

 HLODs for Faster Display of Large Static and Dynamic Environments
Carl Erikson Dinesh Manocha William V. Baxter III

Department of Computer Science

University of North Carolina at Chapel Hill

{eriksonc,dm,baxter}@cs.unc.edu http://www.cs.unc.edu/~walk/hlod

ABSTRACT

We present an algorithm and a system for accelerated display of
massive static and dynamic environments using hierarchical
simplification. Given a geometric dataset, we represent it using a
scene graph and compute levels of detail (LODs) for each node in
the graph. We augment the LODs with automatically-generated
hierarchical levels of detail (HLODs) that serve as higher fidelity
drastic simplifications of entire branches of the scene graph. We
extend the algorithm to handle a class of dynamic environments by
incrementally recomputing a subset of the HLODs on the fly when
objects move. We leverage the properties of the HLOD scene
graph in our system, using them to render the environment in a
specified image quality or target frame rate mode. The resulting
algorithms have been implemented as part of a system named
SHAPE. We demonstrate its performance on complex CAD
environments composed of tens of millions of polygons. Overall,
SHAPE is able to achieve considerable speedups in frame rate with
little loss in image quality.
Keywords: interactive display, graphics systems, spatial data
structures, level-of-detail algorithms, CAD

1 INTRODUCTION

Computer-aided design and scientific visualization applications
regularly generate complex models that exceed the interactive
visualization capabilities of current graphics systems. Today, large
geometric databases contain tens or hundreds of millions of
primitives, while typical high-end hardware can currently display
only a few million at interactive frame rates. Several acceleration
techniques that reduce the number of rendered polygons have been
proposed. One is to precompute different levels of detail (LODs)
of a given object or portions of an environment. At runtime, before
rendering each frame, the appropriate LODs to display are selected
so that coarser approximations are used for objects that are further
away or contribute less to the scene.

Besides static environments, we are also interested in handling
large dynamic scenes, which are common in design evaluation of
large assemblies where a designer moves, adds, or deletes parts.
Other examples of dynamic environments include animated scenes
with articulated figures, simulation-based design, driving
simulators, battlefield visualization, urban environment
visualization, and entertainment software. All of these applications
require that objects move, either by programmed behavior or
interactive manipulation. It is therefore desirable that a rendering
system be able to display dynamic environments, as well as static,
at interactive frame rates.

The problem of computing LODs has been an active area of
research over the last few years. Most of the earlier algorithms
have focused on computing separate LODs of objects in the scene.

Many researchers have also proposed techniques to accelerate the
rendering of large environments using potentially visible sets
(PVS), image-based representations (e.g. texture mapped
primitives, point-based sampling), or view-dependent
simplifications. Few if any of these techniques address dynamic
environments.

1.1 Main Results
The main goal of this research is to devise an efficient and practical
way to use LODs in a hierarchical manner to enable the interactive
visualization of large environments. In this paper, we present a new
approach based on hierarchical levels of detail (HLODs), and the
resulting system, called SHAPE, used for rendering massive
datasets. HLODs are a generalization of the level-of-detail concept
to hierarchical aggregations of objects. In contrast to conventional
LODs of objects, HLODs are generated by simplifying separate
portions of a scene together to create higher fidelity and drastic
approximations.

For dynamic environments, we incrementally recompute
HLODs as objects in the scene move. We describe a method for
performing this recomputation asynchronously in parallel on
shared memory multi-processor graphics systems. In practice, our
method can efficiently handle large environments with a limited
amount of object motion, i.e. scenes where relatively few objects
are moved, inserted, or deleted from the scene graph.

The concept of using a hierarchy of levels of detail is not new.
Clark introduced the abstract notion of objects and a hierarchy of
levels of detail [Clar76]. Maciel and Shirley proposed the use of
impostors and meta-objects, and rendered large static environments
using image-based hierarchical representations [Maci95]. Erikson
and Manocha [Erik98] used hierarchical levels of detail for

Figure 1: A view of the Double Eagle Tanker consisting of 126,630
objects and 82,361,612 triangles. Using LODs and HLODs,
SHAPE renders this scene on a typical viewing path at between 1
and 8 frames per second on an SGI Infinite Reality. It achieves
more than two orders of magnitude improvement in the frame rate
with little loss in image quality.

Permission to make digital or hard copies of part or all of this
work or personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,

to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.

I3D '2001, Research Triangle Park, NC USA

© ACM 2001 1-58113-292-1/01/01 ...$5.00
 111

simplification culling. Hoppe demonstrated a hierarchical view-
dependent LOD method applicable to terrain rendering [Hopp98].
Our contributions include a combination of techniques to
automatically create and render geometric LODs and HLODs for
large static and dynamic scenes. Some of the key features include:
• Fidelity: By grouping objects to create HLODs, we merge

polygons from different objects during simplification. This
merging increases the visual quality of drastic, or low-
polygon-count, approximations.

• Automatic Generation: Given a large environment, our
algorithm can automatically compute the HLODs of the scene
graph without user intervention.

• Generality: Our approach is applicable to all polygonal
environments and makes no assumptions about topological
information or representation.

• Efficiency: We render LODs and HLODs using display lists,
to make the best possible use of the performance of current
high-end graphics systems. The HLOD recomputation
algorithm can also use multiple processors on high-end
graphics machines.

• Flexibility: Our HLOD scene graph structure allows our
system to render in constant frame-rate mode or image-fidelity
mode.

The memory required by this method is typically only twice that of
the original model for static environments, but can be as high as a
factor of six for dynamic scenes.

1.2 Main Advantages of HLODs
Traditional LOD generation methods work only on a single object
at a time, so they can only minimize errors local to a particular
object. The aggregate of these local approximations will typically
have greater error than an approximation generated by considering
all of the objects at once. HLODs are generated by simplifying
separate portions of a scene together and thus are in general higher
fidelity approximations for a group of objects than a set of LODs
composed of the same number of primitives. The number of
primitives that must be rendered is related directly to frame rate, so
this quality advantage of HLODs can be exploited in one of two
ways: by rendering fewer polygons than a comparable LOD-only
system with essentially the same image quality, or by increasing
image quality without decreasing the frame rate. SHAPE defers this
choice to the user in the form of the two display modes mentioned
above:
• Image Quality Mode: Render as many polygons as it takes to

achieve a specified image quality, no matter how long it takes.
• Target Frame Rate Mode: For a given target frame rate,

render as many polygons as possible.
The combination of these modes makes it easy for a user to quickly
navigate to a point of interest and view that region in high detail.

