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Abstract 

A number of anti-retroviral drugs are being used for treating Human Immunodeficiency Virus (HIV) infection. Due to 

emergence of drug resistant strains, there is a constant quest to discover more effective anti-HIV compounds. In this 

endeavor, computational tools have proven useful in accelerating drug discovery. Although methods were published 

to design a class of compounds against a specific HIV protein, but an integrated web server for the same is lacking. 

Therefore, we have developed support vector machine based regression models using experimentally validated data 

from ChEMBL repository. Quantitative structure activity relationship based features were selected for predicting inhibi-

tion activity of a compound against HIV proteins namely protease (PR), reverse transcriptase (RT) and integrase (IN). 

The models presented a maximum Pearson correlation coefficient of 0.78, 0.76, 0.74 and 0.76, 0.68, 0.72 during tenfold 

cross-validation on  IC50 and percent inhibition datasets of PR, RT, IN respectively. These models performed equally 

well on the independent datasets. Chemical space mapping, applicability domain analyses and other statistical tests 

further support robustness of the predictive models. Currently, we have identified a number of chemical descriptors 

that are imperative in predicting the compound inhibition potential. HIVprotI platform (http://bioinfo.imtech.res.in/

manojk/hivproti) would be useful in virtual screening of inhibitors as well as designing of new molecules against the 

important HIV proteins for therapeutics development.
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Background

Human Immunodeficiency Virus (HIV) is one of the 

reasons for human death and suffering worldwide. It 

causes Acquired Immunodeficiency Syndrome (AIDS) in 

which gradual breakdown of the immune system allows 

critical opportunistic diseases to flourish [1]. As per the 

UNAIDS report, around 78 million people have become 

infected with HIV and 35 million people have died of 

AIDS-related illnesses since the start of the epidemic. In 

2015 alone there were about 36.9 million people living 

with HIV of which 1.1 million died (http://www.unaids.

org/en/resources/campaigns/HowAIDSchangedevery-

thing/factsheet). Due to the high genetic variability and 

mutation rate of HIV, vaccines are not available to curb 

the HIV infection [2].

Researchers have put a considerable focus on HIV ther-

apy and a lot of compounds have been tested against this 

pathogen [3, 4]. However, a few antiretroviral drugs have 

been able to slow the disease progression. �ese drugs 

blocked the function of proteins implicated in certain 

stages of the HIV life-cycle [5]. Different HIV enzymes 

are needed for the development of the retrovirus includ-

ing reverse transcriptase (RT), protease (PR) and inte-

grase (IN) [6]. RT creates complementary DNA from an 

RNA template which can integrate into the host genome 

and its inhibitors are widely used as antiretroviral drugs 

[7]. For example, the first anti-HIV drug zidovudine or 

azidothymidine (a nucleoside analog) was approved by 

the Food and Drug Administration (FDA) in 1987. It 

inhibits HIV reverse transcriptase, hence thwarting viral 
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replication [8]. PR slices the newly synthesized polypro-

teins at the relevant positions to form the mature pro-

tein apparatus and is a major drug-target for treatment 

of HIV [9]. In 1995, saquinavir (invirase) became the first 

approved protease inhibitor. It blocks the enzyme’s active 

site, thus restricting the processing of HIV poly-proteins 

[10, 11]. �e IN enzyme enables the virus to integrate its 

genetic material into the DNA of the host cell for a long-

term infection. Compounds that inhibit the IN enzyme 

have demonstrated potent anti-HIV activity [12]. For 

example, raltegravir (isentress), the first integrase inhibi-

tor was approved by FDA in 2007 [13]. Presently about 30 

antiretroviral drugs are prescribed for the clinical treat-

ment of AIDS [14]. An improved knowledge of the struc-

ture and function viral proteins has led antiviral drug 

developers to design better antivirals to treat HIV infec-

tions [15].

