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Background. During human immunode�ciency virus (HIV) disease, chronic immune activation leads to T-cell exhaustion. 

PD-1 identi�es “exhausted” CD8 T cells with impaired HIV-speci�c e�ector functions, but its role on CD4 T cells and in HIV-

infected children is poorly understood.

Methods. In a Kenyan cohort of vertically HIV-infected children, we measured PD-1+ CD4 T-cell frequencies and phenotype by 

�ow cytometry and their correlation with HIV disease progression and immune activation. Second, in vitro CD4 T-cell proliferative 

and cytokine responses to HIV-speci�c and -nonspeci�c stimuli were assessed with and without PD-1 blockade.

Results. HIV-infected children have increased frequencies of PD-1+ memory CD4 T cells that fail to normalize with antiret-

roviral treatment. �ese cells are comprised of central and e�ector memory subsets and correlate with HIV disease progression, 

measured by viral load, CD4 percentage, CD4:CD8 T-cell ratio, and immune activation. Last, PD-1+ CD4 T cells predict impaired 

proliferative potential yet preferentially secrete the �1 and �17 cytokines interferon-γ and interleukin 17A, and are unresponsive 

to in vitro PD-1 blockade.

Conclusions. �is study highlights di�erences in PD-1+ CD4 T-cell memory phenotype and response to blockade between HIV-

infected children and adults, with implications for potential immune checkpoint therapies.
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During human immunode�ciency virus (HIV) infection, viral 

reservoirs persist despite antiretroviral therapy (ART) and trig-

ger chronic T-cell activation, which leads to immune exhaustion. 

T-cell exhaustion is de�ned by progressive loss of e�ector func-

tions and occurs during chronic viral infections in mice, rhesus 

macaques, and humans, resulting in defective pathogen clearance 

[1]. Exhausted T cells express several inhibitory co-receptors, of 

which PD-1 is the most well-studied [2]. PD-1 is a member of the 

B7:CD28 superfamily that, upon binding to its ligands PD-L1 or 

PD-L2, functions as a coinhibitory molecule in T cell receptor 

(TCR) signaling [3]. During acute infections, T cells upregulate 

PD-1 a�er activation as a negative feedback mechanism [3–5]. 

Failure to downregulate PD-1 in the setting of chronic viral infec-

tions characterizes exhausted T cells with weak antigen-speci�c 

proliferative and cytokine responses [2]. �e therapeutic potential 

for PD-1 inhibitors was highlighted in the chronic lymphocytic 

choriomeningitis virus murine infection model in which block-

ade of the PD-1/PD-L1 pathway restored survival and function-

ality of CD8 T cells [6]. Similarly, inhibition of PD-1 improved 

simian immunode�ciency virus–speci�c CD8 T-cell cytotoxic, 

proliferative, and cytokine responses in nonhuman primates [7, 

8]. HIV-infected adults also have increased levels of PD-1+ CD8 

T cells with impaired function that recover HIV-speci�c e�ector 

responses with blockade in vitro [9–11].

While the role of PD-1 in HIV infection has been more 

thoroughly studied in CD8 T cells, its role in CD4 T-cell 

exhaustion has also been demonstrated. In HIV-infected 

(HIV+) adults, PD-1 is upregulated on HIV-specific CD4 T 

cells [12, 13] and correlates with markers of disease progres-

sion [9, 12, 14, 15]. Additionally, PD-1+ CD4 T cells were 

recently reported to be a reservoir for latent HIV in ART-

suppressed adults [16]. Most importantly, blockade of PD-1/

PD-L1 increases HIV-specific CD4 T-cell proliferation [9, 12, 

13, 15], suggesting multiple potential therapeutic roles for 

immune checkpoint inhibitors in HIV infection. An import-

ant unresolved question is whether the effect of blocking the 

PD-1/PD-L1 pathway is limited to HIV-specific CD4 T cells, 

which comprise a small portion of all PD-1–expressing cells 

[17], or if blockade of PD-1 also modulates function in non-

specific CD4 T cells.
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HIV+ children have tolerogenic immune systems with weak 

immune responses, leading to uncontrolled viral replication, rapid 

disease progression, and high mortality rates [18–21]. PD-1 in 

these children may mediate both immune tolerance and exhaus-

tion. HIV+ children have increased PD-1 expression on CD8 T 

cells that correlates with immune activation [22–24], yet the fre-

quency, phenotype, and function of PD-1+ CD4 T cells in the 

pediatric population are poorly characterized. In this study, we 

examined CD4 T cells in a perinatally infected HIV+ pediatric 

cohort from Mombasa, Kenya, for PD-1 expression and correlation 

with markers of HIV disease progression and immune activation. 

