measure of the difference between the distributions

of the positives and negative classes (Chan et al. 2002). In this study, the area

under the ROC represents the probability that the test will produce a value

for a randomly chosen diseased subject that is greater than the value for a ran-

domly chosen healthy subject. A perfect test has unity area, while a test that

produces a random result has an area of 0.5. In some instances, it is possible

that classifiers with larger AUCs are suboptimal classifiers, and the classifiers
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on the convex hull of the curve are evaluated for accuracy performance. The

slope of the curve indicates class distribution in that segment of the ranking,

which means that a diagonal segment indicates that locally, random behaviour

occurs. A more convex curve with greater area under the curve therefore indi-

cates good separation ability of the classifier. Concavities also indicate worse

than random behaviour, and these occur locally (Flach 2004).

2.3 Methodology

The literature review showed that models for HIV prediction and classification

have been developed using conventional feedforward neural networks architec-

tures and have worked well. However, it was found from the literature review

that autoencoder networks have not been applied to HIV modelling, for pre-

diction and classification. Our work thus focuses on proposing a methodology

for HIV classification from demographic properties using autoencoder neural

networks and genetic algorithms. Support Vector Machine (SVM) methods

and Decision Trees (DT) methods have been applied for missing data estima-

tion, such as in Ssali and Marwala (2008), Jagannathan and Wright (2008)

and Twala et al. (2008). Our work also focuses on comparing the proposed

autoencoder method to a conventional feedforward neural networks model, by

creating a feedforward MLP neural network model and comparing the results

with the autoencoder network model results.

38



2.3.1 HIV Classification Using Autoencoder Networks

The NETLAB toolbox (Nabney 2003) was used to create and train an au-

toencoder MLP architecture. This toolbox has a 2-layer MLP network, which

according to literature review (Bishop 1995) is capable of modelling any com-

plex relationship, such as the HIV model. The network implemented consisted

of an input layer, representing different demographic inputs and the HIV sta-

tus, mapped to an output layer representing the same characteristics as the

input layer via the hidden layer. The network was thus trained to recall itself

(predict the demographic inputs). This network is shown in Fig. 2.1. One

of the input nodes in Fig. 2.1, x2, represented the HIV status of individuals,

which was ultimately represented by one of the output nodes, y2, as well. The

neural network equation can be written as in Eqn 2.1. Since the network is

trained to recall the demographic inputs, the output vector (predicted demo-

graphic properties) obtained will be approximately equal to the input vector x

(actual demographic properties). An error, however, exists between the input

vector x and the output vector y, which can be expressed as the difference

between the input and output vector. This error is formulated as (Abdella

and Marwala 2005):

e = x− y (2.6)

Substituting for y from Eqn 2.1 into Eqn 2.6 we get

e = x− f(x, w) (2.7)
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In our work, a minimum and non-negative error is required. This can be

obtained by squaring the error function in Eqn 2.7 to obtain

e = (x− f(x, w))2 (2.8)

To predict the HIV status of individuals, the HIV status input, in the input

vector x was assumed as an unknown input, while the demographic input

properties were considered as the known inputs. When the input vector x

has unknown elements, the input vector set can be categorized into x known

represented by xk and x unknown represented by xu. Rewriting Eqn 2.8 in

terms of xk and xu, we obtain

e = (






xu

xk





− f(






xu

xk





, w))2 (2.9)

Here xu represents the HIV status of the individual, which is unknown, xk

represents the demographic input parameters of the individuals in Table 1.1,

w represents the weight vector that maps the autoencoder network input vector

x to the same input vector x . An estimated value for the HIV status is then

obtained by minimizing Eqn 2.9 using a genetic algorithm (GA). GA was

chosen because it finds a good approximation to the global optimum solution

(Davis 1991). GA, however, always finds the maximum value. To cater for

this, the negative of Eqn 2.9 was used as the fitness function for the GA. The

error function to be minimized is thus

e = −(






xu

xk





− f(






xu

xk





, w))2 (2.10)

Where f represents the functional mapping in the MLP network depicted by

Eqn. 1.1, with a linear activation function. This estimated value from the
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autoencoder network and genetic algorithm was a continuous value represent-

ing the HIV status. A threshold was thus required to convert the HIV output

node value to a binary value, representative of the HIV class of the individual.

Fig. 2.3 shows the implementation of this proposed model in a flowchart.

2.3.2 HIV Classification Using Neural Networks

In this model, the NETLAB toolbox (Nabney 2003) was used to create and

train an MLP neural network architecture. The network implemented con-

sisted of an input layer, representing different demographic inputs of an indi-

vidual, mapped to an output layer representing the HIV status of an individual

via the hidden layer. The network thus mapped the demographic inputs of in-

dividuals to the HIV status. This network is shown in Fig. 2.4. The neural

network equation can be written as in Eqn 2.1. In this model, however, the

output vector represents the HIV status of the individual. The network is

thus trained to find the relationship between the HIV status of the individ-

ual and the individual’s demographic input properties. An error, however,

exists between the individual’s predicted HIV status (output vector) y and

the individual’s actual HIV status (target vector) during training, which can

be expressed as the difference between the target and output vector. For the

neural network HIV classification, the mean square error function between the

target output vector and the output vector y is insufficient as a classification
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Figure 2.3: Flowchart of the proposed model

42



Figure 2.4: MLP network used in this study

accuracy measure, as it only indicates the total number of correct classifica-

tions. A confusion matrix was thus constructed and the accuracy was obtained

from the confusion matrix. The accuracy can be formulated as (Hand et al.

2001)

Accuracy =
TN + TP

TN + TP + FN + FP
(2.11)

Here TN = True Negatives (where network predicts an HIV negative person

as negative), FP = False Positives (where network predicts an HIV negative

person as positive), FN = False Negatives (where network predicts an HIV

positive person as negative) and TP = True Positives (where network predicts

an HIV positive person as positive).

The accuracy function was then used as the fitness function in the genetic
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algorithm to obtain the optimal neural network parameters(Leke, Marwala,

Tim and Lagazio 2006b). GA was used since it finds the maximum value

of the fitness function, which was required in this case. GA was also used to

obtain the threshold value to convert the continuous network output to a binary

value representative of HIV, by minimizing the fitness function. The genetic

algorithm parameters and how they were chosen are discussed in Section 1.4.

2.4 Results and Discussions

The Demographic and medical data, used in this study, came from the South

African antenatal seroprevalence survey of 2001 (HealthDept 2005). This is

a national survey, and any pregnant women attending selected public health

care clinics participating for the first time in the survey were eligible. The

variables obtained are shown in Table 1.1. A total of 1986 training inputs

were provided for the network. The genetic algorithm, used for the autoen-

coder network model proposed in this study and the neural network model,

used arithmetic cross-over, non-uniform mutation and normalized geometric

selection. The probability of cross-over was chosen to be 0.75 as suggested

in Marwala and Chakraverty (2006). The probability of mutation was chosen

to be 0.0333 as recommended by Marwala and Chakraverty (2006). Genetic

algorithm had a population of 40 and was run for 150 generations. The first

experiment investigated the use of autoencoder networks for HIV classifica-

tion. An autoencoder network with 9 inputs and 9 outputs was constructed
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and several numbers of hidden units were investigated, using Matlab (MAT-

LAB 2004). A GA was used to obtain the optimum number of hidden units

and yielded an optimum number of hidden units of 2, hence the structure 9

- 2 - 9. Linear optimization using the mean square error versus hidden units

was also investigated. As shown in Fig. 2.5, the linear optimization yielded 6

hidden units as the optimal network that gives the best prediction since the

error does not change significantly from 6 units onwards (the difference in er-

ror is about 8.5 from 6 hidden units to 20 hidden units). It must be noted,

Figure 2.5: Plot of RMS versus Hidden Units

however, that it is generally assumed that the best autoencoder network is the

one that has the lowest possible number of hidden units (Kramer 1991). A

hidden unit of 2 was thus used as the optimal autoencoder network number

of hidden units. The performance analysis for the autoencoder network model

is based on classification accuracy and the area under the ROC curve. The

proposed autoencoder network model obtained an HIV classification accuracy
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of 92%. The confusion matrix obtained for the above network is as shown in

Table 2.1. The ROC curve for this classification is shown in Fig. 2.6 and the

Table 2.1: Confusion Matrix of Autoencoder Neural Network Classifier

Confusion Matrix Predicted Positive Predicted Negative

Actual Positive 899 94

Actual Negative 65 928

area under the curve was computed as 0.86, thus giving a very good classifier

according to Monash (2006).

Figure 2.6: ROC curve for autoencoder network classifier

The second experiment investigated the use of conventional feedforward neural

network MLP architecture to classify the HIV status of an individual using the

demographic input properties. The MLP was constructed with 9 inputs and

1 output. A GA was then used to obtain the optimal structure and yielded

an optimal number of hidden units of 77, hence the structure was 9 - 77 - 1.
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The performance analysis for this network model is also based on classification

accuracy and the area under the ROC curve. This network gave an accuracy

of 84%. The confusion matrix obtained for the above network is as shown

in Table 2.2. The ROC curve obtained for this classification is shown in Fig.

Table 2.2: Confusion Matrix of Feedforward MLP Neural Network Classifier

Confusion Matrix Predicted Positive Predicted Negative

Actual Positive 680 313

Actual Negative 0 993

2.7 and the area under this ROC curve obtained was 0.8, which according to

Monash (2006) is a very good classifier. The reason why autoencoder networks

Figure 2.7: ROC curve for the MLP network classifier

performed better than the conventional feedforward neural network can be at-

tributed to the fact that the autoencoder network focuses on characterizing
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the positive classes independently of the negative classes, whereas the con-

ventional feedforward neural networks may overlook under-represented classes

(Leke et al. 2007a). The difference in performance can also be attributed to the

fact that in the autoencoder network, classification is done by choosing the best

fitting model using probability distributions, i.e. the class of the network with

the smallest reconstruction error meanwhile conventional feedforward neural

networks just map an input vector to an output vector using scenario and

encodes the classes directly. This plays a role because, for non-linear models

such as the HIV model, it is usually difficult to compute the derivatives for the

scenarios since they require that we integrate all the possible representations

that could have been used for each particular observed input vector.

The results obtained can be summarized as shown in Table 2.3.

Table 2.3: Summary of Results Obtained

Model Accuracy Area Under ROC Curve Classifier Type

Autoencoder Network 92 0.86 Very Good

Feedforward Network 84 0.8 Good
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2.5 Conclusion

A method based on autoassociative neural networks and genetic algorithms is

proposed to classify the HIV status of an individual from demographic prop-

erties. This method is proposed in order to investigate whether using autoen-

coder networks improves the accuracy of classification, of an individual’s HIV

status, from demographic properties. The proposed method is tested on an

HIV data set obtained from the South African antenatal seroprevalence survey

of 2001. The method is then compared to a conventional feedforward neural

network model, implemented using the MLP architecture. A classification ac-

curacy of 92% was obtained for the autoencoder network compared to 84%

obtained for the conventional feedforward neural network model implementa-

tion. The area under the ROC curve for the autoencoder network classifier

was computed as 0.86 compared to 0.8 computed for the conventional feed-

forward neural network classifier. The result of this study thus suggests that

autoencoder network models are more accurate and better classifiers for the

HIV model than conventional feedforward neural network models, since au-

toencoder networks focus on characterizing the positive classes independently

of the negative classes, whereas the conventional feedforward neural networks

may overlook under-represented classes.
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Chapter 3

Estimation of Missing Entries in

HIV Database Using

Computational Intelligence

3.1 Introduction

This chapter introduces a method to estimate missing input values for HIV

analysis, using a combination of autoencoder networks and ant colony opti-

mization. The estimated missing input values are then used in an autoencoder

network and genetic algorithm classifier model to analyze HIV. The estimated

missing input values are also used in a feedforward neural network classifier

model to analyze HIV. In the previous chapter, the use of artificial neural
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networks in the classification of the HIV status of individuals from their de-

mographic properties was investigated. Good results were achieved by using

only complete data cases with no missing data values. In our database, one

common missing data value is the educational level of the female, which was

missing from 142 individuals (2.3% of our demographic database). The values

may not have been recorded due to the female not filling the highest educa-

tional level attained. Since this parameter is included in the neural network

classification models developed in our previous study, a model is proposed to

estimate this missing input parameter, given that the demographic parameters

age group, age gap, region of origin, province, race, gravidity, rapid plasma

reatin (RPR) and parity, are known. In the literature review, there is no

method proposed thus far that investigates the use of autoencoder networks

for missing data values estimation for the HIV model. From the literature

review, there is also no method that has been proposed for missing data es-

timation using ant colony optimization. The aim of this chapter will thus be

to propose a new method, which is based on autoassociative models combined

with ant colony optimization to estimate missing data in the HIV demographic

properties database. These estimated values are then used to classify the HIV

status of individuals, and to also quantify the impact of missing data on HIV

classification. Two models for classification, based on autoencoder networks

and conventional feedforward networks, are analyzed and compared to obtain

the most missing data (noise) resistant network model.

Neural network systems usually handle only complete input data cases and
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have been applied to data estimation. Junninen et al. (2004) applied neural

networks for the imputation of missing values in air quality data sets, and com-

mented on the substitution of mean values of the data to replace the missing

data. Junninen et al. (2004) recommended neural networks for imputation of

missing data as the more effective model. Gabrys (2002) proposed a missing

data estimation method using neuro-fuzzy neural networks, which classified

the data successfully in the presence of missing data. Pesonen et al. (1998)

inspected different substitution methods for the replacement of missing data

values for use in neural network based decision support systems. Pesonen

et al. (1998) concluded that neural networks could be used for the estimation

of missing data values in the database. Tolle et al. (2000) used artificial neural

networks to estimate missing data values for predicting blood concentration

levels of pharmaceutical agents in humans, and showed that neural networks

outperformed the other methods investigated. Khalil et al. (2001) showed that

neural networks are a reasonable alternative for replacing missing data values

in a streamflow data set. Lint et al. (2005) presented a state-space neural

network model and showed that it yielded good results on both synthetic and

real data for missing data models. Other methods that have been applied to

missing data estimation include Generative Topographic Mapping as in Vellido

(2006) and nearest neighbour methods as in Pesonen et al. (1998). Reports

and publications showed models based on neural networks for estimating miss-

ing data values in the HIV model and the impact of such missing data have,

however, not been investigated. In this study neural networks are used with

genetic algorithms (Davis 1991; Michalewicz 1996) and ant colony optimization
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(ACO) (Bullnheimer et al. 1998; Dorigo and Gambardella 1997).