To conserve capital and time for finding novel drugs, 

scientists have extensively used different computational 

approaches to scan virtual compound libraries prior to the 

wet lab experiments [16]. �e preferred targeted region 

should be off-target free and conserved across many 

strains of a virus for broad activity. Once the target is cho-

sen, candidate antivirals can be selected by predicting the 

potential inhibitor using bioinformatics approaches [17, 

18]. Amongst the diverse methods, quantitative structure 

activity relationship (QSAR) is being regularly used [19–

22]. In QSAR, associations involving chemical descriptors 

and activity are employed to envisage the properties of 

other compounds [23]. �e chemical descriptors present 

the structural information of a compound as numerical 

values [24]. Virtual screening employing QSAR is a valu-

able bioinformatics approach which helps to identify and 

devise of new antiviral drugs [25].

Several attempts have been made for predicting spe-

cific types of compounds against different HIV proteins 

(discussed later). Nevertheless, till date there no web 

server/software, which can regressively estimate the 

IC50/percentage inhibition activity of diverse types of, 

compounds against different HIV proteins. To accommo-

date this requirement, we created HIVprotI, a web based 

algorithm for prediction and design of protein specific 

anti-HIV compounds. In this approach, we employed 

experimentally validated inhibitors against RT, PR, IN 

(with  IC50/percentage inhibition) from ChEMBL [26]. 

We calculated molecular descriptors and performed fea-

ture selection to pick the best performing descriptors, 

which were employed to build support vector machine 

(SVM) based QSAR models for the prediction of inhibi-

tors against HIV proteins. We further incorporated the 

models in the HIVprotI web server, which will be use-

ful for virtual screening and scheming novel inhibitors 

directed against HIV.

Methods

Datasets

In the present study, we have employed diverse datasets 

of inhibitors with experimentally validated  IC50/per-

cent inhibition activity against PR, RT and IN. �e data 

was collected from ChEMBL resource (https://www.ebi.

ac.uk/chembl/) by target browser (taxonomy tree) as well 

as target search using keywords like ‘Human Immunode-

ficiency Virus’, ‘HIV’, ‘protease’, ‘reverse transcriptase’ and 

‘integrase’ etc. Initially among the inhibitors, majority of 

data belonged to RT, PR and IN with 3882, 3180, 2732 

 (IC50) and 1000, 740, 406 (percent inhibition) compounds 

respectively. After filtering entries with required informa-

tion and eliminating redundant entries, we were left with 

2126, 1895, 1240  (IC50) and 563, 518, 186 (percent inhi-

bition) molecules correspondingly for the above men-

tioned proteins (hence 06 datasets) (Tables 1, 2). We have 

three times randomly picked ~ 10% of data as independ-

ent/validation dataset from each of six datasets. In each 

case this ~ 10% of the compounds were used for valida-

tion of the QSAR predictive models developed using the 

remaining 90% data during the training/testing [27]. �is 

process is iterated three times for each of the six datasets 

and performances were comparable as detailed in the 

Additional file 1: Table S1. �ese datasets were employed 

for descriptor calculation and development of the mod-

els. �e datasets can be accessed from the URLs: http://

bioinfo.imtech.res.in/manojk/hivproti/ic50_datasets.php 

and http://bioinfo.imtech.res.in/manojk/hivproti/data-

sets.php.

Table 1 HIV protein inhibitor datasets used in the development of  IC50 based QSAR models

Columns include HIV proteins overall data and filtered data (with quantitative inhibition value in terms of  IC50) extracted from ChEMBL. Later incorporates redundant 

and non-redundant inhibitors  (IC50) with a reference from a verifiable source

Serial number HIV protein Overall data Data filter

IC50 IC50 with reference IC50 with reference and non-redundant

1 Protease 3180 2523 1963 1895

2 Reverse transcriptase 3882 2318 2222 2126

3 Integrase 2732 1296 1255 1240

https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chembl/
http://bioinfo.imtech.res.in/manojk/hivproti/ic50_datasets.php
http://bioinfo.imtech.res.in/manojk/hivproti/ic50_datasets.php
http://bioinfo.imtech.res.in/manojk/hivproti/datasets.php
http://bioinfo.imtech.res.in/manojk/hivproti/datasets.php
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Descriptor calculation

To develop protein specific prediction models, we calcu-

lated around 18,000 molecular descriptors which include 

geometric, electrostatic, structural, constitutional, path 

and graph fingerprints etc. utilizing the open source 

PaDEL software [28].