We also determined the functional capacity of PD-1+ CD4 T cells 

and e�ects of PD-1 blockade on CD4+ T cells. We show that fre-

quencies of PD-1+ memory CD4 T cells are signi�cantly elevated 

in HIV+ children and correlate with HIV disease progression, mea-

sured by CD4 percentage, CD4:CD8 ratio, HIV plasma viremia, 

and T-cell activation. We further demonstrate that PD-1+ mem-

ory CD4 T cells are hypoproliferative yet preferentially secrete �1 

and �17 cytokines compared to PD-1– CD4 T cells and that these 

functional features are not reversed by in vitro PD-1 blockade.

MATERIALS AND METHODS

Study Subjects and Specimens

Ethical approval for this study was obtained from New York 

University and Kenyatta National Hospital/University of 

Nairobi. Written informed consent and age-appropriate verbal 

assent were obtained from all participants and/or parents. We 

enrolled a total of 71 perinatally infected HIV+ and 40 HIV-

unexposed (HU) children aged 5–18 years from Bomu Hospital 

in Mombasa, Kenya, between 2011 and 2012. HIV+ children 

included 38 ART-naive (ART–) and 33 HIV+ children on ART 

for at least 6  months (ART+). Plasma and peripheral blood 

mononuclear cells (PBMCs) were isolated with Ficoll-Paque 

PLUS (GE Healthcare) density gradient centrifugation from each 

subject. HIV RNA was quanti�ed on diluted plasma samples 

with Roche, COBAS AmpliPrep/COBAS TaqMan HIV-1 Test, 

version 2.0 (limit of detection 110 copies/mL). Table 1 outlines 

demographic and clinical characteristics of the participants.

Immune Phenotyping

PBMCs were stained with �xable viability dye (eBioscience) in 

phosphate-bu�ered saline (PBS) for 30 minutes, then stained 

with �uorescent-conjugated antibodies against CD3, CD4, CD8, 

CD45RO, CCR7, CD38, HLA-DR, and PD-1 (Supplementary 

Table 1) at 4°C for 30 minutes in PBS bu�er containing 2% 

fetal calf serum and 0.1% sodium azide. For intracellular cyto-

kine staining, cells were activated with phorbol 12-myristate 

13-acetate (PMA; 40 ng/mL; Sigma), ionomycin (I; 500 ng/mL; 

Sigma), and GolgiStop (BD Biosciences) for 5 hours. Cells were 

stained with viability dye and surface markers CD3, CD4, CD8, 

CD45RO, and CCR6, then �xed, permeabilized (eBioscience kit), 

and stained with antibodies against interleukin (IL) 2, interferon 

gamma (IFN-γ), and IL-17A, then analyzed using an LSRII �ow 

cytometer (BD Bioscience) and FlowJo so�ware (Tree Star).

T-Cell Purification and Activation for PD-1 Sort Experiments

PBMCs were isolated from anonymous leukopaks obtained 

from the New York Blood Center under an institutional 

review board–approved protocol. CD4+ T cells were iso-

lated from PBMCs using Dynal CD4 Positive Isolation kit 

(Invitrogen) and were >99% pure. CD4+ T cells were sorted 

into PD-1– and PD-1+ memory cells (memory gate included 

CD45RO+ and CR45RO-CD27– cells) with a FACSAria cell 

sorter (BD Bioscience). Monocytes were isolated using Dynal 

CD14 Positive Isolation kit (Invitrogen) or CD14 MicroBeads 

(Miltenyi Biotec), then cultured with granulocyte macrophage 

colony-stimulating factor (50 ng/mL) and IL-4 (50 ng/mL) for 

3 days to generate dendritic cells. For proliferation experiments, 

cells were labeled with CFSE dye (Invitrogen), activated with 

soluble anti-CD3 (50 ng/mL clone OKT3, ATCC) and mono-

cyte-derived dendritic cells (1:5 ratio), cultured for 4 days, then 

analyzed for proliferation by �ow cytometry.