HLODs have been implemented as part of SHAPE and used to
render several massive environments such as a power plant
consisting of 13 million triangles and a Double Eagle Tanker
consisting of 82 million triangles (See Figure 1).

1.3 Organization
The remainder of the paper is organized as follows. We survey
related work on object simplification and interactive display of
large models in Section 2. Section 3 presents an overview of our
approach. We present the details of our HLOD generation
algorithm in Section 4, and the extension to dynamic environments
in Section 5. Section 6 presents the display algorithm, and
Section 7 discusses our implementation and its performance on
various models. We summarize our results and highlight areas for
future research in Section 8.

2 RELATED WORK

In this section, we briefly survey previous work related to object
simplification and interactive display of large static environments.

2.1 Object Simplification
The problem of generating LODs of a single object has received a
great deal of attention in the last few years. Different algorithms
can be classified based on a number of properties: whether or not
they preserve topology, whether they handle appearance attributes,
whether they assume that the input model is a valid mesh, the kind
of error metric used for generating the approximation, etc. The
underlying decimation operations used in computing LODs include
vertex removal, edge collapse, face collapse, vertex clustering and
vertex merging [Cohe96, Garl97, Hopp96, Ross93]. Due to space
restrictions we do not review all of these algorithms here. Instead,
we refer the reader to other existing surveys on the topic [e.g.,
Heck97, Lueb97, Erik00].

2.2 Interactive Display of Large Static
Environments

Many techniques have also been proposed for interactive display of
large static environments. Object simplification algorithms can be
combined with a suitable scene graph hierarchy [Clar76]. As part
of pre-computation, static LODs are generated for each object.
Then during visualization, the viewpoint is used to cull portions of
the hierarchy outside the view frustum and suitable LODs for each
visible object are rendered. [Schn94] used the vertex-clustering
algorithm of [Ross93] in BRUSH to simplify a number of large
CAD models. [Cohe96] used LODs generated by simplification
envelopes in a Performer scene graph to render large CAD models.
Aliaga et al. [Ali99a] used static LODs generated by GAPS
[Erik99] in the MMR system.

Many researchers [e.g., Hopp97, LE97, Xia97] have proposed
using view-dependent simplification for rendering large individual
objects or the whole scene. These algorithms adaptively simplify
across the surfaces of objects. They store simplification
information in a hierarchical tree of vertices produced by collapse
operations and traverse this tree when rendering. Different kinds of
selective refinement criteria based on surface orientation and
screen-space projection error are used at runtime [Hopp96,
Hopp97].

The idea of using hierarchical levels of detail for interactive
display of large static and dynamic environments was proposed in
[Erik98]. Other similar strategies include that of [Hopp98], which
describes a method for building and using hierarchical progressive
meshes to display large terrain datasets, and that used by the
TerraVista terrain rendering system from TERREX, which is
capable of merging buildings with multiple LODs into a terrain tile
for coarser representations [TERR].

Other techniques for rendering large environments include
occlusion culling [Tell91, Gree93, Zhan97, Dura00] that
accelerates the rendering of high depth complexity environments.
Many researchers have proposed the use of image-based
representations [Maci95, Shad96, Scha96, Alia99b] to replace
distant geometry with texture-mapped primitives or point samples.
[Alia99a] combined occlusion culling, polygonal simplification
techniques, and image-based representations for fast display of
large static datasets.

2.3 Frame Rate Regulation
Several techniques have been developed to target a frame rate while
rendering. [Funk93] described an adaptive display algorithm for
interactive frame rates by posing it as a constrained optimization
problem. [Rohl94] used a feedback loop to maintain a target frame
rate. [Maci95] extended the predictive framework of [Funk93] to a
hierarchical version and used texture-mapped primitives as
impostors for clusters of objects.

112

2.4 Dynamic Environments
Not much research has been done on simplification and display of
massive dynamic environments. IRIS Performer [Rohl94] uses
traditional LOD techniques and is capable of changing the structure
of the scene graph to reflect motion. Many researchers have
proposed techniques to update bounding volume hierarchies,
spatial partitions, and scene graphs when objects undergo motion
[Torr90, Chry92, Suda96]. [Dret97] presented an algorithm that
provides interactive update rates of global illumination for scenes
with moving objects. [Zhan97] presented an occlusion-culling
algorithm that is applicable to dynamic scenes. [Jeps95] described
an environment for real-time urban simulation that allows dynamic
objects to be included in the scene.

3 OVERVIEW

In this section, we give an overview of the HLOD approach and
discuss issues related to the design and implementation of SHAPE.
We discuss the tradeoffs between view-dependent and static LOD
approaches, scene representation, and the use of HLODs for static
and dynamic environments.

3.1 Static LODs Versus View-Dependent
Simplification

Geometric levels of detail have been used in two forms for fast
display of large environments: static LODs and view-dependent
simplification. Both of these approaches can be useful in different
situations. Although view-dependent algorithms are elegant and
provide useful capabilities, they impose significant memory and
processor overhead during visualization. Instead of choosing an
LOD per visible object, view-dependent algorithms may query
every active vertex of every visible object [Hopp97, LE97, Xia97].
Furthermore, object instantiation is expensive since each instance

must contain its own list of active vertices. Another issue is that
current high-end graphics machines are able to render display lists
faster than immediate mode primitives [OGL98]. Existing view-
dependent algorithms are inherently immediate mode and,
therefore, cannot take advantage of display lists.

Given our emphasis on performance, we use static LODs and
HLODs, and render them using display lists. We accept their
limitations in terms of potential “popping” artifacts as we
switch between different simplification levels. In Section 4 we
describe how we can combine HLODs with partitioning to
effectively arrive at a discrete approximation of view-dependent
simplification.

3.2 Scene Representation
We represent the polygonal environment with a traditional scene
graph [Clar76, Rohl94, Cohe96] extended to include inter-object
simplification with HLODs.

Figure 2 shows a simple example of a 2D scene graph. Boxes
enclosing text represent nodes while black arrows represent
transformations. Gray arrows indicate the polygonal representation
that is contained in each node. Note that geometry in the scene
graph need not all reside in the leaf nodes. Even though the Torso
is the root node and not a leaf, it contains a polygonal
representation. The Arm node demonstrates instancing: the single
representation of an Arm is instantiated twice in the model, as
indicated by the two incoming arcs. The arcs use different
transformations to instance the Arms at distinct positions on the
body. The same applies to the Hand model, which is also
instantiated twice.