Feature selection

To increase the speed of computation and eliminate 

unrelated features we chose the most necessary molec-

ular descriptors employing the filter ‘RemoveUseless’ 

and attribute evaluator ‘ClassifierSubsetEval’ with ‘Best-

First’ as the search method in Waikato Environment for 

Knowledge Analysis (Weka) suite [29]. ClassifierSub-

setEval estimates feature subsets on training/testing data 

utilizing a classifier to evaluate the worth of different fea-

ture sets.

Machine learning

We created protein specific QSAR models for each of the 

3-inhibitor classes (RT, PR and IN) employing SMOreg 

machine learning algorithm in Weka package. SMOreg 

executes the SVM in regression approach [29]. Cho-

sen chemical descriptors and fingerprints were utilized 

for building the prediction models. �e models were 

assessed by means of tenfold cross validation as well as 

independent validation [30]. �e overall methodology 

for model development is depicted in Fig. 1. However, we 

used Tropsha’s validation test to statistically validate the 

prediction ability of developed model [31, 32].

Evaluation

To calculate the performance of the QSAR models, we 

used various statistical measures such as Pearson’s cor-

relation coefficient (PCC), Coefficient of Determina-

tion, Mean absolute error and Root-mean-square error 

described as follows.

Pearson’s correlation coefficient (R) calculates the cor-

relation between two variables.

Here n is the size of test set while  Eipred and  Eiact are the 

predicted and actual efficacies correspondingly.

A PCC value of 1 implies full positive correlation, 0 

implies no correlation while −  1 implies full negative 

correlation.

Coefficient of Determination (R2) signifies how well a 

data fits the statistical model. An  R2 value of 1 states that 

the model totally fits the data. On the other hand, a value 

of 0 implies that the model does not fit the data in any 

way.

Mean absolute error (MAE) calculates the closeness of 

predictions to the actual results.
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Table 2 HIV protein Inhibitor datasets used in the development of percent inhibition based QSAR models

Columns include HIV proteins overall data and filtered data (with quantitative inhibition value in terms of %) extracted from ChEMBL. Later incorporates redundant 

and non-redundant inhibitors with a reference from a verifiable source

Serial number HIV protein Overall data Data filter

% inhibition % inhibition with reference % inhibition with reference 
and non-redundant

1 Protease 740 601 569 518

2 Reverse transcriptase 1000 943 921 563

3 Integrase 406 378 376 186

Fig. 1 HIVprotI algorithm development
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Here  Eipred  is the predicted value,  Eiact  the true and 

|Eipred–Eiact| the absolute error.

Root-mean-square error (RMSE) calculates the mean 

magnitude of the error.

MAEs and RMSEs are negatively-oriented values, that 

is, lower values are superior.

Chemical space mapping

Chemical space mapping of the datasets were done 

employing Ches-Mapper, a Java based application [33]. 

It involves creation of 3-dimensional structure (mmff94 

force field), feature extraction (Chemical Development 

Kit (CDK) and hashed finger prints), clustering (k-means 

cascade method), embedding in 3-D space (or Dimen-

sionality reduction) and alignment of compounds using 

maximum common subgraph (MCS).  IC50 and percent-

age inhibition datasets of RT, PR and IN were individually 

mapped in the chemical space to understand the rela-

tionship between structure, physicochemical properties 

and biological aspects. All the clusters were provided as 

superimposed images with information of the number of 

sequences, 3-D embedding quality, and respective MCS.

Applicability domain

Applicability domain (AD) of a QSAR model helps to 

measure its certainty in prediction [34]. We used Model 

Disturbance Index (MDI) v/s Prediction error (PE) 

method to calculate AD of all the prediction models [35]. 