Proliferation and PD-1 Blockade Experiments in HIV-Infected Children

PBMCs were labeled with CellTrace Violet Cell Proliferation kit 

(Invitrogen), then stimulated with soluble anti-CD3 or HIV-

speci�c pooled Gag peptide (2 μg/mL) and CD28/CD49 (1 μg/mL).  

HIV Gag peptides were obtained from the National Institutes of 

Health AIDS Reagents program (number 12437) as a peptide set 

containing 15 aa length peptides that are potential T-cell determi-

nants [25]. On day 6–7, cells were stained with viability dye and sur-

face markers CD3 and CD4, then analyzed by �ow cytometry. For 

blockade experiments, cells were incubated with anti-PD-1 (clone 

EH12.2H7, 10 μg/mL) or isotype control antibodies (mouse IgG1, 

κ clone MG1-45, 10 μg/mL) for 30 minutes before stimulation.

Statistical Analysis

All statistical analyses were performed using GraphPad Prism 

so�ware. For comparison of multiple groups of subjects, the 

Table 1. Subject Characteristics

Characteristic HIV-Negative ART-Naive On ART P Value

No. 40 38 33

Agea 11 (9–15) 11 (8–14) 12 (8–13) NSb

Female sex, No. (%) 17 (42) 22 (58) 20 (60) NSc

CD4 percentagea 38 (33–42) 25 (16–28) 32 (26–39) P < .0001b

Log HIV copies/mLa 4.9 (4.3–5.3) 2 (2–2) P < .0001d

Undetectable: 

n = 27 (81%)

Abbreviations: ART, antiretroviral therapy; HIV, human immunodeficiency virus; NS, not 

significant.

aMedian values with interquartile range.

bKruskal-Wallis test.

cχ2 test.

dTwo-sided Mann–Whitney test.
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Kruskal–Wallis test followed by Dunn multiple compari-

sons test was performed. Multiple time points were evaluated 

with Wilcoxon matched-pairs signed-rank test. Correlations 

were assessed with the Spearman rank test. For linear regres-

sion analysis, the percent of proliferating cells was the depen-

dent variable, and PD-1+ memory CD4 T-cell percentage was 

the independent variable. Comparisons between PD-1– and 

PD-1+ populations were performed with the ratio paired t test. 

�reshold of signi�cance for all tests was .05.

RESULTS

HIV-Infected Children Have Elevated PD-1+ Memory CD4 T Cells That 

Decrease With ART

Because PD-1 is mostly expressed on memory rather than 

naive CD4 T cells (Supplementary Figure 1A), we determined 

PD-1 expression on memory CD4 T cells (CD4 T
M

), de�ned 

as the sum of central (T
CM

, CD45RO+CCR7+), e�ector (T
EM

, 

CD45RO+CCR7–), and RA+ e�ector memory (EMRA) (T
EMRA

, 

CD45RO–CCR7–) populations (Figure 1A). Both ART– and 

ART+ subjects had signi�cant increases in the percentage of 

PD-1+ CD4 T
M

 compared with HU children (P < .0001 and P = .02,  

respectively; Figure 1A). Similarly, PD-1 mean �uorescence 

intensity in CD4 T
M

 was higher in HIV+ than in HU children 

(Figure 1B). �ere was no correlation between age and PD-1+ 

CD4 T
M

 in HU or HIV+ children (Figure 1C). PD-1+ frequen-

cies in memory CD8 T cells were high in ART– but not ART+ 

children compared with HU children (Supplementary Figure 

1B). In ART– children, treatment initiation signi�cantly low-

ered the frequency of PD-1+ CD4 T
M

, within 1 year (P = .001; 