Other methods that have also been applied to data imputation for the missing

data problem include; Decision trees and Support Vector Machines. C4.5

decision trees have been applied to the problem by Lakshminarayan et al.

(1999) for the treatment of missing data in a database. In this case, however,

the database was largely made up of continuous attributes, which C4.5 does

not naturally handle. Background on C4.5 decision trees can be found in Han

and Kamber (2000) and Quinlan (1993). Support vector machines (SVM)

have also been applied to the missing data problem, such as in Pelckmans

et al. (2005) where the Least-squares SVM was applied to handle missing data.

Honghai et al. (2005) also investigated an SVM regression based approach for

filling in missing values, but the documented results were for largely continuous

databases as well, which differ from the HIV dataset.

3.2 Ant Colony Optimization

Ant colony optimization (ACO) is a branch of swarm intelligence, which makes

use of the behavioral simulation of ants. ACO simulates the collective habits

of ants - ants searching for food, and bringing their discovered food back to

the nest. Ants have poor vision and communication, thus the key to the group

effectiveness is pheromone - a chemical substance deposited by ants as they

travel (McMullen 2001). ACO was first proposed by Dorigo and Gambardella
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as a multi-agent approach for difficult combinatorial optimization problems

such as traveling salesman problem (Dorigo and Gambardella 1997), where the

ant that finds the shortest path to the food will have the strongest pheromone

trail, faster than the ants that choose a longer path (Haupt and Haupt 2004).

This path is thus the optimal path since other ants will be attracted to the

shorter path. ACO has been applied for feature subset selection using neu-

ral networks as in Sivagaminathan and Ramakrishnan (2007). ACO has also

been applied in vehicle routing problems (Bullnheimer et al. 1998) and graph

coloring (Costa and Hentz 1997). Publications and reports reviewed, however,

showed that ACO used in data estimation, to the best of our knowledge, had

not been investigated. In this study, ACO is thus used to estimate missing

inputs in the HIV data set. More details on ACO can be found in Dorigo and

Gambardella (1997); Haupt and Haupt (2004). The next section presents the

proposed methodology.

3.3 Methodology

The literature review showed that neural networks have been used for missing

data estimation and obtained better results compared to other methods that

exist such as replacing the missing values, with mean of known values. Lit-

erature review also showed that autoencoder networks combined with genetic

algorithms have been used for missing data estimation as in Abdella and Mar-

wala (2005). However, it was found from literature review that autoencoder
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networks have not been applied to HIV modeling, for estimation of the miss-

ing data. Quantification of the impact of such missing data values in the HIV

model have also not been investigated in any literature review. Our work thus

focuses on proposing a methodology for missing data estimation in an HIV

demographic database, using autoencoder neural networks. The method pro-

posed for missing data estimation is based on ant colony optimization, which

has not been applied in missing data estimation. Our work also focuses on

classifying the HIV status of individuals from the estimated missing data val-

ues obtained from the missing data method, using firstly autoencoder neural

networks, and secondly conventional feedforward neural networks. The two

classification models are then compared to obtain which of these models is

more resistant to the effects of missing data, and thus the more noise resistant

model.

3.3.1 Missing Data Estimation Using Autoencoder Net-

works and Ant Colony Optimization

In this section, an overview of the proposed method is presented in Fig. 3.1.

Firstly, a set of ants is initialized. These ants represent possible solutions for

the missing data value. The population size, which is specified by the user,

determines the number of ants (Nants) to be initialized. The population size

must be sufficient to explore all the potential solutions. A population size of

100 is chosen for this study. This was found as the optimal number of ants
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during the optimization process. Each ant is then used to represent the input

parameter to be estimated and is propagated through an autoencoder neural

network. A cost function is then generated, which is the sum-of-squared-

errors between the predicted output from the autoencoder network and actual

output required, which is the inputs of the autoencoder network. This can be

formulated as (Dorigo and Gambardella 1997; Leke and Marwala 2006):

costk =

∑8
n=1(f






xk
ant

xd

, w





n

−Xn)2

8
(3.1)

Here xk
ant represents the k-th ant, and xd represents the known demographic

input properties, w represents the mapping weights of the autoencoder net-

work, Xn represents the n-th actual demographic input, f(o) represents the

autoencoder function and costk is the cost function of the k -th ant. The cost

function is obtained by getting the average sum-of-square error for the known

parameters and the values predicted by the network. The closer the predicted

values are to the real values, the more accurate the missing data information.

Eqn. 3.1 is divided by 8, since there are 8 known parameters and 1 unknown

parameter. The cost function is then used to obtain the pheromone for each

ant as follows (Dorigo and Gambardella 1997; Leke and Marwala 2006):

Phmonek =
Q

costk
(3.2)

Here Q is a constant (the exploitation probability factor) to be optimized (in

this study, 0.028(Haupt and Haupt 2004)), and Phmonek is the pheromone

concentration of the k -th ant. The ants are then run through iterations where

the pheromone is updated using the update rule (Dorigo and Gambardella
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1997; Haupt and Haupt 2004)

Phmonek
t = (1− ξ)Phmonek

t−1 + ε ∗ Phmonebest + Phtempk (3.3)

Here Phmonek
t is the k-th ant’s pheromone from iteration 1 to t,Phmonek

t−1

is the pheromone from iteration 1 to (t-1), Phmonebest is the pheromone of

the ant with the least cost in the current iteration t, Phtempk is the k-th

ant’s pheromone for each iteration t, 0 < ξ < 1 is the decay constant of the

pheromone trail (in this study, 0.8 (Sivagaminathan and Ramakrishnan 2007))

and ε is the best path weighting constant (in this study, 5 (Haupt and Haupt

2004)). The optimal ant, which is the estimated missing data, is then chosen as

the ant with the greatest pheromone trail, after all the iterations. The number

of iterations, used in this study, is 200, since iterations above this value yielded

insignificant changes to the estimation accuracy.

3.4 Results and Discussion

The demographic and medical data, used in this study, came from the South

African antenatal seroprevalence survey of 2001 (HealthDept 2005). This is

a national survey, and any pregnant women attending selected public health

care clinics, participating for the first time in the survey, were eligible. The

variables obtained are shown in Table 1.1. A total of 1986 training inputs

were provided for the network. Amount of 142 demographic input entries

were incomplete. The genetic algorithm, used for the autoencoder network

classification model, and the feedforward neural network classification model,
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used the same parameters as in Chapter 2, Section 2.4. The ant colony had a

population of 100 and was run for 200 iterations.

The first experiment investigated the use of autoencoder networks and ant

colony optimization to estimate missing input in the demographic data set

model. Input values were discarded from the input data set for experimental

purposes, and were then used to obtain the estimation accuracy of the model.

An autoencoder neural network structure was created with 9 inputs, 2 hidden

layers and 9 output layers, using Matlab (MATLAB 2004). Linear optimization

using the mean square error versus hidden nodes was investigated. As shown in

Fig. 2.5, the linear optimization yielded 6 hidden nodes as the optimal network

that gives the best prediction since the error does not change significantly from

6 units onwards (the difference in error is about 8.5 from 6 hidden nodes to 20

hidden nodes). It must be noted, however, that it is generally assumed that

the best autoencoder network is the one that has the lowest possible number of

hidden nodes (Kramer 1991). A hidden unit with 2 hidden nodes was thus used

as the optimal autoencoder network number of hidden nodes. The proposed

method estimated missing input values to an accuracy of 80%. The correlation

between the two data sets was 0.84, which also further confirms the consistency

of this model. Ant colony optimization is used for missing data estimation as

the optimization method, rather than GA in this model, in order to ensure

that the autoencoder missing data model and the autoencoder classification

model which uses GA are uncorrelated and decoupled.

The second experiment investigated the use of autoencoder networks for HIV
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classification in the presence of missing data. An autoencoder network with 9

inputs and 9 outputs with 2 hidden layers (optimal) was constructed (Section

2.3.1), using Matlab (MATLAB 2004). The performance analysis for the au-

toencoder network model is based on classification accuracy and the area under

the ROC curve. The estimated missing demographic data obtained from the

first experiment, was combined with the known demographic data from the

antenatal data set, to classify the HIV status of individuals. The ROC curve

for the classifier is shown in Fig. 2.6. The area under the curve was computed

as 0.86, thus giving a very good classifier according to Monash (2006). The

accuracy of the model with missing data presence is 81%. Previous research

carried out by the authors showed that the classification accuracy of the au-

toencoder network for a case with no missing data was 92%. The effect of

the presence of missing data on the autoencoder network is quantified by a

difference of 11, which is quite substantial.

The third experiment investigated the use of a conventional feedforward neural

network MLP architecture to classify the HIV status of an individual, in the

presence of missing data. The MLP was constructed with 9 inputs represent-

ing demographic characteristics, and 1 output representing HIV class (Section

2.3.2). A GA was then used to obtain the optimal structure and yielded an

optimal number of hidden units of 77, hence the structure was 9 - 77 - 1.

The performance analysis for this network model is also based on classification

accuracy and the area under the ROC curve. The estimated missing demo-

graphic data obtained from the first experiment, was combined with the known
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demographic data from the antenatal data set, to classify the HIV status of

individuals. The ROC curve obtained for the classifier is shown in Fig. 2.7.

The area under this ROC curve was computed as 0.8, which again according

to Monash (2006) is a very good classifier. The accuracy obtained for the

classification in the presence of missing data is 82%. Previous research carried

out by the authors showed that the classification accuracy of the conventional

feedforward network for a case with no missing data present was 84%. The

effect of the presence of missing data on the feedforward neural network caused

a difference in accuracy of 2%, which is not really significant.

The results thus show that the effect of missing data is more significant on

the autoencoder network classification model rather than on the feedforward

neural network classification model. It is hypothesized that this may be due to

the lower effective dimension of the autoencoder network classifier, which re-

sults in high correlation between the input parameters for output classification

(this is mathematically proven in the subsequent pages of this chapter). For

estimation of parameters where the output is known, autoencoder networks

proved to be very effective since the network structure ensures the parameters

are reconstructed to suit the output. For classification of the HIV status from

missing data, however, if a slightly wrong estimate is yielded for the missing

input value, this also causes the predicted parameters to be affected due to

the high correlation of the input parameters in the narrow hidden layer. In

comparison, the feedforward neural network model assigns significance of input
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parameters during learning through the weights and biases of the hidden lay-

ers. The input parameters yield a decoupled effect on the output, even though

they are combined ultimately in the network. If the missing input values were

slightly wrongly estimated, the pattern generated by the feedforward neural

network will not be significantly affected, since the other decoupled known

input values influence the pattern independently. The error analysis can be

demonstrated using the following analysis. Consider a network represented by

Fig. 3.2. The network hidden layer equation can be represented by (Bishop

1995):

y′
1 = w11x1 + w12x2 + w13x3 + b11 (3.4)

y′
2 = w21x1 + w22x2 + w23x3 + b12 (3.5)

y′
3 = w31x1 + w32x2 + w33x3 + b13 (3.6)

The hidden layer has an activation function which is a hyperbolic tangent

function represented by (Bishop 1995):

f(x) = tanh(x) =
ex − e−x

ex + e−x
(3.7)

Using McLaurin’s Expansion for a function f(x), which is:

f(x) = f(0) + x ⋆ f ′(0) (3.8)

Knowing that:

f ′(x) =
4

ex + e−x2 (3.9)

We get f(0)=0 and f’(0)=1. Thus,

f(x) ≈ tanh(x) ≈ x (3.10)
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by McLaurin’s approximation where we are effectively assuming a linear activa-

tion function. Thus: y”1, y”2, y”3 can be represented by: y′
1, y

′
2, y

′
3. Replacing

x1, x2 and x3 by x1 + ∆x1, x2 + ∆x2 and x3 + ∆x3 respectively, Eqn 3.4, Eqn

3.5 and Eqn 3.6 become

y′
1(x + ∆x) = w11(x1 + ∆x1) + w12(x2 + ∆x2) + w13(x3 + ∆x3) + b11 (3.11)

y′
2(x + ∆x) = w21(x1 + ∆x1) + w22(x2 + ∆x2) + w23(x3 + ∆x3) + b12 (3.12)

y′
3(x + ∆x) = w31(x1 + ∆x1) + w32(x2 + ∆x2) + w33(x3 + ∆x3) + b13 (3.13)

With a linear output function, we get:

y = w′
1y”1 + w′

2y”2 + w′
3y”3 + b2 (3.14)

Substituting and simplifying yields:

E = (y(x + ∆x)− y(x)) =
3∑

n=1

w′
n

3∑

k=1

wnk∆xk (3.15)

This results in a linear combination thus demonstrating that dependence of

feedforward neural network on the uncertainty is linear.

If we now consider the network represented by Fig. 3.3, the hidden layer

equations obtained are Eqn 3.4 and Eqn 3.5. Using the hyperbolic tangent

function Eqn 3.7 as the hidden layer activation function and approximating

with the McLaurin’s series as in Eqn 3.10. Replacing x1, x2 and x3 by x1 +

∆x1, x2+∆x2 and x3+∆x3 respectively in Eqn 3.4 and Eqn 3.5 we get Eqn 3.11

and Eqn 3.12. The outputs with a linear activation function for the network

is (Bishop 1995):

y1 = w′
11y

′
1 + w′

12y
′
2 + b21 (3.16)
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y2 = w′
21y

′
1 + w′

22y
′
2 + b22 (3.17)

y3 = w′
31y

′
1 + w′

32y
′
2 + b23 (3.18)

Replacing y′
1 and y′

2 by Eqn 3.11 and Eqn 3.12 respectively,

y1(x + ∆x) = w′
11(w11(x1 + ∆x1) + w12(x2 + ∆x2) + w13(x3 + ∆x3) + b11)

+ w′
12(w21(x1 + ∆x1) + w22(x2 + ∆x2) + w23(x3 + ∆x3) + b12)(3.19)

y2(x + ∆x) = w′
21(w11(x1 + ∆x1) + w12(x2 + ∆x2) + w13(x3 + ∆x3) + b11)

+ w′
22(w21(x1 + ∆x1) + w22(x2 + ∆x2) + w23(x3 + ∆x3) + b12)(3.20)

y3(x + ∆x) = w′
31(w11(x1 + ∆x1) + w12(x2 + ∆x2) + w13(x3 + ∆x3) + b11)

+ w′
32(w21(x1 + ∆x1) + w22(x2 + ∆x2) + w23(x3 + ∆x3) + b12)(3.21)

Thus

y1(x + ∆x) = y1(x) + w′
11(w11∆x1 + w12∆x2 + w13∆x3)

+ w′
12(w21∆x1 + w22∆x2 + w23∆x3) (3.22)

y2(x + ∆x) = y2(x) + w′
21(w11∆x1 + w12∆x2 + w13∆x3)

+ w′
22(w21∆x1 + w22∆x2 + w23∆x3) (3.23)

y3(x + ∆x) = y3(x) + w′
31(w11∆x1 + w12∆x2 + w13∆x3)

+ w′
32(w21∆x1 + w22∆x2 + w23∆x3) (3.24)

Thus

yn(x + ∆x) = yn(x) + w′
n1(w11∆x1 + w12∆x2 + w13∆x3)

+ w′
n2(w21∆x1 + w22∆x2 + w23∆x3) (3.25)

63



For the above network, the error is quantified as (Leke and Marwala 2006):

E =
3∑

i=1

(y
(i)
pred − y

(i)
act)

2 =
3∑

i=1

ξ2
i (3.26)

Where the yact is equivalent to the inputs. Here ypred is equal to yn(x + ∆x)

and yact is equivalent to yn(x);

ξn = yn(x + ∆x)− yn(x) = w′
n1(w11∆x1 + w12∆x2 + w13∆x3)

+ w′
n2(w21∆x1 + w22∆x2 + w23∆x3) (3.27)

ξn = A∆x1 + B∆x2 + C∆x3 (3.28)

Where A = w′
n1w11 +w′

n2w21, B = w′
n1w12 +w′

n2w22 and C = w′
n1w13 +w′

n2w23.