It is calculated through Java-based Applicability Domain-

Model Disturbance Index (AD-MDI) software (http://

nanobridges.eu/software/). Validation datasets of RT, PR 

and IN for both  IC50 and percentage inhibition were used 

to check their reliability on the respective training data 

sets. AD of the models was provided in form of scatter 

plots between MDI and PE.
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Results

Performance of QSAR models

To facilitate the identification of the most efficient 

descriptors of anti HIV drugs against the three proteins, 

we calculated the correlation between chemical descrip-

tors of the anti-HIV compounds and their  IC50/percent 

inhibition. We have used wide-ranging datasets from the 

ChEMBL bioactivity resource [26]. After feature selec-

tion, the relevant descriptors that remained were 45, 61, 

55  (IC50) and 42 49, 23 (percent inhibition) for PR, RT 

and IN respectively.

During tenfold cross validation, we attained maximum 

correlation (PCC) of 0.78, 0.76, 0.74  (IC50) and 0.76, 0.68, 

0.72 (percent inhibition) in case of PR, RT and IN respec-

tively. Further we reached a maximum PCC of 0.73, 0.72, 

0.70  (IC50) and 0.70, 0.63, 0.65 (percent inhibition) on 

independent validation datasets for PR, RT, and IN cor-

respondingly (Tables 3, 4).

Furthermore, all the models are statistically significant 

with p value < 0.001. Other statistical parameters used in 

the creation of prediction models are listed in Additional 

file  1: Tables S2 and S3. Scatter plots of predicted and 

actual activities are depicted in Figs. 2 and 3.

A compilation of chosen molecular descriptors such as 

atom type electrotopological state, partial charge, extended 

topochemical atom and several path/graph fingerprints 

were helpful in developing the algorithm (Additional file 1: 

Tables S4 and S5). �e atom type electrotopological state 

holds information of electronic state of the bonded atom 

in a compound and its topological nature in the milieu of 

the entire molecular structure [36]. Likewise, the extended 

topochemical atom indices provide details of the elec-

tronic environment of the atoms, bonds, functional groups 

and branching [37] �e details of other molecular descrip-

tors have been discussed by Yap [28].

Web server

�e prediction models have been incorporated into an 

open source and simple to web application, ‘HIVprotI’. 

Here one can predict the inhibition activity of query 

Table 3 Performance of QSAR based predictive models developed on each of the HIV protein inhibitor  (IC50) datasets 

during tenfold training/testing and on independent validation

Serial number HIV protein Inhibitor compounds Number 
of selected 
descriptors

Pearson’s correlation coefficient 
(PCC)

p value

Total Training/testing Independent 
validation

Training/testing 
(10×)

Independent 
validation

1 Protease 1895 1706 189 45 0.78 0.73 1.00e−9

2 Reverse tran-
scriptase

2126 1914 212 61 0.76 0.72 1.00e−7

3 Integrase 1240 1116 124 55 0.74 0.70 1.00e−6

http://nanobridges.eu/software/
http://nanobridges.eu/software/
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compounds against the different HIV proteins in terms 

of  IC50/percent inhibition. �e web server components 

include:

Input

Using this module one can submit/sketch the query mol-

ecule [38, 39]. Users can select the proteins on which 

they desire to virtually screen the query compound. Fol-

lowing the submission of an input molecule by the user, 

its structure is optimized using Obminimize programme 

(https://openbabel.org/wiki/Obminimize) to optimize 

the geometry and minimize the energy for a molecule 

before descriptor calculation and prediction [40]. On 

submission, it predicts  IC50/percent inhibition  activity 

Table 4 Performance of QSAR based predictive models developed on each of the HIV protein inhibitor (%) datasets dur-

ing tenfold training/testing and on independent validation

Serial number HIV protein Inhibitor compounds Number 
of selected 
descriptors

Pearson’s correlation coefficient 
(PCC)

p value

Total Training/testing Independent 
validation

Training/testing 
(10×)

Independent 
validation

1 Protease 518 466 52 42 0.76 0.70 1.00e−8

2 Reverse tran-
scriptase

563 507 56 49 0.68 0.63 1.00e−7

3 Integrase 186 168 18 23 0.72 0.65 1.00e−3

Fig. 2 Scatter plot of predicted and actual  IC50 (μM) on independent validation datasets of a reverse transcriptase (RT), b protease (PR) and c 

integrase (IN)

https://openbabel.org/wiki/Obminimize)
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against the HIV proteins. Users can also analyze the vari-

ous properties of the query compound (Fig. 4).