3.3 Hierarchical Levels of Detail
Traditional LODs represent the geometry of single nodes in the
environment’s scene graph. HLODs represent branches of the
scene graph, or the polygons of multiple nodes. A traditional LOD
rendering system renders an appropriate level of detail for every
object or node in the scene. Since an HLOD of a node in the scene
graph is an approximation for the node as well as its descendants, if
we render a node’s HLOD in traversing the scene graph, we do not
need to visit its descendants (see Figure 2).

3.4 Dynamic Environments
We assume that the polygonal model within each node of the scene
graph is static and not deformable. Our approach deals with rigid
body environments where objects in the scene move due to
modifications of the scene graph. Dynamic environments are
represented in terms of scene graph operations such as adding
nodes and arcs, deleting nodes and arcs, and changing
transformations at arcs. This last operation is the most common for
scenes composed of moving objects.

Besides model complexity, a dynamic environment is also
characterized by the number of dynamic changes in the scene. We
highlight three broad categories of dynamic environments:
• Global Continuous Motion: In these environments, almost

every object is in motion. Some computer games or
simulations of an earthquake are examples.

• Local Continuous Motion: Some environments exhibit
continuous motion, but only in localized regions of the scene.
An example is a swinging pendulum within a stationary
environment.

• Infrequent Motion: These environments are normally static,
punctuated by brief periods of dynamic activity. A design and
review scenario is an example of this type of scene. A user
interacts with objects, and then takes some time to inspect the
results before continuing.

Since our environments are composed of rigid bodies, we expect
that LODs for a node are precomputed. The algorithm also
precomputes all HLODs for intermediate nodes in the scene graph.

Head

Arm

Hand 0 1 2

HLOD 0 HLOD 1 HLOD 2

LODs

Torso

LOD 0 LOD 1 LOD 2

LOD 0 LOD 1 LOD 2

LOD 0 LOD 1 LOD 2

Original

Model

Figure 2: Rendering a model using LODs and HLODs in SHAPE.
Gray arrows indicate the LODs of the geometry within each node
of the scene graph, while the dotted black arrow indicates the
HLODs that represent the entire scene graph. Note that the
HLODs of the Arm nodes have been omitted for clarity. SHAPE
traverses the scene graph from the root, i.e. the Torso node. If the
viewer is far enough away, then it will decide that HLOD 0 is an
acceptable approximation of that node and its children. In this
case, since this HLOD represents the entire scene graph, SHAPE is
able to stop the traversal. HLOD 1 demonstrates the merging of
the two arms into the torso, something not possible in a traditional
object-based LOD algorithm.

113

In a dynamic environment, the structure of the scene graph
changes. As a result, some of the HLODs may no longer be valid
and we need to recompute them efficiently. Our algorithm
incrementally recomputes these HLODs in a bottom-up manner.

Our approach is currently most effective on scenarios with
“infrequent motion”, as the time required to recompute the HLODs
is typically greater than that for rendering the scene. As a result,
the algorithm performs these computations asynchronously. We
also parallelize the recomputation step on shared memory multi-
processor graphics systems.

4 HLOD GENERATION

In this section, we present the details of our method for generating
HLODs. HLODs are generated by hierarchically grouping the
nodes in a scene graph and simplifying them together. The
algorithm also partitions spatially large objects in order to gain
limited view-dependent rendering capabilities for these objects. It
computes and stores LODs and HLODs at each node in the scene
graph.

4.1 Basic Algorithm
We will refer to an LOD or HLOD with more polygons as finer,
and one with fewer polygons as coarser. For example, in Figure 2
the shape labeled HLOD 0 is the finest HLOD, and the one labeled
HLOD 2 is the coarsest.

The HLOD generation algorithm uses a combination of an
LOD computation algorithm and hierarchical clustering. The
underlying LOD algorithm must be able to perform topological
simplification and combine a collection of non-overlapping or
disjoint objects. Many known topology simplification algorithms
have these capabilities [Ross93, Schr97, Garl97, Popo97]. In
SHAPE, we used the GAPS simplification algorithm [Erik99], as it
provides a good balance between generality, fidelity and running
time.

After LODs are computed for each individual node in the
scene graph, our algorithm computes HLODs in a hierarchical,
bottom-up manner. The HLODs of a scene graph are computed as
follows:
• The HLODs of a leaf node are equivalent to its LODs.
• The finest HLOD of an internal node is computed by

simplifying the coarsest LOD of the node itself with the
coarsest HLODs of its children.

• The coarser HLODs of an internal node are generated as
successive simplifications of its finest HLOD.

As an example, in Figure 2 the HLODs in Torso are formed from
LOD 2 of Torso and HLOD 2 of Head, Arm (left), and Arm (right).
Since Head does not have child nodes, its HLODs are equivalent to
its LODs, but the Arm HLODs (not shown) are a merged
combination of Arms and Hands.

Other choices for how to compute HLODs are possible. For
instance, the initial HLOD could be generated by directly
simplifying all the original geometry of the sub-tree that the HLOD
represents. In some cases this would lead to higher quality
HLODs; however, starting with existing LODs greatly reduces the
cost of computation—which is especially critical for dynamic
environments—and still yields high quality drastic simplifications.
In the end, each HLOD is a complete, simplified representation of
the node and all of its descendants.

4.2 Grouping Nodes
Our method requires a hierarchical scene graph representation for
each environment. If not provided then SHAPE creates one using
partitioning (see Section 4.3). Conversely, it is sometimes
advantageous to ignore a provided scene graph, since not all scene
graphs are optimized for rendering performance. For instance,
CAD models commonly group objects by functionality rather than

proximity. Flat scene graphs present a similar problem. Both tend
to be inefficient for view-frustum culling and HLOD creation. To
solve these problems, we use grouping to create a more spatially-
coherent scene graph. If a node has more than two children, we use
an octree spatial partitioning to find nearest neighbors and use
these pairings to create a hierarchy with better spatial coherence.
This not only aids view-frustum culling, but also results in higher
quality HLODs.

4.3 Partitioning Spatially Large Objects
Since we use static LODs, spatially large objects can pose a
problem. When the viewer is close to any region of a spatially
large object the entire object must be rendered in high detail, even
though portions of it may be very far from the viewer. To alleviate
this problem, we partition the model to gain limited view-
dependent rendering capabilities. We simplify each partition while
guaranteeing that we do not produce cracks between partitions by
imposing restrictions on simplification. Finally, we group the
unrestricted polygons of these partitions hierarchically and generate
HLOD approximations of them. This partitioning procedure for
large geometric objects was initially described in [Erik98].
[Hopp98] describes a similar approach for terrain models. [Avil97]
also partitions large models for simplification, by using an OBB
bounding volume hierarchy.