ξ2
n = A2∆x2

1 + B2∆x2
2 + C2∆x2

3 + 2AB∆x1∆x2 + 2AC∆x1∆x3 + 2BC∆x2∆x3

(3.29)

Since as the weights w, are small the product of four weights w4 will converge

towards a value, K. Thus AB ≈ AC ≈ BC ≈ A2 ≈ B2 ≈ C2 ≈ K. Also the

product of the uncertainty is a constant, P.

Thus

P = ∆x1∆x2∆x3 (3.30)

Substituting Eqn (3.30) in Eqn (3.29), we get

ξ2
n = K∆x2

1 + ∆x2
2 + ∆x2

3 +
2P

∆x3

+
2P

∆x2

+
2P

∆x1

= K
3∑

i=1

∆x2
i +

2P

∆xi

(3.31)

Substituting Eqn (3.31) in Eqn (3.26) yields (Leke and Marwala 2006):

E =
3∑

n=1

Kn

3∑

i=1

∆x2
i +

2Pn

∆xi

(3.32)

From Eqn 3.15, it is found that the feedforward network has a linear output

dependence on the uncertainty in input data meanwhile from Eqn 3.32, it is
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found that the presence of uncertainty in the input data yields a non-linear

quadratic relationship. This error analysis of the two networks, thus shows

that the results obtained in this study makes sense and is logical, due to the

network architectures for the autoencoder and feedforward neural network.

Feedforward neural networks are thus more noise resistant than the autoen-

coder networks.

Ant colony optimization (ACO) was used in this chapter, for estimation of the

missing entries in the database. Genetic algorithm (GA) could also be used,

however, it was not preferred so as to ensure a decoupling of the estimation

model, which uses GA and the missing data model, which uses ACO. Also,

the genetic algorithm tends to converge slowly compared to other optimization

methods according to the literature (Marwala and Chakraverty 2006). The

ACO converged in approximately 320s compared to the GA’s approximately

1200s, thus about 4 times the convergence time. Also, the complexity and

multi-dimensionality of GA is much higher than that of the ACO, which makes

use of the pheromone on the trail. ACO uses a simple update rule as shown in

Eqn 3.3 meanwhile GA on the other hand makes use of genetic processes such

as crossover, mutation, and reproduction. The accuracy obtained by the GA

model for estimation of the missing parameters was 82%, which was slightly

better than that of the ACO of 80%, however, the time cost was significantly

better for the ACO.

The results obtained can be summarized in Tables 3.1 and 3.2.
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Table 3.1: Summary of Results

Model Accuracy Correlation Time Conclusion

AENN + ACO 80 0.84 320s Recommended: Computation Good

AAENN + GA 82 0.82 1200s Computationally Expensive

Table 3.2: Summary of Prediction Results

Model Accuracy AUC Noise Effect Conclusion

AENN + Missing Data 81 0.86 11 More sensitive to noise

FFNN + Missing Data 82 0.8 2 Recommended:Less sensitive

Note: AENN refers to Autoencoder network and FFNN refers to feedforward

neural network.

3.5 Conclusion

A method based on autoassociative neural networks and ant colony optimiza-

tion is proposed to estimate missing input values in the South African antenatal

demographic data set for HIV classification. This method is proposed in order

to investigate whether missing input values in the demographic survey have

an impact on the classification of the HIV status of individuals. The model

proposed estimated input values in the demographic data set with an accuracy

of 80%. An autoencoder network classification model and a feedforward neural

network classification model are then investigated, to quantify the impact of

missing data on these models. The missing input estimates obtained from the
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autoencoder missing data model, were fed into the autoencoder HIV classi-

fication network model. This network classifier had an area under the ROC

curve of 0.86. The network classifier obtained a classification accuracy of 81%

in the presence of missing data, compared to an accuracy of 92% obtained

for a case without missing data. The missing input estimates obtained from

the autoencoder missing data model, were then fed into the HIV feedforward

neural network classification model. The network classifier had an area under

the ROC curve of 0.8. The network classifier obtained a classification accuracy

of 82% in the presence of missing data, compared to an accuracy of 84% ob-

tained for a case without missing data. The result of this study thus suggests

that even though autoencoder network models are more accurate and better

classifiers for the HIV model than conventional feedforward neural network

models, feedforward neural network models perform better in the presence of

missing data. Feedforward neural networks are thus more noise resistant than

autoencoder networks, due to the fact that the narrow hidden layer of the

autoencoder networks causes the input parameters to be highly correlated,

meanwhile the feedforward network architecture model ensures that the effect

of the input parameters on the output is decoupled and independent.
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Figure 3.1: Flow Chart of Missing Data Estimation Model
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Figure 3.2: Feedforward neural network used for error analysis

Figure 3.3: Autoencoder neural network used for error analysis
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Chapter 4

Understanding Demographic

Influences On HIV

Susceptibility

4.1 Introduction

In this chapter, a control mechanism is proposed to assess the effect of demo-

graphic properties on the HIV status of individuals, based on inverse neural

networks, and autoencoder networks-based-on-genetic algorithms. This con-

trol mechanism is aimed at understanding whether HIV susceptibility can be

controlled by modifying some of the demographic properties. In this chapter,

the educational level and gravidity are the demographic parameters in study.
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The educational level represents the highest grade successfully completed by

the individuals. This parameter can be controlled by enforcing better educa-

tional policies. Gravidity is the number of pregnancies, complete or incomplete,

experienced by a female. This parameter can be controlled by using a condom

and the authors believe this parameter can be used by policy makers to under-

stand the HIV spread. The data set used for this chapter, which was obtained

from the South African antenatal seroprevalence survey, comprised of; race,

age of the female, age of the partner, educational level, gravidity, province of

origin, region of origin and HIV status. Other parameters in the data set are

not controllable, since the race, age or place of origin of an individual cannot

be modified. The control mechanisms are thus proposed to assess whether the

educational level or gravidity can be used to control HIV/AIDS susceptibility.

The educational level and gravidity are chosen because these two variables are

the only modifiable parameters in the data set and policy can be instituted to

affect these variables unlike the other parameters, which are not modifiable by

policy. The reason for generating the control models is to understand whether

the demographic parameters can be modified to diminish the likelihood of

contracting HIV. The first control model is implemented using inverse neural

networks and the second model is implemented using autoencoder networks

based on genetic algorithms. These models are explained in detail in the next

section.
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4.2 Methodology

The literature review shows that neural networks have been used for HIV/AIDS

modeling and worked well for such models, such as in Poundstone et al. (2004).

It was also found from the literature review that neural networks have been

used for HIV classification and prediction of HIV status of patients, from

symptoms using demographic properties and have yielded good results as in

Lee and Park (2001) and Sardari and Sardari (2002). The work in this chapter

focuses on creating a model to understand the impact of demographic prop-

erties’ changes on HIV status of individuals, rather than just relating these

properties to the HIV status of the individuals. From the literature review,

it was found that little had been done in proposing computational models for

HIV control, which could be used to understand how the demographic prop-

erties relate to the HIV status of individuals, as well as understand how these

demographic influences can be modified to reduce the risk of HIV. An adap-

tive controller model is thus proposed to help understand how modification

of demographic properties can affect HIV risk. The adaptive control model is

implemented using inverse neural networks, and autoencoder networks-based-

on-genetic algorithms. This study’s objectives are thus to:

1. Generate an inverse neural network model to predict a demographic pa-

rameter given the HIV status and other demographic parameters, thus

modeling output-input relationship.

2. Generate a model using autoencoder networks and genetic algorithms to
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predict a missing demographic parameter given the other demographic

parameters and the HIV status of the individual.

4.2.1 Generating Inverse Neural Network Model to Pre-

dict the Demographic Parameter

The datasets presented in Chapter 1, Section 1.2 were used to create a neural

network model. In this model, one of the inputs (educational level) in Fig. 2.1

is replaced by the output (HIV status); meanwhile the output in Fig. 2.1 be-

comes the replaced input (educational level) (Leke et al. 2007b). This is known

as an inverse neural network, since it relates the output to an input. A second

inverse neural network was then created with the output being the gravidity.

A genetic algorithm was then used to optimize the network parameters (hidden

nodes, α, and training cycles). The network was made up of an MLP network

comprising of 9 inputs (the educational level in the demographic properties

data set being replaced by the HIV status) and 1 output (educational level).

The number of hidden units returned by the genetic algorithm was 18, with

a weight decay coefficient (alpha) of 0.254 and 984 training cycles, which was

found after training, validation and testing. The model for the system is as

shown in Fig. 4.1. The demographic inputs are used in the neural network

model represented by “autoencoder networks” in Fig. 4.1 to predict the HIV

status. If the HIV status is predicted as positive, then the inverse neural net-

work model is used to predict the input parameter value (educational level or
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gravidity) required to make the status negative, by replacing the HIV value,

in the input data set, by 0.

Figure 4.1: Inverse neural network control model

4.2.2 Generating the Genetic Algorithm Model to Es-

timate the Missing Demographic Parameter

The aim of this model is to assess the educational level that will yield a negative

HIV status for an individual. Initially, the prediction model was used to predict

the status of individuals from the demographic input data set. For every set

of inputs, if the prediction yielded negative, then that educational level or

gravidity is kept as the right demographic parameter for that individual. If the

output from the prediction model, however, yields a positive status, then the
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educational level or gravidity is discarded and estimated using an autoencoder-

based-on-genetic algorithm model. A network model is thus created, which is

similar to the network model created in Chapter 2. In this model, however, to

predict the educational level or gravidity required, the demographic parameter

in question (represented by x3 in Fig. 2.1 and ultimately y3 in the output

node) in the input vector x is assumed as an unknown input, xu while the

other demographic input properties and the HIV status are considered as the

known inputs, xk. These are used in Eqn 2.10 and genetic algorithm is used to

minimize Eqn 2.10 thereby obtaining the educational level or gravidity from

the HIV status and the demographic properties of the individuals. Fig. 4.2

shows the implementation of this proposed model in a flowchart.

4.2.3 Generating the Model for HIV Control

The overall model is then created using the datasets in Chapter 1, Section 1.2.

The first model uses genetic algorithms and autoencoder networks, to predict

the educational level or gravidity, using a data estimation model, as explained

in Section 4.2.2. The second model uses inverse neural networks, to predict

the educational level or gravidity, from the other demographic properties and

the HIV status required, as explained in Section 4.2.1. Both models are im-

plemented in Matlab (MATLAB 2004). The structure implemented is shown

in Fig. 4.3. The two models are used to generate demographic parameters

required to yield a negative status for an individual whose status is predicted
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Figure 4.2: Flow chart of the proposed autoencoder missing data estimation

model

as positive, thereby finding the demographic parameter which is required for

an individual to be less prone or susceptible to contracting HIV. For the two

models, a demographic input dataset is sent into a prediction model, imple-

mented in Chapter 2 of this thesis. The predicted HIV status of the network

is then verified, and if the result yielded is 1 (positive), the control estimation

model, the inverse neural network model implemented in Section 4.2.1, or the

autoencoder-based-on-genetic algorithm model, implemented in Section 4.2.2,

or a combination of the two models, is then used with the HIV status being

replaced with a zero. The educational level thus required for the HIV status to
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Figure 4.3: Structure of the HIV control model

be zero (negative) is then obtained. The genetic algorithm is used to estimate

the required parameter here by minimizing an error equation in Eqn. 2.10.

4.3 Testing the Procedure

The dataset presented in Chapter 1 was used. An autoencoder network com-

prised of 10 inputs (9 inputs representing the demographic parameters and 1
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input representing the HIV status) and 10 outputs was constructed. An inverse

neural network comprised of 9 inputs (8 inputs representing the demographic

parameters and 1 input representing the HIV status) and 1 output (represent-

ing the demographic input to be predicted), was also constructed. GA was

used to choose the optimal number of hidden units for both networks. On im-

plementing the GA; the arithmetic cross-over, non-uniform mutation and nor-

malized geometric selection were used. Bounds were set based on maximum

and minimum values obtained from the data. The probability of cross-over

was chosen to be 0.75 as suggested in Marwala and Chakraverty (2006) and

probability of mutation was chosen to be 0.0333 by Marwala and Chakraverty

(2006). The GA had a population size of 40 and was run for 100 generations.

The GA yielded 2 hidden units as the optimal network that gives the best pre-

diction and classification of the HIV status, from the demographic properties

for the autoencoder network model. The GA also yielded 18 hidden units as

the optimal network that gives the best prediction of the educational level,

from the HIV status and other demographic properties, for the inverse neural

network model. The networks were trained using scaled conjugate gradient

method (Bishop 1995) with error backpropagation algorithms.

The first experiment investigates the use of the data set to predict the HIV

status of individuals from demographic characteristics. The performance anal-

ysis for the HIV prediction model is based on classification accuracy and the

area under the ROC curve. Experimentation was performed on a computer

with a processing power of 3.2 GHz. The optimal number of hidden nodes for
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the autoencoder network was 2; hence the structure was 10-2-10. This network

gave an accuracy of 92% on the test data sets. The confusion matrix obtained

for the above network is as shown in Table 2.1. The ROC curve obtained for

the classifier is shown in Fig. 2.6. The area under the ROC curve was found

to be 0.86, which according to Monash (2006) is an excellent classifier.