Batch mode submission

Users can also submit multiple molecules simultaneously 

to check their inhibition efficiency against the desired 

HIV proteins. Clickable example molecules are given on 

the web server to help the users for easily getting started. 

�is module will facilitate the researchers to virtually 

screen large number of compounds and select the ones 

with desired efficacy value. In addition, this component 

also enables the users to choose drug-like compounds by 

calculating the requisite properties. �e batch mode can 

be accessed through the url: http://bioinfo.imtech.res.in/

manojk/hivproti/batch.php.

Design analogs

Using this module, one can create analogs of their query 

structures based on user-defined components to evaluate 

the efficacy of the modified compounds on the selected 

HIV proteins. �e structures are generated using SmiLib 

-a Java-based tool for rapid combinatorial library enu-

meration [41].

Output

�e result output displays predicted  IC50/percent inhi-

bition activity against the chosen HIV proteins. In addi-

tion one can view the various chemical attributes of the 

query compound like structure, Hydrogen/Lipinski bond 

donors/acceptors, rotatable/rigid bonds, logP value etc. 

to recognize drug-like compounds (Fig. 4).

Fig. 3 Scatter plot of predicted and actual percentage inhibition on independent validation datasets of a reverse transcriptase (RT), b protease (PR) 

and c integrase (IN)

http://bioinfo.imtech.res.in/manojk/hivproti/batch.php
http://bioinfo.imtech.res.in/manojk/hivproti/batch.php
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Search

HIVprotI also gives the users a search tool to find the 

data used in our study. In this component, the com-

pounds targeting the PR, RT and IN proteins along with 

their structures are available in a database. �e inhibi-

tor entries can be easily searched and filtered from the 

web-application.

Implementation

HIVprotI has been created utilizing the open source 

Linux-Apache-MySQL-PHP (LAMP) server. �e front-

end of the web server was built using Hypertext Markup 

Language (HTML), Cascading Style Sheet (CSS), PHP: 

Hypertext Preprocessor (PHP) and JavaScript. �e back-

end of HIVprotI was created with Practical Extraction 

and Reporting Language (Perl), PHP and Structured 

Query Language (MySQL). �e prediction software runs 

on Ubuntu 13 environment using Apache httpd server.

Comparison with existing approaches

�ere are several QSAR methods exist for predicting 

various categories of HIV protein inhibitors, which are 

compared with HIVprotI algorithm as shown in Table 5. 

Nonetheless, these approaches are very specific and deal 

with a selected group of inhibitors such as quinolines 

[42], pyrimidones [43], processing inhibitors [44] etc. 

Owing to this rationale they envisage the compounds 

which are similar to the inhibitor class with a good corre-

lation, but do not perform well on other structurally dis-

similar inhibitors for the same HIV protein. Majority of 

such studies are based on a restricted quantity of inhibi-

tors. Moreover, none of them till date have provided any 

web server/software to enable the researchers to screen 

AVCs or compare the output from different studies. To 

check the performance of existing methods we used their 

datasets and developed QSAR models using HIVprotI 

approach. Performance of such developed models during 

Fig. 4 HIVprotI submission form (a) and result output (b, c)
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training/testing was similar to the reported one, but they 

did not perform well on our independent validation 

datasets. It can be due to the low number of compounds 

used in those studies and it is seen that the performance 

increased with the rise in the number and types of com-

pounds (Table  6). Moreover, there are certain online 

resources like PASS Online (www.way2drug.com/pas-

sonline), SuperPred [45] and ChemProt server [46] for 

deciphering the biological potential and targets of differ-

ent chemical compounds using information of existing 

drugs, environmental chemicals and natural products 

databases. In addition, AVCpred algorithm developed 

by our group helps in the prediction of generic antivi-

ral compounds [47]. However, none of them is an HIV 

protein specific predictor. To address these limitations, 

HIVprotI has been developed employing more and varied 

inhibitors besides providing an open source integrated 

website for prediction and screening of protein specific 

anti-HIV compounds.