Figure 1D). However, PD-1 levels remained higher than HU at 

6 and 12 months post-ART (P < .0001; Supplementary Figure 

1C). Longer durations of treatment in the ART+ cohort were not 

associated with lower PD-1 expression in memory CD4 T cells 

(Supplementary Figure 1D).
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Figure 1. Increased frequency of PD-1+ CD4 memory T cells in human immunodeficiency virus (HIV)–infected children declines with antiretroviral therapy (ART). A, Gating 

strategy to identify CD4 memory T cells based on CD45RO and CCR7 surface expression. Representative flow plots of cell surface PD-1 expression within CD4+ memory T 

cells in an HIV-uninfected and an HIV-infected child are shown. The percentage of PD-1-expressing CD4+ memory T cells from children aged 5–18 years in the following 3 

categories are shown: HIV-unexposed (HU), HIV-infected ART-naive (ART–), and HIV-infected on ART (ART+). B, Mean fluorescence intensity of PD-1 in CD4+ memory T cells 

in HU, ART–, and ART+ children. C, PD-1+ memory CD4 T cells graphed vs age in HIV-uninfected (open circles) and HIV-infected (closed circles) children. D, PD-1+ memory 

CD4 T-cell frequencies before (pre-ART) and 12 months after ART (post-ART). P values were calculated using Kruskal–Wallis test followed by the Dunn posttest for multiple 

comparisons and Wilcoxon matched-pairs signed-rank test for paired analysis. Bars on scatterplots represent median values with the interquartile range. Abbreviations: 

ART, antiretroviral therapy; CM, central memory; EM, effector memory; EMRA, RA+ effector memory; HIV, human immunodeficiency virus; HU, human immunodeficiency virus 

unexposed; MFI, mean fluorescence intensity; NS, not significant; T
M

, memory T cell.
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We next asked which memory subset accounted for 

high PD-1 levels in total memory CD4 T cells. PD-1 

expression was increased in T
CM

 of ART– (P  <  .0001) and 

ART+ (P  =  .002) children compared with HU children 

(Figure 2A). ART– children also had higher PD-1 expression 

in T
EM

 and T
EMRA

 compared with HU children (Figure 2A). 

HIV+ children did not have similar increases in T
CM

, T
EM

, 

and T
EMRA

 compared to HU children (Supplementary 

Figure  2A). In each subject category, T
CM

 and T
EM

 com-

prised nearly equal proportions of the total PD-1+ CD4 T
M

 

population (Figure 2B). PD-1+ CD4 T
M

 coexpressed mini-

mal levels of other inhibitory molecules, CD160, 2B4, and 

TIM3, which were similar between HU and HIV+ children 

(Supplementary Figure 2B).

PD-1 Expression on Memory CD4 T Cells Correlates With Disease 

Progression in HIV-Infected Children

We determined correlations between PD-1+ CD4 T
M

 and clini-

cal markers of disease progression. In HIV+ subjects, PD-1+ CD4 

T
M

 frequency directly correlated with HIV viral load (P = .02;  

Figure 3A) in ART– children, and inversely correlated with 

CD4 percentage (P < .0001; Figure 3B) and CD4:CD8 ratio  

(P < .0001; Figure 3C) in HIV+ children. �ese correlations 

were not present in HU (Supplementary Figure 3A). Immune 

activation markers CD38 and HLA-DR predict HIV disease 

progression [26]. �e percentage of PD-1+ CD4 T
M

 signi�-

cantly correlated with CD38+HLA-DR+ CD8 (P < .0001) and 

CD4 T cells (P < .0001) and CD38+CD45RO+ CD4 T cells  

(P = .003; Figure 3D). �ere was no correlation between the 

PD-1+ CD4 T
M

 and markers of immune activation in HU chil-

dren (Supplementary Figure 3B).