The second experiment used the same dataset as in the first experiment to

generate a control model. A feedforward neural network was created with

one of the demographic inputs (educational level or gravidity) replaced by the

HIV status. The demographic input was then used as the output. The inverse

neural network model was thus created. The optimal number of hidden nodes

for the inverse neural network model obtained by the genetic algorithm was

18, thus yielding a 9 - 18 - 1 structure. The training time was 46.9980s. When

used to predict the educational level of individuals from the other demographic

parameters, this network gave an accuracy of 77%. When used to predict the

gravidity of individuals from the other demographic parameters, this network

gave an accuracy of 82%.

The third experiment consisted of cases where one of the inputs (educational

level or gravidity) to the neural network was assumed to be unknown and

then estimated using autoencoder networks-based-on-GA. On implementing

the GA; the arithmetic cross-over, non-uniform mutation and normalized geo-

metric selection were used. Bounds were set based on maximum and minimum

values obtained from the data. The GA had a population size of 20 and was
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run for 150 generations. When used to predict the educational level of individ-

uals from the other demographic parameters, this network gave an accuracy

of 77%. When used to predict the gravidity of individuals from the other

demographic parameters, this network gave an accuracy of 92%.

The last experiment used a combination of the inverse neural networks and the

autoencoder-based-on-genetic algorithm models to generate a control model.

A majority voting combination scheme was used whereby the training accu-

racies were used as the weightings of the combination. When used to predict

the educational level of individuals from the other demographic parameters,

this network gave an accuracy of 74%. When used to predict the gravidity

of individuals from the other demographic parameters, this network gave an

accuracy of 89%.

The source of errors in the experiment is mainly data set related errors, due

to the data being biased towards one class, and neural network training. To

minimize the data set errors, reliable data was replicated for the class with less

data. To minimize the neural network training errors, standard procedures

were used for training, generalization and testing of neural networks. The

effects of these errors were, however, minimal on the overall predictability.

The results are summarized in Table 4.1
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Table 4.1: Summary of Results

Model Training Time Accuracy Recommended

Inverse NN 46.9980s 77(Educ), 82(Grav) X

Autoencoder 60.016s 77(Educ), 92 (Grav) Y

INVNN + Autoencoder 70.3s 74(Educ), 89 (Grav) X

4.4 Conclusion

In this study, a method based on neural networks and genetic algorithms is

proposed to investigate how demographic properties can be used to under-

stand the HIV susceptibility of individuals. The model aims at obtaining the

educational level or gravidity, which will make individuals less prone and sus-

ceptible to HIV contraction using demographic characteristics. A classifier

was first developed using autoencoder networks to classify the HIV status of

individuals based on demographic properties, and had a classification accu-

racy of 92% and an area under the curve of 0.86 for the ROC curve. An

adaptive control model was then generated and implemented in Matlab. This

model was implemented using inverse neural networks, and using autoencoder

networks-based-on-genetic algorithms. The models were tested on a set of

demographic characteristics from the South African antenatal data set. The

proposed model is able to estimate the educational level using GA and inverse

neural networks. The inverse neural network model yields faster results com-

pared to the GA model. The slowness of the genetic algorithm vis--vis the
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inverse neural networks model may be attributed to the fact that genetic algo-

rithms tend to converge slowly (Marwala and Chakraverty 2006; Davis 1991).

An accuracy of 77% was obtained by the inverse neural network model and an

accuracy of 77% was obtained by the genetic algorithm model, for the educa-

tional level prediction. An accuracy of 82% was obtained by the inverse neural

network model as opposed to 92% for the genetic algorithm model, for the

gravidity prediction. The lower accuracy of the inverse neural network model

may be attributed to the fact that inverse neural network models depend sig-

nificantly on the correctness of the model, meanwhile autoencoder networks

depend on the correlation of the input parameters due to the narrow hidden

layers. A model can thus be developed using inverse neural networks, to ef-

fectively assess the demographic parameters required by individuals, in order

to control the susceptibility to HIV of individuals. A model can also be devel-

oped using autoencoder neural networks and genetic algorithms, to effectively

assess the demographic parameters required by individuals. The results of this

study show that gravidity is a highly controllable parameter due to its high

predictability accuracy from the other demographic properties. The results of

this study also show that the educational level can be controlled even though

not as effectively as gravidity, due to lower predictability accuracy. This study

thus provides a means to understand how the demographic properties affect

HIV spread, and can be used by decision-makers and policy-makers to under-

stand the effects of demographic influences on HIV contraction.
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Chapter 5

HIV Modelling using

Neuro-fuzzy Method, Rough

Sets and Rule Extraction

5.1 Introduction

This chapter introduces a new method of using neuro-fuzzy modeling to an HIV

modeling and classification problem. The chapter uses the Takagi-Sugeno fuzzy

model for HIV analysis. The neuro-fuzzy model is then compared to a rough

set approximation for HIV analysis. This rough set approximation is based on

a formulation by Tettey et al. (2007). The defuzzification of the neuro-fuzzy
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model rule base, and the rules extracted by the rough set approximation, en-

sures transparency and overcomes the black box-like nature of artificial neural

networks. The neuro-fuzzy and rough set rules extracted will be presented.

The chapter will conclude by understanding the effect of missing data on the

neuro-fuzzy model and comparisons will be drawn with the feedforward model

presented in Chapter 2.

Analytical models based on statistical and computational intelligence models

have been proposed to model and understand the spread of HIV. These tech-

niques have been applied on quantitative measures collected over the years.

A survey of the work performed on HIV analysis was presented in Chapter

2. A neuro-fuzzy model, as well as a rough set model, is now presented as an

alternative technique for modeling the disease from demographic data. The

methods presented in Chapter 2 had shortcomings in that, even though neural

networks perform well for classification purposes, they have a black box nature

and the intrinsic output relationship to the input parameters are not easy to in-

terpret. This results in different interpretations by different researchers for the

same problem. Background review showed that, to the best of our knowledge,

neuro-fuzzy models have not been applied to HIV modeling of the antenatal

HIV database and it is anticipated that the results will be more advantageous

than neural networks models. Rough set models have also seldom been used

for HIV analysis and the formulation investigated in this chapter is based on

work by Tettey et al. (2007). Such models offer more significant results in

that the models yield rules, which are causal and more interpretable than the
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black box results obtained by neural networks. The weights extracted from

the neural network during optimization, offers no understanding as to how the

demographic characteristics affect the risk of contracting the disease. Neuro-

fuzzy models, which offer more intuitive understanding, are presented in the

next section. The neuro-fuzzy model will be used to model the risk of HIV

from demographic properties, which has fairly accurate prediction ability while

offering rules, which better explain the significance of the demographic charac-

teristics on the HIV risk. Rough set theory, which is the basis for formulating

the rough set approximation is also presented in the next section. The rough

set model yields rules, which will be compared to the neuro-fuzzy model rules.

The effect of the presence of missing data in the data set on the neuro-fuzzy

model’s classification accuracy is further studied.

5.2 Background

5.2.1 Fuzzy Systems and Neuro-fuzzy Modelling

A fuzzy rule-based model suitable for approximation of many systems and

functions is the Takagi-Sugeno (TS) fuzzy model (Takagi and Sugeno 1985).

Fuzzy logic concepts offer methods of modeling imprecise models, for complex

models. Fuzzy set theory derives its background for approximating informa-

tion and generating uncertain decisions, from human reasoning. Fuzzy logic

is based on the theory of fuzzy sets, which relates to classes of objects with
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unsharp boundaries in which membership is a matter of degree. The mem-

bership function is described by an arbitrary curve suitable from the point

of view of simplicity, convenience, speed and efficiency. The process of for-

mulating the mapping from a given input to an output using fuzzy logic is

called the fuzzy inference (Jang 1993). The basic structure of any fuzzy in-

ference system is a model that maps characteristics of input data to input

membership functions, input membership function to rules, rules to a set of

output characteristics, output characteristics to output membership functions,

and the output membership function to a single-valued output or a decision

associated with the output (Jang et al. 2002). In rule-based fuzzy systems,

the relationships between variables are represented by means of fuzzy if-then

rules e.g. “If antecedent proposition then consequent proposition”. Depending

on the particular structure of the consequent proposition, three main types of

fuzzy models are distinguished as: (1) Linguistic (Mamdani Type) fuzzy model

(Zadeh 1973), (Mamdani 1977) (2) Fuzzy relational model (Yi and Chung

1993) (3) Takagi-Sugeno (TS) fuzzy model (Takagi and Sugeno 1985). A ma-

jor distinction can be made between the linguistic model, which has fuzzy sets

in both antecedents and consequents of the rules, and the TS model, where

the consequents are (crisp) functions of the input variables. Fuzzy relational

models can be regarded as an extension of linguistic models, which allow for

different degrees of association between the antecedent and the consequent lin-

guistic terms. In this work, the TS fuzzy model is employed to develop a model

for classifying HIV from demographic characteristics. The TS fuzzy models

are relatively easy to identify and their structure can be readily analyzed. In
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the TS fuzzy model, the rule consequents are usually taken to be either crisp

numbers or linear functions of the inputs (Bersini and Bontempi 1997)

Rulei:IF x is Ai THEN yi = {A}Ti + {B}i, i=1,2,...,M

where x ∈ ℜn is the antecedent and yi ∈ ℜ
n is the consequent of the i-th rule.

In the consequent, {A}i is the parameter vector and {B}i, is the scalar offset.

The number of rules is denoted by M and Ai is the antecedent fuzzy set of the

i-th rule defined by the membership function (Takagi and Sugeno 1985):

µi(x) = ℜn → [0, 1] (5.1)

The fuzzy antecedent in the TS fuzzy model is normally defined as an and-

conjunction by means of the product operator (Takagi and Sugeno 1985)

µi(x) =
p∏

j=1

µ
j
i (xj) (5.2)

Where xj is the j-th input variable in the p-dimensional input space,and µij

the membership degree of xj to the fuzzy set describing the j-th rule. µij(x)

is the overall truth value of the i-th rule. For the input x, the total output y

of the TS model is computed by aggregating the individual rule contributions

(Mamdani 1977)

y =
M∑

i=1

µi(x) · yi (5.3)

Where µi is the normalized degree of fulfillment of the antecedent clause of
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rule Ri (Takagi and Sugeno 1985).

µ̂i(x) =
µi(x)

∑M
j=1 µj(x)

(5.4)

The yi are called the consequent functions of the M rules and are defined by

(Takagi and Sugeno 1985):

yi = wi0 + wi1x1 + wi2x2 + · · ·+ wipxp (5.5)

Where wij are the linear weights for the i-th rule consequent function. A fuzzy

rule-based system can be viewed as a layered network similar to Radial basis

function (RBF) artificial neural networks (Tettey and Marwala 2006). The

parameters such as membership functions and consequent parameters are to

be optimized, using training algorithms inherited from neural networks such

as gradient descent methods. There are two approaches to training the neuro-

fuzzy models (Tettey and Marwala 2006):

1. Fuzzy rules can be extracted from expert knowledge and used to create

a model. The parameters of the models are then refined using data from

the system to be modeled.

2. The number of rules can be determined from the quantitative data set

using a model selection technique. The parameters are then optimized

using data from the system to be modeled. The TS model, also con-

sidered as universal approximators, is most popular with data-driven

identification, such as the HIV model.
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Fuzzy Rules Extraction

As presented in Section 5.2.1, the fuzzy network realizes the inference mech-

anism of a Takagi-Sugeno fuzzy model, based on a collection of rules of the

form (Bersini and Bontempi 1997)

Rulei:IF x is Ai THEN yi = {A}Ti + {B}i, i=1,2,...,M

To realize the fuzzy inference mechanism, a network with three layers is used.

1. Layer L1. Units in this layer receive input values (x1, x2, ..., xn) and act

as fuzzy sets representing the terms of the corresponding input variable.

Nodes in this layer are arranged into H groups: each group representing

the IF -part of a fuzzy rule. Each node ik ǫ L1 receives the input variable

concerned, that is xi and computes the membership value µik(xi) that

specifies the degree to which the input value xi belongs to the fuzzy set

Ak
i , defined by a Gaussian membership function (Figueiredo and Gomide

1999):

µik(xi) = e−(xi−wik)2/σ2
ik (5.6)

where wik and σik are the center and width of the Gaussian function.

Hence the output node ik ǫ L1 is in the range [0, 1] and is computed by

the following function (Figueiredo and Gomide 1999):

f
(1)
ik (xi) = e−(xi−wik)2/σ2

ik (5.7)

2. Layer L2. The number of nodes in this layer is equal to the number
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of fuzzy rules. A node in this layer represents a fuzzy rule; for each

node, there are n fixed links from the input nodes representing the IF -

part of the fuzzy rules. The kth node performs the AND operation for

precondition matching of the kth rule by a product operator (Figueiredo

and Gomide 1999; Bersini and Bontempi 1997); thus the output of this

node is:

f
(2)
k (x̄) =

n∏

i=1

f
(1)
ik (xi) (5.8)

3. Layer L3. Nodes in this layer represent the output variables of the sys-

tem. Each node j acts as a defuzzifier and computes the output values

according to the following equation (Figueiredo and Gomide 1999):

f
(3)
j (x̄) =

∑N
k=1 f

(2)
k (x̄).νkj

∑N
k=1 f

(2)
k (x̄)

(5.9)

where ν corresponds to the consequent weights, x̄ is a vector containing

the input parameters, and N is the number of fuzzy rules.

The weights of the network correspond to the Gaussian membership function

parameters {wik}, {σik} and to the consequents νkj. In other words, each node

k ǫ L2 is associated to two weight vectors w̄k = (w1k, ..., wnk), σ̄k = (σ1k, ..., σnk)

and one consequent weight vector ν̄k = (νk1, ..., νkm). Upon obtaining these

parameters the rules can be written as (Bersini and Bontempi 1997):

Rulek : IF (x1 is Ak
1) AND...AND (xn is Ak

n) THEN (yi is νk1) AND...AND

(ym is νkm), which is expressed mathematically as: yi = {A}Ti +{B}i, i=1,...,m
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5.2.2 Rough Set Theory

The rough sets theory provides a technique of reasoning from vague and im-

precise data (Goh and Law 2003). The technique is based on the assumption

that information of interest is associated somehow with some information of

the universe of the discourse (Komorowski et al. 1999; Yang and John 2006).