Chemical clustering

We used multidimensional scaling (MDS) to visualize the 

similitude of compounds in the different datasets. MDS 

calculates distance matrices by all-against-all evaluation 

of molecules from atom pair similarity values. �e loca-

tion or coordinates for each compound correspond to 

the distances graphically in a scatter plots. �e plots 

were generated using Chemmine clustering workbench 

available at http://chemmine.ucr.edu/ [48]. Compounds 

that are similar are close to one another while dissimilar 

compounds are placed far apart. �e clustering analysis 

revealed that the datasets employed in the development 

of  IC50 based QSAR models are chemically more diverse 

compared to the percent inhibition ones (Fig. 5). Further 

the compounds targeting RT and IN were comparatively 

more dispersed in the chemical space than those directed 

against PR. Since the QSAR models developed in this 

study are more in number as well as type in compari-

son to other studies (Additional file 1: Figure S1), hence 

the algorithm will be better in predicting diverse types 

of HIV protein inhibitors (https://figshare.com/articles/

Additional_file_2/5607103).

Chemical space mapping

Chemical space mapping uses 3-D embedding and clus-

tering to display the similarity among compounds i.e. 

spatial proximity between two compounds based on their 

feature similarity. Chemical space mapping was done for 

Table 5 Comparison of HIVprotI algorithm with existing QSAR based methods for predicting HIV proteins inhibitors

Serial number Target Predictive method and com-
pounds type

Number of com-
pounds

Correlation Web server/software Year References

1 Protease Non-peptide inhibitors 46 0.93–0.98 No 2010 [57]

2 Cycloalkylpyranone based 
compounds

170 0.6–0.83 No 2010 [58]

3 Ritonavir analogs 177 0.85 No 2012 [59]

4 Protease inhibitors 37 0.85–0.86 No 2015 [55]

5 Hydroxyethylamine derivatives 180 0.86 No 2015 [60]

6 Chemically diverse 1895 0.78 Yes 2017 HIVprotI

7 Reverse tran-
scriptase

Amino-arylsulfonylbenzonitriles 68 0.86 No 2009 [61]

8 TIBO derivatives 70 0.83–0.88 No 2009 [62]

9 PETT derivatives 61 0.77–0.83 No 2009 [63]

10 HEPT derivatives 36 0.92 No 2011 [64]

11 Substituted benzoxazinones 33 0.8 No 2012 [65]

12 Non-nucleoside inhibitors 80 0.7–0.8 No 2014 [66]

13 Chemically diverse 2126 0.76 Yes 2017 HIVprotI

14 Integrase Carboxylic acid derivatives 62 0.72–0.87 No 2010 [67]

15 N-methyl pyrimidones 51 0.84 No 2011 [43]

16 Quinoline ring derivatives 77 0.98 No 2012 [42]

17 Curcumine derivatives 39 0.91 No 2013 [68]

18 Chemically diverse 1240 0.74 Yes 2017 HIVprotI

http://www.way2drug.com/passonline
http://www.way2drug.com/passonline
http://chemmine.ucr.edu/
https://figshare.com/articles/Additional_file_2/5607103
https://figshare.com/articles/Additional_file_2/5607103
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each dataset of  IC50 and percentage inhibition. Cluster-

ing was performed through k-means cascade algorithm. 

�e datasets were grouped into subgroups, with similar 

feature values in each cluster. For example, in case of IN 

inhibitors  (IC50) with 1238 compounds, there were 10 

clusters with 45, 113, 329, 25, 323, 185, 85, 12, 71 and 50 

molecules respectively. Figures integrating mapped 3-D 

superimposed clusters, outline of individual cluster, MCS 

of each cluster along with information of the number of 

molecules in each cluster is shown in Fig.  6  (IC50 data-

sets) and Additional file 1: Figure S2 (percentage inhibi-

tion datasets).

Discussion

To hinder HIV proliferation, the anti-HIV compounds 

aim at important proteins of HIV that are involved in 

various steps of its life cycle such as replication, tran-

scription, maturation, integration, etc. [2]. �e drugs 

ought to be reasonably non-toxic to humans [49, 50]. �e 

multiple stages of HIV life cycle can be inhibited employ-

ing compounds that can restrain viral enzymes like PR, 

RT, IN etc. that are requisite for HIV survival in the host 

cell. A growing list of these inhibitors are in clinical use 

and novel ones are also under trials [15].