PD-1+ Memory CD4 T Cells Are Hypoproliferative and Predict Low 

Proliferative Capacity in HIV-Infected Children

We �rst compared proliferative potentials between PD-1– and 

PD-1+ CD4 T cells isolated from anonymous leukopaks, due 

to limitations in blood volumes obtained from children. Sorted 

PD-1+ and PD-1– memory CD4 T cells were activated through 

the TCR with anti-CD3, then assessed for proliferation. PD-1+ 

CD4 T
M

 proliferated more than 2.5-fold less than PD-1– CD4 T
M

 

from the same donor (Figure 4A and 4B). Next, we examined pro-

liferative responses in relation to PD-1 expression on CD4 T cells 

in HIV+ children (Supplementary Table 2). Total PBMCs were 

activated ex vivo with an antigen-independent stimulus using 

anti-CD3 antibody or an HIV-speci�c stimulus via pooled HIV 

Gag peptides (HIV Gag), then measured for proliferation of total 

CD4 T cells on day 6 (Figure 4C). Remarkably, higher baseline 

PD-1+ CD4 T
M

 levels predicted decreased proliferative capacity 

within total CD4 T cells a�er anti-CD3 (P = .02; R2 = 0.54) and 

HIV-speci�c stimulation (P = .04; R2 = 0.55; Figure 4D). Notably, 

the frequency of T
CM

 or T
EM

 in memory CD4 T cells did not pre-

dict the proliferative potential of CD4 T cells a�er either stimulus 

(Supplementary Figure 4).

PD-1 Blockade Fails to Raise Proliferative Capacity of CD4 T Cells in  

HIV-Infected Children

We next evaluated whether blockade of PD-1 restored prolifer-

ative functions of CD4 T cells in HIV+ children. �e addition 
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of a monoclonal antibody to PD-1 to PBMC cultures with 

anti-CD3 maintained blockade of the PD-1 receptor for 8 days 

a�er stimulation (Supplementary Figure 5A). However, the per-

centage of proliferating CD4 T cells was similar between anti–

PD-1 and isotype control antibodies a�er anti-CD3 (Figure 5A 

and 5B) and HIV Gag (Figure 5C and 5D) stimulation, despite 

high PD-1 expression. PD-1 blockade did not result in higher 

cell death, as the frequencies of live cells were similar between 

the isotype control and anti–PD-1 antibodies (Supplementary 

Figure 5B).

PD-1+ Memory CD4 T Cells Produce Inflammatory Th1 and Th17 Cytokines

In PD-1– and PD-1+ sorted memory CD4 T cells from healthy 

adults that were stimulated with PMA/I, the PD-1+ subset pro-

duced signi�cantly less IL-2 and more of the in�ammatory 

cytokine IFN-γ (P = .007 and P = .0475; Figure 6A) compared 

to the PD-1– memory CD4 T cells. Next we evaluated IL-17A 

production within CCR6+ PD-1– and PD-1+ cells, as all �17 

express CCR6. PD-1+ CD45RO+CCR6+CD4 T cells had mark-

edly higher IL-17A levels (P = .007) compared to their PD-1– 

counterpart (Figure 6A).

In HIV+ children, we examined ex vivo cytokine produc-

tion in PD-1+ and PD-1– gated CD45RO+ CD4 T cells by �ow 

cytometry (Figure 6B). Activation with PMA/I did not signi�-

cantly change PD-1 expression in HIV+ children (Figure 6B), 

whereas it increased PD-1 levels in HU children (Supplementary 

Figure 6A). PD-1+ CD45RO+CD4+ T cells from HIV+ children 

also produced signi�cantly less IL-2 (P = .003; Figure 6C) and 

signi�cantly more IFN-γ (P < .0001; Figure 6C) and IL-17A  

(P = .0003; Supplementary Figure 6B) compared with PD-1– 

cells. CCR6 expression did not di�er between PD-1– and PD-1+ 

cells (Supplementary Figure 6C), and IL-17A was >2-fold higher 

in PD-1+ CD45RO+CCR6+ cells compared with the PD-1– subset 

(P = .0003; Figure 6C). HU subjects also had higher IFN-γ and 

IL-17A production in PD-1+ CD4 T cells (Supplementary Figure 

6D). To con�rm our �ndings in the entire HIV+ cohort, we 

evaluated whether PD-1 expression on CD4 T
M

 correlated with 

cytokine production by total CD45RO+CD4+ T cells. Indeed, 

PD-1+ CD4 T
M

 frequencies correlated inversely with IL-2  

(P = .008; Figure 6D) and directly with IFN-γ and IL-17A levels 

in CD4 T cells (P = .005 and P = .02; Figure 6D). In HU, there 

were no signi�cant correlations between PD-1+ CD4 T
M

 fre-

quencies and cytokines (Supplementary Figure 6E). PD-1 block-

ade with anti-PD-1 antibodies before stimulation with PMA/I or 

HIV Gag did not alter IFN-γ or IL-17A levels in CD45RO+ CD4 

T cells of HIV+ children (Supplementary Figure 7).