Objects with the same information are indiscernible in the view of the avail-

able information. An elementary set consisting of indiscernible objects forms

a basic granule of knowledge. A union of elementary sets is referred to as a

crisp set, otherwise the set is considered to be rough. The next few subsections

briefly introduce concepts that are common to rough set theory.

Information System

An information system (Λ), is defined as a pair (U, A) where U is a finite set

of objects called the universe and A is a non-empty finite set of attributes as

shown in Eqn. 5.10 below (Yang and John 2006):

Λ = (U, A) (5.10)

Every attribute a ∈ A has a value which must be a member of a value set Va

of the attribute a.
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a : U→ Va (5.11)

A rough set is defined with a set of attributes and the indiscernibility relation

between them. Indiscernibility is discussed next.

Indiscernibility Relation

Indiscernibility (I) relation is one of the fundamental ideas of rough set theory

(Grzymala-Busse 1992). Indiscernibility simply implies similarity (Goh and

Law 2003). Given an information system Λ and subset B ⊆ A, B determines

a binary relation I(B) on U (Goh and Law 2003):

(x, y) ∈ I(B) iff a(x) = a(y) (5.12)

for all a ∈ B where a(x) denotes the value of attribute a for element x. Eqn.

5.12 implies that any two elements, x and y, that belong to I(B) should be

identical from the point of view of a.

Information Table and Data Representation

An Information Table (IT) is used in rough sets theory as a way of representing

the data. The data in the IT are arranged based on their condition attributes
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(C) and a decision attribute (D). Condition attributes and decision attribute

are analogous to the independent variables and a dependent variable (Goh and

Law 2003). These attributes are divided into C ∪ D = Q and C ∩ D = ∅. An

example of an IT is given in Table 5.1.

Data is represented by a table where each row represents an instance, some-

times referred to as an object. Every column represents an attribute which

can be a measured variable. In Table 5.1, HIV is the decision variable whereas,

race, education, gravidity, parity and ages of both parents are the condition

attributes. This kind of a table is also referred to as Information System

(Komorowski et al. 1999).

Decision Rules Induction

Rough sets analysis also involve generating decision rules for a given IT. The

rules are normally determined based on condition attributes values (Goh and

Law 2003). The rules are presented in an if CONDITION(S)-then DECISION

format.

Set Approximation

There are various properties of rough sets that have been presented in the

literature (Pawlak 1991). Some of the properties are discussed below.
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Table 5.1: Extract of the HIV database used

Race Educ Gravid Parity Age Father HIV

obj(1) 1 11 1 2 35 41 0

obj(2) 2 13 1 0 20 22 0

obj(3) 3 10 2 0 28 27 1

obj(4) 2 12 1 1 20 33 1

obj(5) 3 9 6 2 28 28 0

obj(6) 2 9 2 1 26 27 0

obj(7) 2 7 1 0 15 35 0

obj(8) 1 0 4 3 26 28 0

obj(9) 4 7 1 0 15 29 1

...
...

...
...

...
...

...
...

obj(n) 1 11 1 0 20 22 1

Lower and Upper Approximation of Sets

The lower and upper approximations are defined on the basis of indiscernibility

relation discussed previously. The lower approximation is defined as the col-

lection of cases whose equivalent classes are contained in the cases that need to

be approximated whereas the upper approximation is defined as the collection

of classes that are partially contained in the set that needs to be approximated

(Rowland et al. 1998).

Let concept X be defined as a set of all cases defined by a specific value of
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the decision and x represent an object. Any finite union of elementary set,

associated with B is called a B − definable set (Grzymala-Busse 1992). The

set X is approximated by two B − definable sets, referred to as the B-lower

approximation denoted by BX and B-upper approximation, BX. The B-lower

approximation is defined as (Grzymala-Busse 1992),

{x ∈ U|[x]B ⊆ X} (5.13)

and the B-upper approximation is defined as (Grzymala-Busse 1992):

{x ∈ U|[x]B ∩X 6= ∅} (5.14)

where [x]B denotes an equivalent class of I(B) containing the variable x. There

are other methods that have been reported in the literature for defining the

lower and upper approximations for a completely specified decision tables. It

follows from the properties that a crisp set is only defined if B(X) = B(X).

Roughness therefore is defined as the difference between the upper and the

lower approximation.

Rough Membership Functions

Rough membership function is a function µx
A : U→ [0, 1] that when applied to

object x, quantifies the degree of overlap between set X and the indiscernibility
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set to which x belongs. The rough membership function is used to calculate

the plausibility and is defined as (Grzymala-Busse 1992)

µX
A (X) =

|[X]B ∩X|

|[X]B|
(5.15)

5.2.3 Rough Sets Rule Extraction and Analysis

Let us assume an input space with n objects, each with m attributes. The

output of the algorithm is a set of certain and possible rules and the algorithm

is presented Algorithm 1 (Tettey et al. 2007).

5.3 Methodology

The literature review showed that models for HIV prediction and classifica-

tion have been developed using conventional feedforward neural networks ar-

chitectures and have worked well. However, it was found from the literature

review that neuro-fuzzy models have not been applied to HIV modeling, for

prediction and classification. Our work thus focuses on proposing a method-

ology for HIV classification from demographic properties using Takagi-Sugeno

neuro-fuzzy models. Then the proposed TS neuro-fuzzy model is compared to

a conventional feedforward neural networks model, by creating a feedforward

MLP neural network model and comparing the results with the TS neuro-fuzzy
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model results. It was also found from literature review that little work had

been done using rough set approximation for HIV analysis. Rough set have

an advantage of yielding more explicit and interpretable rules. The rough set

rules extracted will be compared to the neuro-fuzzy rules extracted. The final

objective of this Chapter is to investigate the effect of missing data on the

classification accuracy. This effect is also compared to the effect of missing

data on the feedforward neural network model.

5.3.1 Creation of TS Neuro-Fuzzy Model

A Takagi-Sugeno neuro-fuzzy model was created and trained with demographic

data obtained from the South African antenatal seroprevalence survey of 2001

(HealthDept 2005). This is a national survey data set, and any pregnant

women attending selected public health care clinics participating for the first

time in the survey were eligible. The demographic input variables obtained

include; age of mother, age of partner, educational level of mother, gravidity

(number of complete or incomplete pregnancies), parity (number of complete

pregnancies), province of origin, race of mother, and region of origin. The

qualitative variables such as the province of origin, race of mother and region

of origin were encoded to integers. The output of the model was the HIV

status, which was encoded using an integer scheme, whereby a 1 represents

a positive HIV status meanwhile a 0 represents a negative HIV status. The

network thus looked as in Fig. 5.1, with parameters defined in earlier equations
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and P is defined by Eqn 5.3.

Figure 5.1: Neuro-fuzzy Network Structure

The number of membership functions was then optimized. Fig. 5.2 shows

the relationship between mean square error (MSE) and number of clusters

meanwhile Fig. 5.3 shows the relationship between the accuracy of classifica-

tion and the number of clusters.

Fig. 5.2 and Fig. 5.3 show that two clusters gave the least MSE as well as the

highest accuracy and was thus the optimal number of clusters. This is further

confirmed by Table 5.2, which shows that with a cluster number of 2, that is,

two fuzzy rules, the least variance was obtained using a 10-fold cross validation

data set.

The fuzziness parameter was then optimized as shown in Fig. 5.4. From

Fig. 5.4, it can be deduced that a fuzziness parameter of 2.0 yielded the best

accuracy of classification. The lowest accuracy was obtained for a fuzziness
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Figure 5.2: Plot of MSE Error versus Cluster parameter

parameter of 3.

A TS neuro-fuzzy model was thus created with 2 clusters and a fuzziness

parameter of 2.0. This neuro-fuzzy model had 8 demographic inputs and one

output depicting the HIV status of individuals. The TS neuro-fuzzy model

was compared to a neural network feedforward model. The Feedforward model

used for comparison was presented in Chapter 2 Section 2.3.2.

5.3.2 Rough Sets Formulation

The process of fuzzy rule extraction requires several steps. A summary of the

steps that have been taken to formulate the rough set approximations and

obtain rules, is shown in Fig. 5.5. The remainder of the section explains the

details of the process.
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Figure 5.3: Plot of Accuracy versus cluster number

Data Preprocessing

The HIV/AIDS data that is used in this work is obtained from a survey per-

formed on pregnant women (HealthDept 2005). Like all data in raw form,

there are several steps that need to be taken in order to ensure the data is in

usable form. There are several types of outliers that have been identified in the

data. Firstly, some of the data records were not complete. This is probably

due to the fact that the people being surveyed omitted certain information

and also errors made by the person who manually recorded the surveys onto

a spreadsheet. This together resulted in certain entries being incomplete. All

such entries were deleted from the data. The second form of outliers were from

incorrectly entered variables. For instance Gravidity is defined as the number

of times a woman has been pregnant and parity is described as the number of

times a woman has given birth. Given that the survey was for pregnant women
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Table 5.2: Variances of the MSE error with respect to cluster number

Cluster Number Average Error Variance

2 0.12514 0.000077746

3 0.16327 0.00019226

4 0.71186 0.00032077

5 0.93128 0.12206

6 0.18855 0.00021238

7 0.78362 0.0012216

8 0.66805 0.0002408

9 0.17207 0.0002148

10 0.37949 0.0014

11 1.9294 0.0072989

12 3.3632 0.033302

13 0.3931 0.00039738

14 0.27769 0.0015327

15 0.82516 0.0037677

any instance where the women had a gravidity value of zero but a parity value

greater than zero was deleted. Furthermore, cases where a woman had a parity

value greater than the gravidity were also removed.
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Figure 5.4: Plot of Accuracy versus Fuzziness parameter

Figure 5.5: Steps required to formulate rough set approximation and rule

extraction

Variable Discretisation

The discretisation defines the granularity with which we would like to analyse

our universe of discourse. If one chooses to discretise the variables into a large

number of categories the rules extracted are more complex to analyse. There-

fore, if one would like to use the rough sets for rule analysis and interpretation

rather than for classification it is advisable that the number of categories be

as small as possible. A GA based model to obtain the number of categories

was implemented by Crossingham and Marwala (2007). For the purposes of

this work the input variables have been discretised into four categories. A
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description of the categories and their definition is shown in Table 5.3.

Table 5.3: A table showing the discretised variables.

Race Age Mother Educ Grav Parity Age Father HIV Stat

White Teen None Zero Zero Teen Neg

African Young Prim Low Low Young Pos

Asian Mature Sec High High Mature -

Coloured Old Uni V. High V. High Old -

5.4 Results and Discussions

The demographic and medical data, used in this study, came from the South

African antenatal seroprevalence survey of 2001 (HealthDept 2005). Eight de-

mographic input variables were used; age of mother, age of partner, educational

level of mother, gravidity, parity, province of origin, race of mother, and region

of origin. The genetic algorithm, used for the optimizing the feedforward neural

network model parameters used arithmetic cross-over, non-uniform mutation

and normalized geometric selection (Davis 1991). The probability of cross-

over was chosen to be 0.75 as proposed in Marwala and Chakraverty (2006).

The probability of mutation was chosen to be 0.0333 as recommended by Mar-

wala and Chakraverty (2006). Genetic algorithm had a population of 40 and

was run for 150 generations. The first experiment investigated the use of TS

neuro-fuzzy models for HIV modeling. Two clusters were used, which as stated

earlier was found to be the optimal number of clusters for the HIV model. A
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fuzziness parameter of 2 was also used, which was found as the most accurate

during the optimization stage. The proposed TS neuro-fuzzy model obtained

an HIV classification accuracy of 86%. The confusion matrix obtained for the

above model is shown in Table 5.4. The ROC curve for this classification is

Table 5.4: Confusion Matrix of TS Neuro-fuzzy classifier Classifier

Confusion Matrix Predicted Positive Predicted Negative

Actual Positive 355 145

Actual Negative 0 500

shown in Fig. 5.6 and the area under the curve was computed as 0.82, thus

giving a very good classifier according to Monash (2006).

Figure 5.6: ROC curve of Fuzzy Model classifier

The second experiment investigated the use of conventional feedforward neural

network MLP architecture to classify the HIV status of an individual using the

demographic input properties. The MLP was constructed with 8 inputs and

1 output. A GA was then used to obtain the optimal structure and yielded
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an optimal number of hidden units of 77; hence the structure was 8 - 77 - 1.

The performance analysis for this network model is also based on classification

accuracy and the area under the ROC curve. This network gave an accuracy

of 84%. The confusion matrix obtained for the above network is as shown

in Table 5.5. The ROC curve obtained for this classification is shown in Fig.

Table 5.5: Confusion Matrix of Feedforward MLP Classifier

Confusion Matrix Predicted Positive Predicted Negative

Actual Positive 680 313

Actual Negative 0 993

5.7 and the area under this ROC curve obtained was 0.8, which according to

Figure 5.7: ROC curve of feedforward MLP model

Monash (2006) is a very good classifier.

The last experiment investigated the effect of missing data on the classification

accuracy of the two models. In the database, one common missing data value is
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the educational level of the female, which was missing from 142 individuals (8%

of our demographic database). Since this parameter is included in the neural

network classification models developed in this study, a model to estimate this

missing input parameter using ant colony optimization (ACO), given that the

demographic parameters age group, region of origin, age gap, gravidity, parity,

province and race, are known was used. More details on this can be found

in Chapter 3, as well as in Leke and Marwala (2006). The estimated missing

demographic data was then combined with the known demographic data from

the antenatal data set, to classify the HIV status of individuals. The accuracy

obtained for the HIV classification in the presence of missing data was 83%

for the TS neuro-fuzzy model compared to 86% for the case where no data

is missing. The effect of the presence of missing data on the TS neuro-fuzzy

model thus caused a difference in accuracy of 3%, which is not really significant.

Similarly, the accuracy obtained for the HIV classification in the presence of

missing data was 82% for the feedforward neural network model compared to

an accuracy of 84% for a case with no missing data. The effect of the presence

of missing data on the feedforward neural network thus caused a difference in

accuracy of 2%, which is also not really significant.

The membership functions obtained for the various inputs are as shown in Fig.

5.8.
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Figure 5.8: Membership functions for various inputs

5.5 Rules Extraction

In this section, the rules extracted by the neuro-fuzzy model and the rough set

model are presented. A comparison is then done on the rules obtained by the

two models.