Discovering innovative and enhanced drugs is a key 

objective in the management of HIV. Nevertheless, 

finding new inhibitors or compounds is a tedious pro-

cedure [51]. To accelerate the development of new 

inhibitors, computational methods employing QSAR 

approaches are widely employed to optimize the research 

budget prior to experimentation [24]. QSAR based algo-

rithms have been extensively utilized in the selection of 

lead compounds and designing novel drugs [20].

In the present study, we created protein specific 

QSAR models to spot the probability of a given com-

pound being an HIV protein inhibitor utilizing selected 

molecular descriptors of experimentally proven inhibi-

tors against the HIV proteins. �e open source PaDEL 

software was employed to compute numerous types 

of chemical descriptors followed by attribute selection 

approach to eliminate the irrelevant descriptors. We 

used machine learning to build the QSAR based models 

with good performance on various data sets of experi-

mentally proven data from ChEMBL resource for spe-

cific HIV proteins. �e developed models also displayed 

high performance while validated through independent 

data sets. Further, good predicting ability of the produced 

models was also observed by applying the statistical tests 

(Tropsha’s validation tests) for the continuous predictive 

models calculating Rext, k, k′ parameters as reported by 

(Additional file 1: Table S6) Golbraikh and Tropsha [31] 

and Vrontaki et al. [32]. Simultaneously, the robustness of 

Table 6 Comparison of HIVprotI approach based QSAR models developed on the datasets of the existing methods 

for predicting HIV proteins inhibitors (PR, Protease; RT, Reverse Transcriptase; IN, Integrase) and evaluation of both 

approaches on the independent validation datasets of HIVprotI

Serial number Target Compound type Number of com-
pounds

Correlation Year References

Reported in the 
article

Observed 
by models 
developed 
using HIVprotI 
approach

On independent 
validation data-
set of HIVprotI

1 PR Ritonavir analogs 177 0.85 0.81 0.31 2012 [59]

2 Cycloalkylpyran-
one based 
compounds

70 0.60–0.83 0.73 0.40 2015 [58]

3 RT Substituted benzo-
xazinones

33 0.80 0.74 0.23 2012 [65]

4 Non-nucleoside 
inhibitors

80 0.70–0.80 0.76 0.28 2014 [66]

5 IN Quinoline ring 
derivatives

77 0.98 0.92 0.24 2012 [42]

6 Curcumine deriva-
tives

39 0.91 0.88 0.16 2013 [68]
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the QSAR models was also examined using Y-randomi-

zation test by comparing their performance  (Q2 and  R2) 

to the models generated using randomized inhibition val-

ues. We noticed that models with high  Q2 and  R2 values 

developed with actual inhibition values were consistent 

whereas there was no model with high  Q2 and  R2 values 

developed with randomized inhibition values (Additional 

file 1: Table S7) [52, 53]. However, the algorithm can be 

enhanced with the availability of more high-throughput 

data on these enzymes in future.

Chemical clustering for each dataset were performed 

through multidimensional scaling (MDS) as well as 

k-means cascade algorithm. �e clusters comprised 

of aromatic/ringed compounds like toluene, ethenyl 

benzene etc. Although each class of inhibitors has char-

acteristic compounds but we found some common MCS 

between different data sets e.g. 1,2,4-pentatriene between 

 IC50 datasets of IN and RT, benzene derivatives (e.g. ethe-

nyl benzene) in IN and PR inhibitor datasets etc. �is 

indicates that some inhibitors can have multiple targets. 

Hence, chemical space mapping would help to fetch the 

information about characteristic as well as common com-

pounds among each class of inhibitors and further assist 

in finding broad-spectrum anti-HIV drugs.

�e applicability domain of the prediction models was 

verified by means of Williams plot (Figs.  7, 8) wherein 

standardized residuals are graphed against leverages [54]. 