Partitioned simplification begins by laying a uniform three-
dimensional grid over the large object and determining polygons
that are completely within each partition. Polygons that lie on the
boundaries of partitions are labeled as restricted (Figure 3a). Next,
SHAPE simplifies the unrestricted polygons within each partition
independently (Figure 3b). We do not allow the simplification
algorithm to move any vertices that are incident to a restricted
polygon during a decimation operation (e.g. an edge collapse).
This restriction guarantees that the algorithm will not generate
cracks between any two partitions. We simplify the unrestricted
geometry until no more decimation operations can be performed or
the algorithm exceeds a deviation distance error threshold
associated with LODs and HLODs.

(a) (b)

Root

Left Right

(c) (d)

Left Right Left Right

Root Root

(e)

Figure 3: An example of partitioning. (a) The object has been split
into two partitions. Gray triangles are restricted since they lie on
the border of a partition. The black vertices cannot move during
decimation operations. (b) We simplify the partitions
independently, noting the restricted triangles. (c) The partitions
are grouped hierarchically. There are no more restricted
triangles. (d) We can simplify the final partition drastically. (e)
The resulting scene graph. The Left and Right nodes contain
LODs of the Left and Right partitions in (a) and (b). The Root
node contains HLODs of the final partition.

114

When all partitions have been simplified independently,
SHAPE groups them hierarchically. When partitions are grouped,
some polygons that were once labeled restricted become
unrestricted (Figure 3c). This freeing of polygons enables the
simplification algorithm to perform more decimation operations in
order to create HLODs for this new hierarchical grouping of
partitions (Figure 3d). This process of grouping and simplifying is
repeatedly applied until there is only one partition that contains all
of the remaining polygons. Since all of the remaining polygons are
contained in this partition, there are no more restrictions, and the
simplification algorithm can drastically simplify these polygons to
any target number.

One can view the HLODs generated through the partitioning
process as representing a discrete approximation of view-
dependent simplification. In this way they occupy a practical niche
between completely continuous view-dependent simplification
algorithms on the one hand, and a single set of view-independent
static LODs on the other. Figures 4 and 5 show the results of
partitioning.

Using HLODs allows our algorithm to choose from many
discrete samples in order to achieve a balance between rendering
speed and image quality. Since each partition is simplified
independently of the others, partitions far from the viewer can be
rendered in lower detail while those near the viewer are rendered in
higher detail (Figures 4, 5). When several partitions in close
proximity are very far away from the viewer, they are rendered
together using HLODs. An added benefit of partitioning is that it
allows us to perform view-frustum culling on parts of the object
that lie outside the view frustum. This capability is shown in
Figure 5.

5 DYNAMIC ENVIRONMENTS

In this section, we present our approach for dynamic environments.
Our algorithm updates HLODs in response to dynamic changes
within the environment. It first updates error bounds associated
with HLODs affected by object motion. Then, it regroups nodes in
the scene graph according to their spatial proximity. Finally, it
incrementally updates the scene graph’s bounding volume
hierarchy. Once the scene graph has been modified, we insert
nodes whose HLODs need to be recomputed into a queue. We use
one or more simplification processes that run asynchronously from
the rendering process to compute the HLODs. If the motion of the
objects is relatively small, then it may be acceptable for the
rendering process to use previously created HLODs while waiting

for the simplification processes to finish the recomputation.

5.1 Updating the Scene Graph
Our algorithm seeks to minimize the amount of recomputation
necessary after any node insertion, deletion, or object motion.
Fortunately, while insertions and deletions require more
recomputation than motions, they are typically less frequent. We
first present the method SHAPE uses to update HLODs after object
motion, and then describe how it handles insertion and deletion.

5.1.1 Motion

Our algorithm determines the effect of node motion on the accuracy
of HLODs, regroups nodes based on the new positions of the
objects, and updates the bounding volume hierarchy of the scene
graph.

Figure 4: A demonstration of how HLODs generated with
partitioning approximate view-dependent simplification. Even
with a relatively small number of discrete LODs and HLODs
available, the algorithm is able to roughly adapt the tessellation of
the model according to the viewpoint. Here the viewpoint is near
the nose of the bunny.

Figure 5: On the left is a terrain model consisting of 162,690 triangles. In the middle, we use partitioning to adaptively simplify the
model. This image is shown in wire-frame to illustrate this view-dependent rendering more clearly. Partitions near the origin of the
yellow view frustum are in higher detail than partitions further away from the viewer. On the right, we demonstrate that partitions lying
outside the view frustum can be culled.

115

5.1.1.1 Updating Error Bounds of HLODs

SHAPE measures the distance between the old and new positions
of the object and adds this distance to the error bounds of HLODs
of the node. Since this movement also affects the error bounds of
HLODs of ancestor nodes, we propagate the distance error up the
scene graph. Increasing the error bounds of HLODs does not
automatically make them useless, since they may still be of
acceptable quality if viewed from further away.

5.1.1.2 Regrouping Nodes

As described in Section 4.2, we group nodes hierarchically when a
parent node has more than two children. By grouping these
children according to their spatial proximity, we make HLOD
creation and view-frustum culling more efficient. As objects move
in the scene, the relative locations of these nodes change. Thus, a
previously efficient grouping of nodes may no longer be efficient.
SHAPE updates the scene graph by regrouping these nodes. The
degree of movement affects the amount of work we have to perform
on the scene graph. If a node moves a small distance, then it is
sometimes possible to update the bounding volume hierarchy
without changing the structure of the scene graph. If a node moves
a larger distance, then the scene graph structure changes. An
example of this regrouping process is shown in Figure 6.

Movement of objects causes the approximation quality of
HLODs to decrease. However, when nodes are regrouped, some
HLODs become invalid altogether. Since the descendants of the
node in the regrouped scene graph may have changed, its HLODs
are no longer valid approximations. We add the nodes containing
invalidated HLODs into the simplification queue. They remain
invalid until a simplification process can recompute the HLODs.
During this time, the display algorithm renders non-hierarchical
LODs for those nodes and their children.

5.1.2 Insertion and Deletion

Insertion and deletion of nodes in the scene graph cannot be
handled as efficiently as object motion. If a node is inserted or
deleted, then we invalidate all the HLODs of its ancestors.
Furthermore, for insertions we must also regroup nodes based on
positions of objects in the new scene graph. Both insertion and
deletion can cause the bounding volume hierarchy to change as
well. Nodes with invalid HLODs are inserted into the
simplification queue so that their HLODs will be recomputed.