5.5.1 Fuzzy Rule Extraction

The TS neuro-fuzzy model used for HIV classification in the previous section

can also be used for rule extraction. The background on fuzzy rules extraction

was presented in Section 5.2.1. Two fuzzy rules can be extracted from the
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model, which are shown below:

1. If u1 is A11 and u2 is A12 and u3 is A13 and u4 is A14 and u5 is A15 and

u6 is A16 and u7 is A17 and u8 is A18 then

y(k) = 0.645u1−0.233u2+1.833u3−1.846u4−0.164u5−2.64u6+0.024u7−1.312u8+1.63

(5.16)

2. If u1 is A21 and u2 is A22 and u3 is A23 and u4 is A24 and u5 is A25 and

u6 is A26 and u7 is A27 and u8 is A28 then

y(k) = −0.563u1+0.004u2+0.335u3+0.269u4−0.615u6−0.146u7−0.755u8+1.309

(5.17)

The symbols from u1 to u8 are the input vector which are age of mother

(u1, age of partner (u2, educational level of mother (u3, gravidity (u4, parity

(u5, province of origin (u6, race of mother (u7, and region of origin (u8. The

rest of the symbols are as previously defined. The rules extracted can be

converted so that they are represented in the commonly used linguistic terms.

However, only the antecedent of the fuzzy inference models can be translated

into linguistic terms. The consequent parts of the rule are still represented

as mathematical expressions. The translated fuzzy rules, after pruning the

parameters (to remove redundant fuzzy sets) can be written as follows:

1. If Gravidity is high AND Education is low AND Parity is low AND Age

gap between the partners is high then

y(k) = 0.291u1 − 0.782u2 − 0.575u3 − 1.221u4 + 1.808 (5.18)
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2. If Gravidity is low AND Education is high AND Parity is high AND

Age gap between the partners is low then

y(k) = −4.16u1 + 0.613u2 + 4.845u3 + 0.949u4 − 0.085 (5.19)

This model can be validated using expert knowledge of the problem. For

example, if the gravidity is high, the educational level of the individual is low,

the parity is high, and the Age gap between the partners is high, there is a high

chance that the individual will be HIV positive. If values of high Gravidity and

Age gap which have membership values of 1 and low values of education and

parity with a membership value of 0 are used, the model gives a prediction

of 0.8786, which is higher than the threshold 0.52 obtained from the ROC

curve. The neuro-fuzzy model thus offers a model which effectively classifies

the HIV status of individuals from demographic data with an added advantage

of rules extraction. Also, the slightly higher accuracy can be attributed to the

fact that neuro-fuzzy networks have the ability to incorporate existing domain

knowledge as well as to establish relationships from the data. This is an

advantage over feedforward networks.

5.5.2 Rough sets rule extraction

Applying the rough sets definitions of the HIV gives 130 unique discernible

cases and 95 indiscernible cases. This means the data is only representative

of 225 combinations of the variables out of the total possible unique sets of
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4096. The 130 discernible cases are part of the lower approximation set and

can be used to form rules which are assumed to always hold. Examples of

seven extracted discernible rule are shown below:

1. If Race = AF and Mother’s Age = Young and Education = Secondary

and Gravidity = Low and Parity = Low and Father’s Age = Young

then Probability of being HIV Negative is High

2. If Race = AF and Mother’s Age = Mature and Education = Secondary

and Gravidity = Low and Parity = Low and Father’s Age = Young

then Probability of being HIV Negative is High

3. If Race = AF and Mother’s Age = Mature and Education = Primary

and Gravidity = Low and Parity = Low and Father’s Age = Mature

then Probability of being HIV Positive is High

4. If Race = AF and Mother’s Age = Old and Education = Primary and

Gravidity = Low and Parity = Low and Father’s Age = Young then

Probability of being HIV Positive is High

5. If Race = CO and Mother’s Age = Teenager and Education = Primary

and Gravidity = Low and Parity = Low and Father’s Age = Teenager

then Probability of being HIV Positive is High

6. If Race = CO and Mother’s Age = Mature and Education = Tertiary

and Gravidity = Medium and Parity = Low and Father’s Age = Mature

then Probability of being HIV Negative is High
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7. If Race = WH and Mother’s Age = Young and Education = Secondary

and Gravidity = Low and Parity = Low and Father’s Age = Young

then Probability of being HIV Negative is High

The rest of the 95 rules can only be stated with a certain plausibility. Ex-

amples of five indiscernable rules which are stated with a given plausibility

are shown below. The plausibility of the risk of HIV is stated in terms of

a positive HIV/AIDS status. Since the negative and positive status are mu-

tually exclusive, the plausibility of a negative HIV/AIDS status is found by

µX
A (X)neg = 1− µX

A (X)pos.

1. If Race = AF and Mother’s Age = Teenager and Education = Sec-

ondary and Gravidity = Low and Parity = Low and Father’s Age =

Young then HIV is Positive with plausibility = 0.3333

2. If Race = CO and Mother’s Age = Young and Education = Secondary

and Gravidity = Low and Parity = Low and Father’s Age = Mature

then HIV is Positive with plausibility = 0.1786

3. If Race = AF and Mother’s Age = Young and Education = Secondary

and Gravidity = Low and Parity = Low and Father’s Age = Young

then HIV is Positive with plausibility = 0.3529

4. If Race = AF and Mother’s Age = Young and Education = Secondary

and Gravidity = Low and Parity = Low and Father’s Age = Young

then HIV is Positive with plausibility = 0.2

111



5. If Race = WH and Mother’s Age = Young and Education = Secondary

and Gravidity = Low and Parity = Low and Father’s Age = Young

then HIV is Positive with plausibility = 0.3071

The rules extracted from the data are assumed to be sufficiently representative

of the social context of South Africa. Accepting that the data describes the

South African context, the data can then be used to identify critical areas

where policies need to be put in place to control the disease spread. For

example, rule no. 3 tells us that within the dataset black matured couples

with a low education level always gave a high probability of being HIV positive.

This can indicate the need for the Government to strengthen efforts of reducing

illiteracy amongst the mature black population.

5.5.3 Rules Comparison

It can be seen from Section 5.5.2 that the rules extracted using the rough set

approach are more explicit and easy to interpret than those extracted using the

neuro-fuzzy approach presented in Section 5.5.1. The disadvantage of the TS

neuro-fuzzy is that the consequent expressions are expressed in a mathematical

form, which need expert knowledge of the problem domain to be understood,

meanwhile the rough set rules are already in a simple understandable form. It

seems on the other hand that the granularity of the variables is compromised

when data is discretised for the rough set approach. The obvious consequence
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of this can be that the classification accuracy is affected.

Algorithm 1: Proposed algorithm for classification tasks

input : Condition and Decision Attributes

output: Certain and Possible Rules

forall (conditionattributes 1→ n) do

← Compute the lower approximation, for each subset B, with q

attributes for each Xl as:

B(Xl) = {(obj(i))|1 ≤ i ≤ n, obj(i) ∈ Xl, B
c
k(obj

(i)) ⊆ Xl, 1 ≤ k ≤

|B(obj(i)|}

−→ where B(obj(i)) is a set of equivalent classes derived from attribute

subset B, whereas Bc
k(obj

(i)) is certain part of the kth equivalent class in

B(obj(i)).

approximations of each subset, B.

← Remove certain rules with condition parts which are more specific.

← Compute the upper approximations of each subset B, with q

attributes as: B(Xl) = {(obj(i), symbol(i))|1 ≤ i ≤ n,Bc
k(obj

(i)) ∩Xl 6=

∅, Bc
k(obj

(i)) 6⊂ Xl, 1 ≤ k ≤ |B(obj(i)|}

← Calculate the plausibility measures of each equivalent classes in an

upper approximation for each Xl as: (Bc
k(obj

(i))) =
|Bc

k
(obj(i))∩Xl|

|Bc
k
(obj(i))|

← Derive the possible rules from the upper approximations of each

subset, with the plausibility measure recalculated.

← Remove possible rules with conditions parts that are more specific and

plausibility measure less or equal to those of other possible or estimated

objects.

← Output certain rules and possible rules
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The results obtained are summarised in Table 5.6.

Table 5.6: Summary of Results

Method Accuracy Effect of Missing Data Ease of Rules

FeedForward Network 84 82 Black-Box

TS Neuro-fuzzy 86 83 Mathematical

Rough Set Model - - Simple Linguistic

5.6 Conclusion

A background on HIV analysis using computational intelligence has been pre-

sented in this chapter. The previous models lacked transparency and possessed

a black box-like nature. A model based on Takagi-Sugeno neuro-fuzzy mod-

els, using training methods adapted from neural networks is proposed for HIV

classification using the South African antenatal demographic data set. The

model proposed has a classification accuracy of 86% compared to a classifica-

tion accuracy of 84% for the conventional feedforward neural network model.

The effect of missing data on the TS neuro-fuzzy model is then analyzed. It is

found that this model obtains a classification accuracy of 83% in the presence

of missing data. The feedforward network obtains an accuracy of 82% in the

presence of missing data. The TS neuro-fuzzy model is thus slightly more ac-

curate than the feedforward neural network model, and is as much resistant to
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the presence of noise as the feedforward model. The impact of missing data is,

however, not too significant. The TS neuro-fuzzy model is further expressed as

fuzzy rules by defuzzification, into common linguistic terms that are readable.

Rough sets are then used to analyse the HIV database. It was observed that

the rules extracted using the rough set approach are more explicit and easy to

interpret than those extracted using the neuro-fuzzy approach. The disadvan-

tage of the TS neuro-fuzzy is that the consequent expressions are expressed in

a mathematical form. It seems on the other hand that the granularity of the

variables is compromised when data is discretised for the rough set approach.

The obvious consequence of this can be that the classification accuracy can

be affected. The results of this study thus suggest that the TS model can be

used as a classification model for HIV analysis and offers more insight into

HIV modeling than the artificial neural networks black boxes. The results also

show that rough sets offer more plausible and understandable rules, which can

be used to understand the effect of demographic properties on HIV risk.
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Chapter 6

Automatic Relevance

Determination

A very important factor in HIV classification using demographic characteristics

for machine intelligence is the availability of reliable data. The data obtained

from statistical and health monitoring structures are very diverse and some-

times irrelevant. Neural networks have been applied in diverse fields and are a

powerful tool for complex mappings and modeling of non-linear relationships.

In this work, Bayesian framework for artificial neural networks (ANN), known

as automatic relevance determination (ARD) method is created to obtain the

relative relevance of a large data set of variables from the antenatal clinic data.

The viability of this technique is analyzed by selecting optimum input param-

eters for the neural network model. Zhang et al. (2006) comment on the fact

that the performance of a neural network can be improved by reducing the

number of input variables correctly, but sometimes even at the cost of losing
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some useful input information. The problem of irrelevant input parameters

can be resolved by identifying the input parameters that are not important to

the performance of the networks, and then removing the less important input

parameters from the input data set as in automatic relevance determination

(ARD). ARD will thus be used to reduce the input space, and also to know

how important each variable is on driving HIV risk (by depicting the relevance

of each parameter on HIV risk).

6.1 Introduction

The study of the influence of demographic and social characteristics of HIV

by using traditional statistical methods is complicated and time-consuming.

In addition, for analytic models to be developed, a priori information about

the structure of the mathematical relationships between the input and output

variable is needed. This relationship for the HIV scenario appears to be non-

linear and discrete, and difficult to handle with standard statistical techniques.

If new input variables are to be added to the model, the use of conventional

multiple linear regressions will become inappropriate, whereas if non-linear

regression is to be used, an explicit function should be provided in advance.

Moreover, the latter procedures are static in the sense that the nature of the

model cannot be changed. Similarly, computer regression programs cannot

learn or become smarter.

117



An alternative way to avoid the above problems is to employ artificial neural

networks (ANN). ANN is an inter-connected structure of processing elements,

offering an effective alternative to more traditional statistical techniques in

many scientific fields. Since neural networks are highly non-linear and require

no prior assumptions concerning the data relationships, they have become a

useful tool to tackle medical (HIV) modeling. A drawback of ANN is the

usual need to divide the data set into three subsets (training, testing and val-

idation sets) which may become a problem if only few data are available. The

Bayesian method of automatic relevance determination (ARD) (Hajmeer and

Basheer 2003; Neal 1996) for multilayer perceptron networks (MLP) provides

the relative importance of different inputs to the ANN and avoids the need

to use separate testing and validation data, thanks to the inclusion of regu-

larization coefficients inside the ANN structure. The methodology presented

here aims at using demographic and social factors, to predict and classify the

HIV status of an individual using multi-layer perceptron neural network. This

methodology first determines the relevant input parameters from the pool of

parameters available and then uses these parameters to create a model for HIV

classification of an individual with the demographic inputs.

For learning to be successful, information that is known a priori to be irrelevant

must be discarded, as otherwise we will be deceived by the chance associations

that we are likely to encounter if we search for relationships with a huge num-

ber of input variables. The question that arises is; Can the data be used to

determine the degree to which each input is relevant, and thereby avoid both
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the cost of not using inputs that are useful, and the cost of being misled by

chance associations with inputs that have little relevance?

One approach is to select a subset of input variables using some criterion that

balances data fit and model complexity. When the number of inputs is large,

considering all possible subsets is infeasible, but variables can be added one at

a time (forward selection) or removing them one at a time (backward elimi-

nation). This approach has long been used in the context of linear regression.

Bonnlander (1996) reviews variable selection methods for neural networks, and

develops one based on mutual information.

Variable selection seems to be a dubious procedure, since if we think an input

might be relevant, we will usually also think that it is probably at least a little

bit relevant. Situations where we think all variables are either highly relevant

or not relevant at all seem uncommon (though not, of course, impossible).

Accordingly, we should usually not seek to eliminate some variables, but rather

to adjust the degree to which each variable is considered relevant. We may

hope that a method of this sort for determining the relevance of inputs will

be able to avoid paying undue attention to the less relevant inputs, while still

making use of the small amount of extra information that they provide.

This is the philosophy behind the Bayesian method of Automatic Relevance

Determination (ARD) (Mackay 1998; Neal 1996) for multilayer perceptron

networks. In this method a hyperparameter is associated with each input,

which controls the size of the weights associated with connections out of that
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input, as shown in Fig 6.1 (Lopez et al. 2005).

Figure 6.1: Graphical representation of the multilayer perceptron with auto-

matic relevance determination. The hyperparameters {α1, ..., αNi
} control the

weights connecting each input to the hidden layer

If the hyperparameter for an input is small, weights for that input will likely

be small, and the input will therefore have only a small effect on the network’s

predictions. These relevance hyperparameters are set in a Bayesian inference

fashion, according to the resulting probability of the observed data. Bayesian

inference can be defined as follows (Neal 1996):

Given a prior distribution π(θ), a conditional distribution p(x|θ) and data x,

the posterior distribution is computed as follows (Neal 1996):

p(θ|x) =
p(θ, x)

p(x)
=

π(θ)p(x|θ)
∫

π(θ)p(x|θ)dθ
(6.1)
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The posterior distribution, p(θ|x) is then used to make inferences. For clas-

sification, a maximum a posteriori (MAP) estimate is used defined as (Neal

1996):

θ̂ = argmaxp(θ|x) (6.2)

For estimation, the expected quadratic error is minimized as follows (Neal

1996):

θ̂ = E(θ|x) =
∫

p(θ|x)dθ (6.3)

This chapter focusses on a classification problem, thus uses eqn. 6.2.