DISCUSSION

In this study we demonstrate that perinatally-infected HIV+ 

children aged 5–18 years have remarkable elevations in the 

frequency of PD-1+ memory CD4 T cells that lower with 

ART, but fail to normalize. These cells are comprised of 
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PD-1–expressing CD4+ memory T cells directly correlates (A) with HIV RNA load (log copies/mL), and inversely correlates (B) with CD4 percentage and CD4:CD8 ratio (C). 

Peripheral blood mononuclear cells were stained with surface markers CD3, CD4, CD8, CD45RO, and activation markers CD38 and HLA-DR. The percentage of PD-1–express-

ing CD4+ memory T cells directly correlates with the percentage of CD38+DR+ (D) CD8 and CD4 T cells as well as with CD45RO+CD38+ CD4 T cells. Statistical analysis was 

performed using Spearman correlation test.
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central and effector memory subsets and correlate with HIV 

disease progression, measured by viral load, CD4 percent-

age, CD4:CD8 T-cell ratio, and immune activation. In HIV+ 

children, PD-1+ memory CD4 T cells predict both HIV-

specific and -nonspecific proliferative capacity of total CD4 

T cells. Despite weak proliferative potential, PD-1+ memory 

CD4 T cells preferentially produce Th1 and Th17 cytokines. 

Last, blockade of PD-1 with neutralizing antibodies failed to 

restore HIV-specific and -nonspecific proliferative responses 

or to dampen inflammatory cytokine production in HIV+ 

children.

Our �ndings of increased levels of PD-1+ CD4 T cells in 

HIV+ children that correlate with HIV disease progression are 

consistent with previous studies of HIV+ adult subjects [9, 12, 

14, 15]. �e signi�cant correlations between PD-1+ CD4 T cells 

and immune activation markers raise the question whether 

PD-1+ CD4 T cells represent exhausted T cells or a recently acti-

vated T-cell population in HIV+ children. In 2 di�erent cohorts 

of HIV+ children from the United Kingdom [22] and Uganda 

[23], PD-1 expression on CD8 T cells was positively associ-

ated with CD38+HLA–DR+ CD8 T cells; however, there are no 

similar pediatric reports of PD-1+ CD4 T cells. Interestingly, 
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Figure 4. PD-1+ CD4 memory T cells (T
M

) have decreased proliferative capacity in healthy adults and predict proliferative capacity in human immunodeficiency virus (HIV)–

infected children. Peripheral blood mononuclear cells (PBMCs) from healthy adult donors were sorted into PD-1– and PD-1+ memory CD4 T-cell subsets by live cell sorting. A 

and B, Carboxyfluorescein succinimidyl ester (CFSE)-labeled PD-1– and PD-1+ CD4 memory T cells were stimulated with anti-CD3 (Clone OKT3) and monocyte-derived dendritic 

cells; cell proliferation was assessed on day 4. A, Representative flow plots show percent of proliferating cells measured by dilution of CFSE in PD-1– and PD-1+ CD4 memory T 

cells sorted from the same donor. B, Paired comparison of proliferation between PD-1– and PD-1+ sorted memory CD4 T cells from 3 adult donors. P value was calculated with 

a ratio paired t test. C, PBMCs from HIV-infected children were labeled with CellTrace Violet then either left unstimulated (no antigen), or stimulated with anti-CD3 or HIV Gag 

peptide pool. Representative flow plots of proliferation of CD4+ T cells on day 7 are shown from 1 donor. D, Linear regression analysis of baseline percentage of PD-1+ CD4 memory  

T cells vs the percentage of proliferating CD4 T cells after anti-CD3 and HIV Gag peptide stimulation. Triangles indicate viremic subjects.
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PD-1 expression a�er activation by PMA/I remained stable in 

HIV+ children but increased in HU children, suggesting that a 

portion of PD-1+ memory CD4 T cells in HIV disease is acti-

vation-induced. Additional markers are necessary to discern 

between recently activated and exhausted PD-1+ CD4 T cells. 