5.2 Asynchronous Simplification
Movement of nodes in the scene causes many HLODs to become
invalid, which must then be recomputed. The required polygonal
simplification can take much longer than it takes to render the

scene. To prevent rendering delays, SHAPE can run the
simplification process asynchronously in a background thread.
SHAPE can use multiple asynchronous simplification processes on
a multiprocessor machine to increase the rate of simplification.

The job of a simplification process is to dequeue a node and
recompute a set of HLODs for that node. We use the topology
simplification algorithm at run-time to update these HLODs as we
used in the preprocessing. Once it finishes creating a set of
HLODs for the node, it copies them into the scene graph. The
interaction between the rendering process and simplification
processes is shown in Figure 7.

We prevent the multiple processes from corrupting the scene
graph data by using a combination of three semaphores. One
semaphore protects the scene graph; another protects HLODs at
nodes, and the final semaphore controls access to the simplification
queue. The simplification processes are designed to lock the scene
graph and HLOD semaphores for very brief periods of time,
thereby giving priority to the rendering process.

Our algorithm works well for “infrequent motion”
environments, such as design and review scenarios. Objects
seldom move in such scenes and therefore the simplification
processes are usually able to update the HLODs in a few seconds.
Often, a user will only manipulate objects that are near their current
viewing position. Since the rendering algorithm only uses HLODs
for coarse approximations, the user must move some distance away
from these objects before the rendering algorithm will require the
new HLODs. In most situations the simplification process will be
able to recompute the HLODs within this time duration.

5.3 Analysis
In this section, we derive a rough measure of how much dynamism
our algorithm can handle at interactive rates. The performance of
the algorithm is determined by the complexity of the scene, the
height of the scene graph, the choice of simplification algorithm,
and its performance. We make a few assumptions and present a
model for our analysis:
• Scene Graph: Each parent node in the scene graph has c

children. The height of the scene graph is h and all the objects
are at leaf nodes. Therefore, for every object that moves, we
need to recalculate h – 1 sets of HLODs in the scene graph.
Finally, the polygonal representation of a node consists of v
vertices.

• Operation Cost: The cost of the recomputation step is mostly
dominated by decimation operations performed by the
simplification algorithm. As a result, we ignore the cost of
updating error bounds of HLODs, regrouping nodes, and
updating the bounding-volume hierarchy.

• Simplification Algorithm: We use vertex merges as the
decimation operation and are able to perform m such
operations per second. The simplification algorithm simplifies
the polygons of a node until v/r vertices remain, for LOD as
well as HLOD computations.

• Interaction Mode: The algorithm will not need to render the
newly created HLODs before s seconds have passed.

Let us assume that c ≠ r and we are using a single simplification
process. For each moving object, the algorithm needs to perform

(a)

B

C

A

(b)

Root

A

B C

(c)

B

Root

C

A B

Z

Figure 6: Dynamic movement in a simple scene graph. (a) Node B
moves to a position nearby node A. (b) The initial grouping of
nodes in the scene graph. (c) The nodes have been regrouped for
more efficient view-frustum culling and HLOD creation. Now
node Z will contain HLODs that represent nodes A and B.

Render

Simplification

Simplification

Simplification

Simplification Queue

Scene

Graph

Nodes with
invalid or

inaccurate

HLODs

Recomputed

HLODs

Figure 7: Diagram showing how the different processes in our
dynamic algorithm interact.

116

()
()

()
() ()1

1

2

11
1

1

−

−

−

+−

















−

−

= h
h

h

r
vc

r
r

c

r
c

r
cvM

vertex merge operations. This equation is derived using a
geometric series involving the number of vertices merged to create
each HLOD and the number of vertices propagated up the scene
graph. If msM ≤ then our algorithm is capable of recomputing
the affected HLODs before they are needed for rendering.

For a more concrete example, suppose we are attempting to
recalculate HLODs for a Torpedo Room model (shown in Figure
10) consisting of 356 objects, 883,537 polygons, and 545,949
vertices. The scene graph has an average of 3.1 children per node,
its HLOD reduction ratio is approximately 8.3, and its height is 7.
Assume HLODs must be recalculated in 10 seconds and that our
simplification algorithm performs, on average, 650 vertex merge
operations per second on our graphics workstation. Then the
constants for the Torpedo Room model are: m ≈ 650, s = 10,
c ≈ 3.1, h = 7, v = 545949 / 356 ≈ 1534, and r ≈ 8.3. Substituting
these constants into the above expressions yields M ≈ 803. Since
803 = M ≤ ms = 6500, our algorithm should be able to handle this
scenario within the given time constraint.

Suppose we move n objects in the scene. As long as nM ≤ ms
our algorithm should still be able to recalculate the HLODs within
the time constraint. Thus, our analysis suggests that our current
implementation should be able to update the Torpedo Room
HLODs within 10 seconds after 8 objects have moved
(8 × 803 = 6424 ≤ 6500). In practice, our algorithm took
approximately 13 seconds to update the HLODs of the scene using
one simplification process after moving 8 parts of the Torpedo
Room model. Note, that our estimate relied upon approximate
values for m, c, v, and r and ignores the costs of updating the scene
graph and accessing the semaphores. More details on the analysis
are given in [Erik00].

6 RENDERING MODES

In this section we discuss our algorithm for rendering a scene graph
containing LODs and HLODs. We begin with a description of how
HLODs can be used to cull out entire portions of the scene graph,
and follow with a detailed explanation of our image-quality and
frame-rate targeting modes.

6.1 Simplification Culling
We assume the polygonal simplification algorithm we use to
generate LODs and HLODs is capable of producing a distance
error bound for these approximations. This error measures the
quality of an approximation based on deviation from the original
object, and is projected onto the view plane to determine the
screen-space error of the LOD or HLOD.

With a traditional scene graph containing only LODs,
rendering a node involves determining which LOD to use for the
geometry contained in that node. If the screen-space error is less
than a user specified error tolerance, that LOD can adequately
represent the geometry at the node. The lowest LOD that passes
the screen-space error criteria is rendered. The traversal of the
scene graph continues recursively for each of the node’s children.

Adding HLODs to each node changes the traversal of the
scene graph. When the traversal reaches a node, it first determines
whether an HLOD can be rendered. Like LODs, each HLOD has an
associated maximum distance error. If an HLOD’s projected
screen-space error is less than the current error tolerance, then it
can be rendered. The algorithm renders the lowest HLOD that
meets the screen-space error criteria and does not traverse any of
the node’s children. This is, in effect, simplification culling since
the scene graph rooted at the node is culled away by substituting a

simpler representation for it. If no HLOD meets the error tolerance,
we select an LOD to represent the node and then recursively
traverse each of its children.