More on ARD is presented in the next section.

The purpose of this chapter is firstly to apply an automatic relevance determi-

nation method for neural network, using Bayesian inference, to determine the

relevance of demographic properties for HIV classification; secondly, to pro-

pose a good classifier of HIV/AIDS based on relevant demographic data; and

thirdly, to compare a classifier using all the input parameters with a classifier

which uses only the relevant parameters.

6.2 Background

This section presents a background on the methodologies that have been im-

plemented for relevance determination such as:

• One-Way Analysis of Variance (ANOVA)(MATLAB 2004; Lantz 2007)
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and

• Automatic Relevance Determination (ARD) (Neal 1996; Mackay 1998)

6.2.1 One-Way Analysis of Variance

The purpose of one-way analysis of variance (ANOVA) is to find out whether

data from several groups have a common mean. That is, to determine whether

the groups are actually different in the measured characteristic. ANOVA is

used for hypothesis testing in simple regression, multiple regression and com-

parison of means. There exists a variation when the data values are not iden-

tical, which can be as a result of the model or the factor. This variation is the

sum-of-squares of the deviations of the actual values from the mean of those

values. The variation or sum of squares is abbreviated as SS. The ANOVA

method also makes use of the degree of freedom (df), which are the number

of values that are free to vary once certain parameters have been established.

The sample variance (MS) is obtained by dividing the variations by the degree

of freedom, that is (Lantz 2007):

MS =
SS

df
(6.4)

The ANOVA table is composed of rows, each row represents one source of

variation. For each source of variation

• The variation is in the SS column
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• The degrees of freedom is in the df column

• The variance is in the MS column

• The MS value is found by dividing the SS by the df

The table is structured as shown in Table 6.1. One-way ANOVA is a simple

Table 6.1: A Basic Analysis of Variance Table

Source SS df MS F p

Between Data Data = SS(B)/df(B) = MS(B)/MS(W)

Within Data Data = SS(W)/df(W)

Total = SS(B)+SS(W) = df(B)+df(W) = SS(T)/df(T)

special case of the linear model. The one-way ANOVA form of the model is

(MATLAB 2004).

yij = αij + εij (6.5)

where:

• yij is a matrix of observations in which each column represents a different

group.

• αij is a matrix whose columns are the group means. (The ”dot j” notation

means that α applies to rows of the j-th column. That is, the αij is the

same for all i values.)
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• εij is a matrix of random disturbances. The model is based on the fact

that the columns of y are a constant plus a random disturbance. The

aim is thus to know if the constants are all the same.

The standard ANOVA table as shown in Table 6.1, has columns for the sums

of squares, degrees of freedom, mean squares (SS/df), F statistic, and p-value.

The table obtained for this study will be commented on in Section 6.4. The

one-way ANOVA table uses the grand mean defined as (Lantz 2007):

¯̄x =

∑k
i=1 nix̄i
∑k

i=1 ni

(6.6)

where ¯̄x is the weighted (grand) mean of the individual sample means, x̄i is the

mean of factor i and nk is the kth factors number of parameters. The grand

mean is the average of all the values when the factor is ignored. The between

group variation, SS(B) in Table 6.1 is the variation between each sample mean

and the grand mean, defined by (Lantz 2007):

SS(B) =
k∑

i=1

ni (x̄i − ¯̄x)2 (6.7)

The within group variation, SS(W) is the weighted total of the individual

variations. The weighting is done with the degrees of freedom (df). The df for

each sample is one less than the sample size for that sample. SS(W) is defined

as (Lantz 2007):

SS(W ) =
k∑

i=1

dfis
2
i (6.8)

The between group df, df(B) is one less than the number of groups. The data
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in this study has 9 groups, so the df(B) is 8. The within group df, df(W) is

the sum of the individual df’s of each group, which is the number of samples

minus one. The variance MS(B) and MS(W) is calculated as in equation 6.4.

The MS(Within) is also known as the pooled estimate of the variance since it

is a weighted average of the individual variances, sometimes abbreviated as s2
p.

The p value in Table 6.1 is the area to the right of the test statistic (F ). F is

defined by (Lantz 2007):

F =
MS(B)

MS(W )
(6.9)

If the p-value is less than a significance level, then the null hypothesis, which

states that the means of all the groups are the same, can be rejected. The

significance of the null hypothesis being rejected is that at least one of the

groups has a different mean. The groups with different means can be obtained

using box plots.

6.2.2 Automatic Relevance Determination

Feature selection methods are often classified into wrappers and filters, the

difference being in whether or not the method uses the output of the classifier in

order to select the features. Wrapper methods usually work by evaluating the

classifier on subsets of the feature space, using some sort of greedy algorithm

to organize the search of the large number of possible feature combinations.

Filter methods, on the other hand, generally use unsupervised methods to

select features (Rencher 1995). In the ARD, the contribution of each input
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feature to the output function is divided by a separate length scale (Gold et al.

2005). The larger the length scale the smaller the contribution, which that

feature will make to the output function. For this reason the length scales

produced by the hyperparameter tuning algorithm can be used for feature

selection simply by eliminating those features with the largest length scales.

While feature selection via ARD is technically a wrapper approach because the

output of the classifier on the training set is used in the hyperparameter tuning

algorithm, it is distinct from traditional wrapper approaches because it avoids

searching the space of feature combinations and instead proceeds directly to

an appropriate feature set using principles designed to improve generalization

performance. Feature detection using ARD was originally proposed for back-

propagation and radial basis function (RBF) network (Mackay 1998).

This method of detecting the variable influence using neural networks is an

extension of Bayesian regularization, which is based on a probabilistic inter-

pretation of the network training procedure. Neural Networks have an error

function associated with their predictability. This may be expressed mathe-

matically as follows:

y = f(w; x) + ε (6.10)

Where y is the actual output desired, f is the output predicted by the network,

ε is the error, w are the weights and x is a vector of inputs. There is uncer-

tainty in the training of the networks (Bishop 1995). This uncertainty in the

training of the networks can be associated with the fact that the assignment

of the weights is done by randomization. Wherever used from now on, p(.)
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would denote the statistical probability. The network weights are considered

as random variables. The problem of identifying the weights and biases in

neural networks may be posed in the Bayesian framework as (Bishop 1995):

p(w|D) =
p(D|w)p(w)

p(D)
(6.11)

(2) where p(w) is the probability distribution function of the weight-space in

the absence of any data, also known as the prior distribution function and D

= (y1, , yN) is a matrix containing the HIV data. The quantity p(w|D) is the

posterior probability distribution function after the antenatal data have been

seen, p(D|w) is the likelihood function and p(D) is the normalization function

also known as the evidence (Rank 2003).

Regularization techniques generally alter the objective function to be min-

imized during the network training, by adding penalty terms (regularizers)

to avoid the overfitting phenomenon and thereby develop models with better

generalization properties. The objective function to be minimized is as follows

(Liitiainen 2006):

I = γE1 + ξE2 =
γ

2
‖w‖2 +

ξ

2

N∑

i=1

e2
i (6.12)

where ei = (yi − f(xi, w)), γ and ξ are hyperparameters to be optimized,

E1 and E2 are functions defined on the right hand side of the equation, and

f(xi, w) is defined as in chapter 1 eqn. 1.1 as (Bishop 1995):

yk = fouter




M∑

j=1

w
(2)
kj finner

(
d∑

i=1

w
(1)
ij xi + w

(1)
j0

)

+ w
(2)
k0



 (6.13)

Here, w
(1)
ji and w

(2)
kj indicate weights in the first and second layer, respectively,

going from input i to hidden unit j, M is the number of hidden units, d is the
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number of output units while w
(1)
j0 and w

(2)
k0 indicate the biases for the hidden

unit j and the output unit k. In this chapter, the function fouter(•) is linear

while finner is a hyperbolic tangent function.

Note that two hyperparameters are used to get a Bayesian interpretation. ARD

is based on Bayesian inference on three levels. In what follows, H denotes the

model and D is the data. We assume no prior knowledge of the problem which

means that flat priors are used whenever necessary.

First Level of Inference

Assume that the sample (xi, yi) is independent. Recall the cost (Liitiainen

2006):

I = γE1 + ξE2 (6.14)

In the first level the hyperparameters γ and ξ are assumed to be fixed. We

assume the prior p(w) ∼ exp(−γ‖w‖2). For the first observation, we assume

(Liitiainen 2006):

p(yi|xi, w, b, ξ, H) ∼ exp(−
ξ

2
e2

i ) (6.15)

This is a model with a Gaussian prior and a Gaussian noise model. With the

assumptions, we get (Liitiainen 2006):

p(w, b|D, γ, ξ,H) ∼ exp(−I(D, γ, ξ, w, b)) (6.16)

It follows that given the hyperparameters, finding the maximum likelihood for

p(w, b|D, γ, ξ,H) is equivalent to minimizing the cost function I.
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Second Level of Inference

In the second level p(ξ, γ|D, H) is examined. p(ξ, γ|D, H) can be written as

(Liitiainen 2006):

p(ξ, γ|D, H) =
∫

p(D|w, b, H)p(w, b|ξ, γ, H)p(ξ, γ|H)dwdb (6.17)

A non-informative prior for the hyperparameters is assumed (Liitiainen 2006).

This can be solved in closed form. Thus no approximation is needed on the sec-

ond level. Using the previously derived formula in eqn. 6.16, we get (Liitiainen

2006):

p(ξ, γ|D, H) ∼
γnf /2ξN/2

|H|−1/2
exp(−I(w, b)) (6.18)

Here H is the Hessian of the cost function and nf is the dimension of the

space in which f maps the inputs. Typically nf ≫ 1 and the Hessian H is

not available as such. However, it turns out that this is not a problem. By

using the cross-entropy error between the network prediction and the output

of the training data defined in eqn. 6.19, it is possible to derive a maximum

likelihood cost function for the hyperparameters (Bishop 1995).

E = −β
N∑

n=1

K∑

k=1

{tnkln(ynk) + (1− tnk)ln(1− ynk)}+
ᾱ

2

W∑

j=1

w2
j (6.19)

The cross-entropy function is chosen because it has been found to be more

suited to classification problems than the sum-of-square of error cost function

(Bishop 1995). In eqn. 6.19, n is the index for the training pattern, β is the

data contribution to the error and k is the index for the output units. The

second term in eqn 6.19 is the regularisation parameter and it penalises weights
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of large magnitudes (Bishop 1995). This regularisation parameter is called the

weight decay vector and its coefficient, ᾱ , determines the relative contribution

of the regularisation term on the training error. This regularisation parameter

ensures that the mapping function is smooth. yk represents the equation in

eqn. 6.13.

Third Level of Inference

Recall that H denoted the model structure (including model parameters, se-

lected inputs). In the third level we write (assuming non-informative priors)

(Liitiainen 2006):

p(D|H) =
∫

p(D|γ, ξ, H)p(ξ, γ|H)dξdγ ∼ p(D|γMAP , ξMAP , H)DγDξ (6.20)

The terms Dγ and Dξ are the second derivatives of the second level cost func-

tion at the optimum, MAP stands for maximum a posteriori.

Input Selection

Now that we can evaluate the evidence p(D|H) of models, input selection is

easy. A combination of inputs is evaluated by doing the three levels of inference

to calculate model parameters and hyperparameters. Scaling of input variables

is implemented in the same way.

ARD methods have the advantage that they are based on a sound probabilistic

theory instead of rules of thumb for determining the hyperparameters of the
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regularizers (Papadokonstantakis et al. 2006). In the ARD framework for

MLP, it assigns one hyperparameter for each n input variable (input neuron),

which can control the magnitude of weight fanning out from the input neuron

(Wang and Lu 2006). ARD background can be found in Lopez et al. (2005)

and Papadokonstantakis et al. (2006).

6.3 Methodology

Background reading showed that models for HIV classification using neural

networks have been proposed as presented in Chapter 2 and worked well using

demographic properties. However, it was realized that no automatic rele-

vance determination models have been applied to HIV modeling. Detecting

the relevant parameters avoids redundancy, and it is believed that this will

play a role in obtaining a better classifier for the classification models. In this

study, a method using multi-layer perceptron neural networks and scaled con-

jugate gradients is investigated. The method uses the demographic properties

of individuals and determines which of these properties is important for the

prediction of the individual’s HIV status. The ARD methodology has been

presented in Section 6.2.2. The results from this model will be assessed with

results obtained from the one-way analysis of variance (ANOVA).

Upon obtaining the relevant parameters using ARD Bayesian regularisation

approach, a neural network model is then created using the relevant parameters
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and trained to predict the risk of HIV from demographic properties. The

classification accuracy of this new network model is compared with the already

created model presented in Chapter 2 Section 2.3.2, with the full data set. The

area under the ROC curves is also compared to evaluate which of the models

is a better classifier.

6.4 Testing the Procedure

From the data presented in Chapter 1, 9 parameters were selected. The multi-

layer perceptron network with 9 inputs representing the demographic parame-

ters, and 1 output representing the HIV status of individuals, was constructed

and several numbers of hidden units were used and implemented in Matlab

(MATLAB 2004).

The first experiment used the ARD Netlab implementation (Nabney 2003),

which uses scaled conjugate gradient (Bishop 1995; Haykin 1994) to obtain

the relevant parameters from the data set required to predict the risk of HIV

for an individual. The weights were penalised with a regularisation parameter

(α) of 0.01 and a co-efficient of data error (β), defined in eqn. 6.19, of 50.0.

This method yielded Table 6.2 as the weightings associated to the different

inputs. Table 6.2 shows that the parameters Age, Gravidity and Education are

of high relative significance, meanwhile the parameters Province, Region and

rapid plasma reatin(RPR) are of medium relative relevance. The parameters
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Table 6.2: Automatic Relevance With Multi-layer Perceptron and Scaled Con-

jugate Gradient

Variable Weights(Inverse Variance) Inverse Weights Relative Weights

Age 1.19446 0.8372 79

Gravidity 5.09001 0.1965 19

Parity 7.66687 0.013 1.2

Province 20.45520 0.0489 5

Race 94.59406 0.0106 1

Region 10.56756 0.0946 9

RPR 8.98063 0.1114 11

WTREV 130227180.94823 0.00 0

Education 3.05223 0.3276 31

Parity, Race and Regional weighting parameter (WTREV) are of low relative

relevance and can be ignored.