Although subjects with recent viral illness or active coinfections 

were excluded from our study, the dynamics of PD-1 expres-

sion during and a�er acute infection remain poorly understood. 

Another potential explanation for the correlation between 

PD-1+ CD4 T cells and immune activation derives from the 

recent report of a viral reservoir within PD-1+ CD4 T cells [16]. 

Nearly half of PD-1+ CD4 T cells from HIV+ children are T
CM

, 

which contains a viral reservoir in children [27, 28]. Although 

speculative, it is conceivable that a portion of this reservoir may 

intermittently replicate and trigger T-cell activation.

In our cohort of HIV+ children, more than half of mem-

ory CD4 T cells were PD-1+, yet HIV-speci�c cells account 

for only 1%–5% of the total CD4 T-cell population in chronic 

HIV infection [17]. Moreover, in healthy children, nearly 40% 

of memory CD4 T cells expressed PD-1. What functional role 

does PD-1 play on HIV-nonspeci�c T cells or in healthy hosts 

under physiologic conditions? Our experiments on PD-1+ and 

PD-1– sorted populations from healthy adults demonstrated 

>2.5-fold lower proliferative potential in PD-1+ CD4 T cells 

a�er stimulation with anti-CD3 antibodies. While previous 

reports describe hypoproliferative PD-1+ CD4 T cells in the 

context of chronic viral infections [9, 15], to our knowledge this 

is the �rst report demonstrating a marked di�erence in prolif-

erative capacity between PD-1+ and PD-1– sorted CD4 T cells 

in response to TCR stimulation in healthy adults. Remarkably, 

PD-1+ CD4 T
M

 frequencies in HIV+ children similarly predicted 

both HIV-speci�c and -nonspeci�c CD4 T-cell proliferative 

responses. Whether this muted proliferative potential derives 

from an exhausted or terminally di�erentiated state is unclear. 

Alternatively, regulatory T cells expressing PD-1, which we pre-

viously reported [29], may exert suppressive functions leading 

to impaired proliferation.

In studies of adults, blockade of the PD-1 pathway increased 

HIV-speci�c CD4 T-cell proliferation [9, 12, 13, 15], yet in 

HIV+ children, PD-1 blockade failed to raise proliferative 

responses to both anti-CD3 antibodies and HIV Gag peptides. 

Of note, most adult studies used blocking antibodies against 

PD-L1, whereas we used monoclonal antibodies to PD-1, as 

the majority of currently US Food and Drug Administration–

approved PD-1-modulating antibodies target the receptor itself. 

However, PD-L1 blockade in a small subset of HIV+ children 

replicated our results with PD-1 antibodies and had no e�ect 

on proliferative capacity (data not shown). While PD-1 block-

ade generally yielded larger e�ects in untreated viremic adult 

subjects [13, 15], PD-1 blockade failed to rescue proliferative 

capacity in both viremic and ART-suppressed children. Early 

studies of PD-L1 interactions with PD-1 on human CD4 T cells 

100

P
ro

li
fe

ra
ti

o
n

 (
%

) 80

60

40

20

0

P
ro

li
fe

ra
ti

o
n

 (
%

)

0

2

4

6

NS

NS

Isotype Anti-PD-1

Isotype

CTV

anti-PD-1

34%35%

4.1%4.9%

C
D

4
C

D
4

Isotype Anti-PD-1

A B

C D
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demonstrated that PD-L1 failed to inhibit proliferation under 

saturating conditions of TCR activation with anti-CD3/CD28 

[30]. Due to limited blood volumes obtained from children, our 

experiments were optimized on adult PBMCs. It is conceivable 

that our ex vivo stimuli may have been too strong to overcome 

with blockade because optimal antigen concentrations di�er 
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between the developing pediatric and mature adult immune 