6.2 Image Quality Mode
In this mode, the user is allowed to specify a desired image quality
in terms of maximum screen space deviation. While rendering, the
projected screen-space error associated with each LOD and HLOD
is used to determine an acceptable representation given the image
quality constraint. This much is typical of most LOD rendering
algorithms. The main difference is that if an HLOD has acceptable
image quality then the entire branch of the scene graph it represents
need not be traversed.

6.3 Target Frame Rate Mode
Target frame-rate systems have the goal of rendering the best image
possible within a user-specified frame-rate constraint. [Funk93,
Maci95] show that targeting a frame rate using prediction
techniques is a variant of the Knapsack problem. Both of these
algorithms rely on pre-computed estimates of system performance
that may not be accurate during run-time. [Rohl94, Muel95]
describe reactive feedback loops to target a frame rate, meaning
that the time it took to draw previous frames is used to calculate the
image quality for the next. Feedback loops suffer from the
potential problems of oscillation and hysteresis, against which
countermeasures must be taken. HLODs enable SHAPE to achieve
a target frame rate with a combination of predictive and reactive
techniques.

Like a predictive scheme, SHAPE uses a target number of
faces. This number is a best guess prediction of how many
polygons the system can render given the user-specified frame-rate
constraint. However, this number is updated reactively: if we
cannot render the number of faces within the frame-rate constraint,
the target number of faces is decreased for the next frame. The
main difference between this method and previous feedback
methods is that previous methods used frame time to adjust LOD
quality settings whereas we use frame time to adjust a polygon
budget. Having an HLOD based scene graph gives us an easy way
to meet any such polygon budget using a greedy scheme without
having to resort to omitting portions of the scene. Using only
quality settings can lead to overcompensation and therefore
oscillation in frame rate.

We search the scene graph to determine the faces that will be
rendered. Our greedy method refines the node with the greatest
projected pixel-error at each step. We repeat this procedure until
any refinement would cause the total number of faces to exceed the
target number. Specifically, the algorithm starts with the coarsest
HLOD of the root node of the entire scene graph. It attempts to
refine the node with the most screen-space error by replacing it
with its children. If replacing a node would cause our algorithm to
render more polygons than the target number of faces, then this
action is not allowed. We refine the nodes until no more nodes can
be replaced.

In the case of dynamic objects, some HLODs can become
inaccurate. However, these approximations can still be used to
target a frame rate. Large movement causes some HLODs to
become invalid. We ignore invalid HLODs during our traversal of
the scene graph. In such cases, SHAPE can either render LODs of
nodes or stop the traversal and render an incomplete approximation
of the scene.

7 IMPLEMENTATION AND RESULTS

We have tested our approach on different models including two
large CAD environments. The first is a 13 million-polygon power
plant, and the second is an 82 million-polygon Double Eagle
Tanker ship. We also show a model of a Ford Bronco to
demonstrate the effectiveness of HLODs. The Bunny and Sierra

117

Terrain models show the benefits of partitioning (see Section 4.3).
Neither the Bunny nor the terrain model came with a scene graph
hierarchy.

SHAPE uses the GAPS simplification algorithm [Erik99] to
compute LODs as well as HLODs. It is based on the quadric error
metric proposed by [Garl97] and works well on large models.
Other candidates are algorithms based on vertex clustering
[Ross93] and progressive simplicial complexes [Popo97]. In our
experience, GAPS provides a good balance between quality of
approximation and execution speed. On average, GAPS performs
650 vertex merge operations per second on an SGI Reality Monster
with a 300 MHz R12000 processor and 16GB of main memory.
We implemented our system using C++, GLUT, GLUI, and
OpenGL. The code is currently portable across PC and SGI
platforms.

7.1 Preprocessing Time
Table 1 shows the amount of time it took to preprocess selected test
models. The number of objects, or leaf nodes, in the scene graph is
shown in the table as well as the number of triangles that make up
the model. Note that there is a certain amount of overhead
involved in grouping objects and simplifying them to create
HLODs. The amount of overhead depends on the complexity of
the scene graph and the number of polygons combined to compute
each HLOD. Note also that HLOD creation takes less time on the
Sierra Terrain model than LOD creation. The reason for this
difference in performance is that by partitioning the terrain model,
the simplification algorithm is initially able to work on local
portions of the terrain model independently. Simplifying subsets of
polygons is faster than simplifying all the polygons at once due to
the performance behavior of the algorithm we use.

7.2 Targeting Frame Rate
Figure 8 shows the effectiveness of the target frame-rate mode on
two test environments with the range of acceptable frame-rates set
to between 17 and 23 frames per second. Note that the algorithm
knew nothing about the specifications of the machine on which it
was running. For a majority of the time, our method rendered each
model within the acceptable range. However, for each viewing
path of each model there are sharp transitions in polygonal
geometry, causing low or high spikes in these regions. Our
algorithm is able to quickly react to these changes and bring the
frame rate within acceptable bounds. Sometimes we render much
faster than the target frame rate. In these cases, we are rendering
the original polygons of the model, but there are not enough of
them in the view frustum to keep a constant frame rate. This
behavior is not troubling since the frame rate could easily be
clamped if so desired.

7.3 Memory Usage
For static scenes, we pre-compute a series of LODs or HLODs that
consist of half the number of polygons of the previous LOD or
HLOD, respectively. By doing so, we limit the memory
requirements of our algorithm to at most two times that of the
original environment. All the LODs and HLODs are represented
using display lists.

For dynamic environments, we re-compute the HLODs at
runtime by pooling polygonal geometry from different nodes. It is
not possible to access this data from an OpenGL display list, and
therefore, we need to store a separate copy of the polygonal
geometric representation. Along with this extra polygonal
geometry, we also store all the data structures used by the
simplification algorithm. This includes the error quadrics and mesh

connectivity used by the GAPS algorithm [Erik99]. This data is
commonly 3~4 times the size of the original model. Altogether this
means that dynamic scenes may require as much as six times the
memory of the original polygonal geometry. The choice of a
different simplification algorithm, and the resulting data structures,
will affect the memory requirements of our system.