The second experiment investigated the use of the relevant parameters ob-

tained from the previous experiment for HIV modeling, i.e. predicting the

HIV status of individuals from relevant demographic characteristics. The op-

timal number of hidden nodes for the neural network was 9, hence the structure

was 6 - 9 - 1. The confusion matrix shown in Table 6.3 is obtained for the

classification.

This model had an accuracy of 76%. The ROC curve obtained for this network
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Table 6.3: Classifier Confusion Matrix for ARD Classification

Confusion Matrix Predicted Positive Predicted Negative

Actual Positive 654 339

Actual Negative 138 855

model is shown in Fig. 6.2 and the area under this ROC curve is 0.9, which

according to Monash (2006) is an excellent classifier.

Figure 6.2: ROC Curve for the Netlab ARD network)

The third experiment used the full data set, with all the 9 inputs present,

for HIV modeling, i.e. predicting the HIV status of individuals from all the

demographic characteristics. The optimal number of hidden nodes for the

neural network was 77, hence the structure was 9 - 77 - 1. This network gave

an accuracy of 84% on the test data sets. The confusion matrix obtained for

the above network is as shown in Table 6.4. The ROC curve obtained for this

classification is shown in Fig. 6.3 and the area under this ROC curve obtained
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Table 6.4: Classifier Confusion Matrix for All Inputs Classification

Confusion Matrix Predicted Positive Predicted Negative

Actual Positive 738 255

Actual Negative 85 908

was 0.8, which according to Monash (2006) is a very good classifier.

Figure 6.3: ROC curve for the MLP network classifier

The fourth experiment investigated the use of one-way ANOVA to determine

the relevant parameters. The standard ANOVA table has columns for the sums

of squares, degrees of freedom, mean squares (SS/df), F statistic, and p-value.

This was implemented in Matlab using the anova1 function (MATLAB 2004).

In this study, the p-value is 0. This is less than the significance level of 0.05,

thus rejecting the null hypothesis. This is a strong indication that the data

set values from the different data points are not the same (different means).
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An F statistic of 2562.47 is obtained for the data points. The p-value returned

by anova1 depends on assumptions about the random disturbances εij in the

model equation (MATLAB 2004). Graphical assurance that the means are

dissimilar can be obtained by looking at the box plots in Fig. 6.4. Fig. 6.4

Figure 6.4: ANOVA Mean Values Box Plot

shows that the means are dissimilar for all parameters except for columns six

and eight which represent race and rapid plasma reatin (RPR). These two

parameters can thus be eliminated. This is inline with the ARD findings as

well, which found race parameter as an irrelevant parameter.

The ARD method thus suggests that Parity, Race and regional weighting pa-

rameter (WTREV) can be ignored when dealing with the analysis of HIV from

the demographic properties. The ARD method also suggests that Age, Gravid-

ity and Education are of high relative significance meanwhile Province, Region

and Rapid Plasma Reatin (RPR) are of medium relative significance. Using
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the one-way ANOVA, which suggests that race is irrelevant, a conclusion can

be drawn that the risk of HIV is not dependent on the race of an individual.

The results obtained are summarised in Table 6.5.

Table 6.5: Summary of Results

Model Inputs Not Relevant Overall Finding

MLP ARD Parity, Race, WTREV Race can be ignored.

One-Way Anova Race, RPR Race can be ignored.

6.5 Discussion and Conclusion

A method based on multi-layer perceptron neural networks and scaled con-

jugate gradients is investigated for automatic relevance determination of the

demographic inputs for HIV modeling in this chapter. This procedure was

tested on an HIV data set obtained from South African antenatal seropreva-

lence survey of 2001. A data set comprising of 9 inputs was used and it was

found that only 6 inputs were relevant for the classification and modeling, thus

the other 3 inputs were discarded. The one-way ANOVA method was used to

assess the functionality of the ARD for selection of the relevant parameters. A

network model was then created with these 6 inputs and yielded a classification

accuracy of 76%. The area under the ROC curve was computed as 0.9, thus

an excellent classification. The full dataset obtained a classification accuracy
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of 84% and the area under the curve was computed as 0.80, thus a very good

classification. The area under the ROC curve (AUC) is a good measure of

classifier performance. The ARD data set model AUC is 0.9, meanwhile the

AUC of the full data input parameters model is 0.8. This thus shows that

identifying the relevant parameters for modeling is important before the mod-

eling process begins. The area under the ROC curve for the ARD data was

higher than that of the full data inputs by 0.10, thus a better classifier.
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Chapter 7

Conclusion and Further

Recommendations

7.1 Conclusive Remarks

This chapter concludes the research carried out by presenting an overview of

all the results obtained. The objectives of this research as stated in Chapter 1

Section 1.5 were to:

1. Create a model based on computational intelligence to model HIV from

demographic data.

2. Create a model to estimate missing data in the HIV database and to

understand the impact of such missing data
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3. Create a computational model to understand how the demographic prop-

erties influence the HIV susceptibility of individuals,

4. Create a model based on neuro-fuzzy networks to model HIV from demo-

graphic data and create a model based on rough sets for rules extraction,

5. Create a model, which depicts the relevance and importance of the de-

mographic parameters with respect to HIV modelling, and this reduces

the input space dimensionality.

The research was carried out using Computational intelligence, which as shown

in Chapter 1 Section 1.1 has been applied in medical informatics. A model

was created in Chapter 2 to classify the HIV status of individuals based on

a demographic dataset presented in Chapter 1 Section 1.2. This model used

autoencoder neural networks together with genetic algorithms and yielded a

classification accuracy of 92% compared to an accuracy of 84% obtained from

a conventional feedforward neural network model. The Area under the ROC

curve obtained for this model was 0.86, which showed that this was a very

good classifier. The first objective of the research was thus achieved by cre-

ating this model. This model possessed novelty in that this research showed

that autoencoder networks-based-on-genetic algorithms can be applied in HIV

modelling. The findings are summarized in Table 2.3.

When analysing the demographic data set in Chapter 1 Section 1.2, it was

realized that there were missing entries in the database. This could have been

due to the individuals submitting incomplete forms. The model created for
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HIV classification using autoencoder networks could, however, only work with

complete data entries. It was thus imperative that a model to estimate the

missing entries be created. The most frequently missing parameter was the

educational level of the individuals, which accounted for 88% of the missing

entries. A methodology was thus created using autoencoder networks and

ant colony optimization (ACO), which research review showed had not yet

been applied for missing data approximation. This was thus the novelty of

this chapter. The methodology was able to estimate missing data to an ac-

curacy of 80%. The impact of missing data on the overall predictability was

analyzed. The autoencoder network had an uncertainty effect of 11% on the

predictability, with a classification accuracy of 81% in the presence of missing

data compared to a classification accuracy of 92% for a case with no miss-

ing data. The feedforward neural network had an uncertainty effect of 2%

on the predictability, with a classification accuracy of 82% in the presence of

missing data compared to a classification accuracy of 84% for a case with no

missing data. The feedforward neural network was thus more noise resistant

than the autoencoder network. The results were found to be coherent with

an error analysis performed on both networks in the presence of uncertainty

in the data. This analysis is performed in Chapter 3 Section 3.4. The second

research objective was thus met. The results are summarized in Tables 3.1 and

3.2.

Chapter 4 focussed on understanding the effect of demographic influences on

HIV susceptibility. In this chapter a methodology was proposed to understand
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how modifying certain modifiable demographic parameters of individuals af-

fects their HIV status. An adaptive control model was implemented using

an inverse neural network and an autoencoder-based-on-genetic algorithms

model and the two models were compared. The two modifiable parameters

in this study were the educational level and the gravidity, which were defined

in Chapter 1 Section 1.2. An accuracy of 77% was obtained by the inverse

neural network model and an accuracy of 77% was obtained by the genetic

algorithm model, for the educational level prediction. An accuracy of 82%

was obtained by the inverse neural network model as opposed to 92% for the

genetic algorithm model, for the gravidity prediction. A model can thus be

developed using inverse neural networks, to effectively assess the demographic

parameters required by individuals, in order to control the susceptibility to

HIV of such individuals. A model can also be developed using autoencoder

neural networks and genetic algorithms, to effectively assess the demographic

parameters required by individuals. The results of this study show that gra-

vidity is a highly controllable parameter due to its high predictability accuracy

from the other demographic properties. The results of this study also show

that the educational level can be controlled even though not as effectively as

gravidity, due to lower predictability accuracy. This chapter thus successfully

meets the third objective. The results are also summarized in Table 4.1.

Literature review also showed that neuro-fuzzy models had not been applied

to HIV modelling. It was believed that the neuro-fuzzy model will offer more
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significant results when applied to HIV classification compared to neural net-

works, which have a black box-like nature. A neuro-fuzzy model was thus

implemented in Chapter 5. This model yielded a classification accuracy of

86%, compared to an accuracy of 84% for the feedforward neural network and

an accuracy of 92% for the autoencoder network. In the presence of missing

data, the neuro-fuzzy model yielded an accuracy of 83%. The neuro-fuzzy

model was thus more noise resistant than the autoencoder network model but

comparatively the same as the feedforward model. The neuro-fuzzy model,

however, had an added advantage of fuzzy rules extraction which was pre-

sented in Chapter 5 Section 5.5.1. A rough set approximation model was also

investigated in this chapter and the results showed that this model yields sim-

pler and more understandable rules compared to the neuro-fuzzy model. A

background on rough set was first presented and the rough set formulation

was also presented. The fourth objective of the research was thus met in this

chapter. The results of this chapter are summarized in Table 5.6.

The last objective of this research was to investigate a methodology to obtain

the relevant parameters for HIV modelling from the available demographic

parameters in the antenatal database. This was to ensure that redundant

parameters are not used in the model as this will lead to greater computa-

tion times as well as greater cost in collecting all the parameters. A method

based on multi-layer perceptron neural networks and scaled conjugate gradient

method was investigated in Chapter 6. This method was able to prune the

data set size from 9 parameters to 6 parameters. The method showed that
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the parameters Age, Gravidity and Education are of high relative significance,

meanwhile the parameters Province, Region and Rapid plasma reatin (RPR)

are of medium relative relevance. The method also showed that the param-

eters Parity, Race and Regional weighting parameter (WTREV) are of low

relative relevance and can be ignored. The area under the ROC curve for the

classifier proposed by this model was 0.9 compared to 0.8 obtained from the

classifier with all the input parameters present. The pruned data set classifier

was thus a better classifier than the latter. The ARD method thus reduced

the input space, and depicted the relevance of the various parameters. The

result is summarized in Table 6.5.

The summary of all the findings in this research are presented in Table 7.1.

Note: E represents Education, G represents Gravidity, ACO represents Ant

Colony Optimization, NN represents Neural networks, AE represents Autoen-

coder networks, ARD represents Automatic Relevance Determination, MLP

represents Multilayer Perceptron and GA represents genetic algorithms in Ta-

ble 7.1.

All the objectives of this research were met. Models were proposed and tested

on demographic data obtained from the South African antenatal Clinics and

these model yielded good accuracies. Each model presented herein also has

novelty in HIV modelling since extensive research reviews showed such models

had not been previously implemented.
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Table 7.1: Summary of Results

Model Accuracy Characteristics

Feedforward Prediction 84 Less sensitive to noise. Better for missing

input models.

AE Prediction 92 Best predictor model. Worst sensitivity to

noise.

AE + ACO Missing Data 80 Slightly lower accuracy but much better

computation times.

AE + GA Missing Data 82 Higher accuracy but computationally ex-

pensive.

Inverse NN Demographic 77(E), 82 (G) Lower Gravidity accuracy but better com-

putation times.

AE + GA Demographic 77(E), 92(G) Higher Gravidity accuracy but computa-

tionally expensive.

Neurofuzzy 86 Mathematically inclined rules, which need

background to extract.Also not too sensi-

tive to noise.

Rough Set – Very simplistic linguistic rules,which can

be readily understood.

MLP ARD 76 Together with One-way ANOVA, found

that Race can be ignored.
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7.2 Further Work and Reccomendations

As further work, fuzzy ARTMAP principles can be applied for HIV modelling.

The question being addressed here would be: given an individual with de-

mographic characteristics D and a set of known families F, we must classify

the individual’s demographic characteristics into one of the families F. The

aim thus is to group individuals with the same demographic properties into

the same family, since they have similar structural and functional properties.

Thus if an unknown individual’s demographic property, Di is found to belong

to some family Fi, we can infer the structure and function of Fi. The pattern

recognition process begins with the data acquisition stage. A subset of fea-

tures is then selected, using genetic algorithms, and is then classified using a

wide range of classification techniques. The fuzzy ARTMAP classifier should

be introduced because it is believed this classifier may demonstrate signifi-

cant benefits over other established classifiers in current literature. An online

learning classifier should also be introduced, as it is believed this may also sig-

nificantly improve on the classification performance of current classifiers. To

the best of our knowledge, neither the fuzzy ARTMAP, nor the online learning,

have been considered in the context of HIV classification and modeling.

In the literature review, there is no method proposed thus far that investigates

the use of fuzzy ARTMAP or online learning for HIV modeling. Research into

the applicability of fuzzy ARTMAPS in HIV modelling may thus propose a

new method, which is based on fuzzy ARTMAP models combined with online
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learning to classify the HIV status of an individual based on demographic

properties.

As a recommendation, the use of multi-agents for HIV modelling may also

offer a more significant view to understand the spread of the disease as well

as to understand how inter-relationships contributes to the dynamics of the

disease. Agent modelling is being used in stock price modelling to understand

the interaction between stocks as well as the effects these interactions have on

the overall predictability. Application of such agent modelling techniques could

offer insights into HIV classification of individuals based on other individuals,

which other current models do not possess.
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Appendix

7.3 Structure of the Compact Disc

Main Folder: PHD Code

SubFolder: Autoencoder and MLP Classification

SubSubFolder: Autoencoder Prediction

SubSubFolder: MLP Prediction

Subfolder: Missing Data Code

Subfolder: Demographic Influence Code

Subfolder: Chapter 5 Code

SubSubFolder: Neuro-fuzzy code

SubSubFolder: Rough Sets code

Subfolder: ARD Code

Main Folder: PHD Thesis

Subfolder: Latex Source Codes

SubSubFolder: Figures
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Subfolder: PhD PDF File

Subfolder: Journal and Conference Papers
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