systems. Indeed, immune development in perinatally infected 

HIV+ children amidst chronic antigenic stimulation may trig-

ger irreversible T-cell exhaustion. Recently, Corneau et al char-

acterized PD-1+ CD4 T cells in healthy and HIV+ adults by 

large multiplex mass cytometry, and demonstrated that PD-1+ 

CD4 T cells were predominantly T
EM

 and T
EMRA

 with limited 

expression on T
CM

 [31]. In HIV+ children, we found a nearly 

equal divide between T
CM

 and T
EM

 in PD-1+ CD4 T cells; the 

functional e�ects of anti-PD-1 may di�er between T
CM

 and T
EM

 

subsets.

While producing signi�cantly less IL-2 consistent with their 

proliferative dysfunction, PD-1+ CD4 T cells preferentially pro-

duced in�ammatory �1 and �17 cytokines in both healthy 

adults and HIV+ children, suggesting these cells retain robust 

e�ector properties. Porichis et al also demonstrated the PD-1hi 

sorted population was the main cytokine-secreting population in 

chronically HIV+ adults [15]. A more recent report revealed that 

a subset of early di�erentiated CD27highCD45RAlowCD127high 

PD-1+ cells are highly functional with elevated cytokine pro-

duction [14]. While PD-1 blockade consistently restores HIV-

speci�c T-cell proliferation in studies of adults, results vary on 

whether blockade also restores cytokine production. In HIV+ 

children, anti–PD-1 antibodies did not alter cytokine produc-

tion in CD4+ T cells. Previous studies that report increased 

in�ammatory cytokine secretion a�er PD-1 blockade [15, 32] 

measured cytokine levels in the supernatant and observed sig-

ni�cant variability among subjects. D’Souza et al demonstrated 

no di�erence in cytokine production by HIV-speci�c CD4 T 

cells with intracellular cytokine staining assays a�er PD-1 

blockade [12], similar to our �ndings.

Interestingly, in a comparison of the gene pro�les of PD-1hi 

CD8 T cells in healthy vs HIV+ adults, Duraiswamy et al demon-

strated that the gene signature of PD-1hi CD8 T cells in healthy 

subjects did not match the exhausted gene pro�le of PD-1hi CD8 

T cells from HIV+ adults, suggesting that PD-1hi CD8 T cells 

in healthy humans represent e�ector memory cells rather than 

exhausted cells [33]. In PD-1+ CD4 T cells, we found identical 

proliferative and cytokine functions in healthy adults and HIV+ 

children, warranting further investigation of genetic and tran-

scriptional signatures of PD-1+ CD4 T cells in children. Most 

importantly, our data demonstrate that PD-1 expression alone 

does not identify exhausted CD4 T cells. Rather PD-1+ CD4 T 

cells in children comprise a heterogeneous central and e�ector 

memory population and likely mark di�erentiated, exhausted, 

and recently activated CD4 T cells.

In summary, both treated and untreated HIV+ children have 

signi�cantly increased frequencies of PD-1+ memory CD4 T 

cells that correlate with HIV disease progression and immune 

activation. In healthy adults, PD-1+ CD4 T cells are hypoprolif-

erative a�er TCR stimulation, and in HIV+ children frequencies 

of these cells predict HIV-speci�c and -nonspeci�c proliferative 

capacity of CD4 T cells. Despite proliferative defects, PD-1+ 

memory CD4 T cells preferentially produce �1 and �17 cyto-

kines, IFN-γ and IL-17A, respectively. Last, in HIV+ children, 

PD-1 blockade fails to restore proliferative potential or dampen 

cytokine production. Together, these �ndings demonstrate that 

PD-1+ CD4 T cells are a heterogeneous subset of central and 

e�ector memory T cells with impaired proliferative capacity, 

yet with the potential to secrete proin�ammatory cytokines. 

�ese cells are elevated in children with perinatally acquired 

HIV infection, correlate with disease progression, and are unre-

sponsive to in vitro blockade. �is study highlights a need for 

further investigation into the precise role of the PD-1 pathway 

in HIV+ children in light of recent phase 1 clinical trials of PD-1 

immune modulators in HIV+ adults [34].
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