If the standardized residual of a molecule is more than 

Fig. 5 Chemical space analysis of  IC50 a–c and percentage inhibition d–f based datasets for reverse transcriptase (RT), protease (PR) and integrase 

(IN) respectively
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Fig. 6 Chemical space mapping outline of a reverse transcriptase (RT), b protease (PR) and c integrase (IN) inhibitors  (IC50) with internal circle 

showing clustering and 3-D embedding of compounds, middle circle with exact (zoomed) superimposed cluster and outermost circle with specific 

MCS of each cluster
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thrice the standard deviation (± 3σ), the molecule is con-

sidered to be an outlier. �e caution value of leverage (h*) 

is computed as 3p/n, where p represents the number of 

selected descriptors plus one and n represents the num-

ber of compounds used in training [55, 56]. If the lever-

age of a compound is more than h*, it is labeled as an 

outlier. �e plots reveal that the leverages of bulk of the 

molecules do not go beyond the caution value (h*) in the 

QSAR models and thus the applicability of the models is 

reasonable. AD was also evaluated on independent test 

data sets by model population approach i.e. by check-

ing relationship between MDI and PE (Additional file 1: 

Figures S3 and S4). �e scatter plots further confirm the 

reliability of the QSAR models with low outliers.

We also compared our prediction method with earlier 

algorithms and found that the latter are optimized to a 

specific class of inhibitors and do not perform well when 

tested with other types of inhibitors for the same target 

protein. Besides none of the earlier published methods 

provide a software or web server for the researchers. On 

the other hand, HIVprotI web server has useful services 

like sketching new compounds and estimate their inhi-

bition activity against multiple HIV proteins. Users can 

also screen several molecules concurrently using batch 

mode module on the web server. In addition searchable 

databases of both experimental and predicted datasets 

are also provided. �e HIVprotI algorithm will aid the 

researchers in envisaging new anti-HIV compounds and 

virtually analyze the outcome of alterations on current 

drugs.

Conclusions

�e HIVprotI is the first integrated web algorithm to 

predict anti-HIV compounds using experimentally veri-

fied data sets. �ree QSAR prediction models for PR, RT 

and IN were developed to make all-inclusive predictions 

as well as screen compounds for their inhibition poten-

tial in a high throughput manner. �e HIVprotI would 

Fig. 7 Applicability domain plots of the  IC50 based QSAR models for a Reverse Transcriptase (RT), b Protease (PR) and c Integrase (IN)
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be useful for scientists working in the field of anti-HIV 

therapeutics.

Additional file

Additional file 1. Supporting information including Table S1. Per-

formance of QSAR predictive models on three times randomly picked 

~ 10% independent/validation data. These models were developed using 

remaining ~ 90% data during training/testing respectively for each of 

the six datasets; Table S2. Details of statistical parameters used for the 

development of  IC50 based QSAR models; Table S3. Details of statistical 

parameters used for the development of percent inhibition based QSAR 

models; Table S4. Details of chemical descriptors used in the develop-

ment of  IC50 based QSAR models; Table S5. Details of chemical descrip-

tors used in the development of percent inhibition based QSAR models; 

Table S6. Details of slopes k (predicted vs. observed inhibition) and k’ 

(observed vs. predicted inhibition) of the regression lines for the QSAR 

models; Table S7. Details of Y-randomization test performed on the QSAR 

models; Figure S1. Chemical space analysis of QSAR studies (Table 5) for 

Protease (PR) (a, b), Reverse Transcriptase (RT) (c, d) and Integrase (IN) (e, f ) 

respectively; Figure S2. Chemical space mapping outline of (a) Integrase 

(IN), (b) Protease (PR) and (c) Reverse Transcriptase (RT) inhibitors (percent-

age inhibition) with internal circle showing clustering and 3-D embedding 

of compounds, middle circle with exact (zoomed) superimposed cluster 

and outermost circle with specific MCS of each cluster; Figure S3. Scatter 

plot depicting the applicability domain for  IC50 datasets of (a) Integrase 

(IN), (b) Protease (PR) and (c) Reverse Transcriptase (RT); Figure S4. Scatter 

plot depicting the applicability domain for percentage inhibition datasets 

of (a) Integrase (IN), (b) Protease (PR) and (c) Reverse Transcriptase (RT).

Additional file 2. Source code of HIVProtI web server.
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