7.4 Visual Comparison
The main benefit of using HLODs is that they provide higher
quality drastic approximations for groups of objects. Using only
LODs, groups of objects tend to break apart or disintegrate at
coarse approximations. However, by using a combination of LODs
and HLODs, we can produce more solid-looking drastic
approximations. Because HLODs promote the merging of objects
in close proximity, they are most effective on scenes where objects
are closely spaced. Most CAD environments fall in this category.

We show the visual difference between LODs and HLODs for
drastic approximations of the Bronco (Plate 1), power plant
(Plate 3), Double Eagle (Plate 4), and Torpedo Room (Figure 10)
environments. Note how the solid shape of these scenes tends to
suffer when using only LODs. By pooling the geometry of several
objects into HLODs, we are able to better preserve the general
shape and surface area of these environments further into the
simplification process.

7.5 Asynchronous Simplification
We tested the performance of the parallel algorithm to determine
the amount of motion it can handle efficiently. To perform the
tests, we created a simple scene consisting of a root node that has
multiple instances of a cube object as its children (as shown in the
video). We tested multiple scenes using different numbers of
simplification processors. The cubes were initially arranged in a
3D grid and then every cube was moved a random distance (less
than the side of the whole grid) from its original position. After the
movement was completed, the simplification processors
recomputed HLODs for the scene. We ran these tests on an SGI
Reality Monster with 31, 300 MHz R12000 processors and 16GB
of main memory.

S i e r r a T e r r a i n u s i n g 2 0 F P S t a r g e t f r a m e r a t e

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 5 1 1 0 1 1 5 1 2 0 1 2 5 1

F r a m e #

F
ra

m
e

s
 P

e
r

S
e

c
o

n
d

P o w e r P l a n t u s i n g 2 0 F P S t a r g e t f r a m e r a t e

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 5 1 1 0 1 1 5 1 2 0 1

F r a m e #

F
ra

m
e

s
 P

e
r

S
e

c
o

n
d

Figure 8: Frame rates obtained using the target frame-rate mode
to view the power plant model and the Sierra Terrain dataset. The
target frame rate was 20 frames/sec.

118

A graph of these timing tests is shown in Figure 9. This data
demonstrates that as the scenes consist of more moving objects, the
benefit of using more simplification processors increases. Ideally,
we would expect a linear speedup as we use more processors.
However, test cases show that SHAPE achieves a sub-linear
speedup. We conjecture that overhead costs such as contention for
data in the scene graph, plus the relatively small size of the scenes
being tested, are to blame. As the scene grows larger, we expect
that the speedup from using multiple simplification processors will
approach linearity.

These results show that using multiple processors for
simplification is most beneficial when a large number of objects are
moving in the scene. For many cases, however, the recomputation
of HLODs of the cube grid scenes does not occur in real-time. For
a scene of moderate dynamic complexity, such as the environment
with 512 moving cubes, it takes more than half a minute to update
the affected HLODs even using 31 processors. This performance
suggests that our dynamic system is best used on environments
with “infrequent motion” such as design and review scenarios.

To simulate a design and review scenario on real-world
environments, we allow the user to select and move any objects in
view. During visualization sessions of the various models, we
changed the locations of a few of the objects (see Plate 2 and the
video). For each test run, we used 4 simplification processes. The
execution speed of HLOD recomputation for these examples is
shown in Table 2.

7.6 Display Lists
We found the ability to use display lists was an advantage of
SHAPE in many cases. However, when the number of nodes in the
scene graph becomes very large, the amount of memory required
for display lists may exceed the amount of display list cache
available. At that point the display lists may no longer improve the
rendering speed. In these cases, the rendering program may benefit
from managing the display cache directly.

8 CONCLUSION AND FUTURE WORK

We have presented a simple and effective system for rendering very
large static and dynamic environments using only geometric LODs
and HLODs. The HLODs serve as higher fidelity drastic
approximations for entire branches of the scene graph. The process
of generating HLODs is completely automatic, which is important
when working with massive models. For dynamic environments,
we are able to incrementally recompute HLODs on the fly, an
approach which we have shown works well on scenes exhibiting
“infrequent motion.” Our system, SHAPE, gives empirical
evidence that the HLOD approach is viable for interactively
displaying massive geometric environments.

Our approach for dynamic scenes is a first step towards
handling arbitrary object motion interactively in massive model
walkthroughs. It makes no assumptions about object motion, and

is effective for a class of dynamic scenes. Furthermore, it can
automatically make use of multiple processors on a graphics
system.

Broadly speaking, a massive model display system needs to
address three issues:

1. Using approximations for polygons that are too small or
cover too few pixels on the screen,

2. Not rendering polygons that are occluded
3. Ensuring that the resulting polygons are in main memory.

SHAPE handles only the first of these issues, and appears to

work well on large environments. In future work we hope to
address the remaining two. We are very interested in combining
the results of SHAPE with occlusion culling methods to address the
second. One possibility is to use HLODs as hierarchical occluders.
Finally, we would like to combine these with database and memory
management techniques. This will also improve the load time for
very large models. In terms of model simplification, we would like
to explore other methods of parallelization of HLOD recomputation
and explore avenues for reduced memory and out-of-core runtime
simplification for dynamic scenes.

9 ACKNOWLEDGEMENTS

The Power Plant environment is courtesy of James Close and
Combustion Engineering, Inc. The Sierra terrain model is courtesy
of Herman Towles and Sun Microsystems. Viewpoint and
Division, Inc. allowed us to use the Ford Bronco dataset. The
Double Eagle model is courtesy of Rob Lisle, Bryan Marz, and
Jack Kanakaris at NNS. We are also grateful to the members of
UNC Walkthrough Group for many useful discussions and support.

Our work was supported in part by an ARO Contract
DAAD19-99-1-0162, NSF award 9876914, DOE ASCI grant, NIH
National Center for Research Resources Award 2P41RR02170-13
on Interactive Graphics for Molecular Studies and Microscopy,
ONR Young Investigator Award, and NCAA Graduate, NSF
Graduate, and Intel Fellowships.

 Preprocessing times

Scene Objects Triangles LOD only LOD & HLOD

Bronco 466 74,308 31 secs. 43 secs.

Sierra

Terrain

1 162,690 2 mins.

21 secs.

1 min.

57 secs.

Power

Plant

1,179 12,731,154 4 hrs. 4 hrs.

12 mins.

Double

Eagle

126,630 82,361,612 12 hrs.

22 mins.

12 hrs.

57 mins.

Table 1: Preprocessing times for the creation of LODs versus the
creation of LODs and HLODs for several polygonal environments.
We performed these tests on an SGI Reality Monster with a 300
MHz R12000 processor and 16GB of main memory.

1
2

4
8

16
31

8

64

216

512

1000

0

50

100

150

200

250

300

350

Time (Secs.)

Procs.

Cubes

Figure 9: This graph shows the time it takes to recalculate HLODs
of a scene consisting of a specific number of cubes using a specific
number of processors. The number of processors and number of
cubes axes are log plots.

Scene Objects Triangles Recalculation Time

Bronco 466 74,308 3 secs.

Cassini 127 349,281 6 secs.

Torp. Room 356 883,537 9 secs.

Power Plant 1,179 12,731,154 43 secs.

Table 2: HLOD recalculation speed for simulated design and
review scenarios.

119

10 REFERENCES

[Alia99a] Aliaga, D., Cohen, J., Wilson, A., Baker, E., Zhang, H., Erikson, C., Hoff, K.,
Hudson, T., Stuerzlinger, W., Bastos, R., Whitton, M., Brooks, F., and Manocha, D.
"MMR: An Interactive Massive Model Rendering System Using Geometric and
Image-Based Acceleration," Symposium on Interactive 3D Graphics '99
Proceedings, 199-206, 237, 1999.

[Alia99b] Aliaga, D. and Lastra, A., “Automatic Image Placement to Provide a
Guaranteed Frame Rate,” Computer Graphics (SIGGRAPH 99 Proceedings), 307-
316, 1999.

[Avil97] Avila, L.S., and Schroeder, W., “Interactive Visualization of Aircraft and
Power Generation Engines,” IEEE Visualization ’97 Proceedings, 483-486, 1997.

[Chry92] Chrysanthou, Y., and Slater, M., “Computing Dynamic Changes to BSP
Trees,” Computer Graphics Forum (Eurographics ’92 Proceedings), 321-332, 1992.

[Clar76] Clark, J., “Hierarchical Geometric Models for Visible Surface Algorithms,”
Communications of the ACM, 547-554, 1976.

[Cohe96] Cohen, J., Varshney, A., Manocha, D., Turk, G., Weber, H., Agarwal, P.,
Brooks, F., and Wright, W., “Simplification Envelopes,” Computer Graphics
(SIGGRAPH 96 Proceedings), 119-128, 1996.

[Cohe98] Cohen, J., Olano, M. and Manocha, D., “Appearance Preserving
Simplification”, Computer Graphics (SIGGRAPH 98 Proceedings), pp. 115-122,
1998.

[Dret97] Drettakis, G. and Sillion, F., “Interactive Update of Global Illumination Using
a Line-Space Hierarchy”, Computer Graphics (SIGGRAPH 97 Proceedings), pp. 57-
64, 1997.

[Dura00] Durand, F., Drettakis, G., Thollot, J., Puech, C., “Conservative Visibility
Preprocessing using Extended Projections,” Computer Graphics (SIGGRAPH 00
Proceedings), 239-248, 2000.

[ElSa97] El-Sana, J., and Varshney, A., “Controlled Simplification of Genus for
Polygonal Models,” IEEE Visualization ’97 Proceedings, 403-410, 1997.

[Erik98] Erikson, C. and Manocha, D., “Simplification Culling of Large Static and
Dynamic Environments”, Technical Report TR98-009, Univeristy of North Carolina
at Chapel Hill, 1998.

[Erik99] Erikson, C., and Manocha, D. "GAPS: General and Automatic Polygonal
Simplification," Symposium on Interactive 3D Graphics '99 Proceedings, 79-88,
225, 1999.

[Erik00] Erikson, C., "Hierarchical Levels of Detail to Accelerate the Rendering of
Large Static and Dynamic Polygonal Environmants," PhD Dissertation, Department
of Computer Science, UNC Chapel Hil,, 2000.

[Funk93] Funkhouser, T., and Séquin, C., “Adaptive Display Algorithm for Interactive
Frame Rates During Visualization of Complex Virtual Environments,” Computer
Graphics (SIGGRAPH 93 Proceedings), 247-254, 1993.

[Garl97] Garland, M., and Heckbert, P., “Surface Simplification Using Quadric Error
Metrics,” Computer Graphics (SIGGRAPH 97 Proceedings), 209-216, 1997.

[Gree93] Greene, N., Kass, M., and Miller, G., “Hierarchical Z-Buffer Visibility,”
Computer Graphics (SIGGRAPH 93 Proceedings), 231-238, 1993.

[Heck97] Heckbert, P., and Garland, M., “Survey of Polygonal Surface Simplification
Algorithms,” Technical Report, Department of Computer Science, Carnegie Mellon
University 1997.

[Hopp96] Hoppe, H., “Progressive Meshes,” Computer Graphics (SIGGRAPH 96
Proceedings), 99-108, 1996.

[Hopp97] Hoppe, H., “View-Dependent Refinement of Progressive Meshes,”
Computer Graphics (SIGGRAPH 97 Proceedings), 189-198, 1997.

[Hopp98] Hoppe, H., “Smooth View-Dependent Level-of-Detail Control and its
Application to Terrain Rendering,” Proceedings IEEE Visualization ’98, 35-42,
1998.

[Jeps95] Jepson, W., Liggett, R and Friedman, S., “An Environment for Real-time
Urban Simulation”, ACM Symposium on Interactive 3D Graphics, pp. 165-166,
1995.

[Lind98] Lindstrom, P., and Turk,G., “Fast and Memory Efficient Polygonal
Simplification,” IEEE Visualization ’98 Proceedings, 279-286, 1998.

[Lind00] Lindstrom, P., “Out-of-core Simplification of Large Polygonal Models,”
Computer Graphics (SIGGRAPH 00 Proceedings), 259-262, July 2000.

[Low97] Low, K., and Tan, T., “Model Simplification Using Vertex-Clustering,”
Symposium on Interactive 3D Graphics ’97 Proceedings, 75-82, 1997.

[Lueb97] Luebke, D., “A Survey of Polygonal Simplification Algorithms,” UNC
Chapel Hill Computer Science Technical Report TR97-045, 1997.

[LE97] Luebke, D., and Erikson, C., “View-Dependent Simplification of Arbitrary
Polygonal Environments,” Computer Graphics (SIGGRAPH 97 Proceedings), 199-
208, 1997.

[Maci95] Maciel, P., and Shirley, P., “Visual Navigation of Large Environments Using
Textured Clusters,” Symposium on Interactive 3D Graphics ’95 Proceedings, 95-
102, 1995.

[Muel95] Mueller, C., “Architectures of Image Generators for Flight Simulators,” UNC
Chapel Hill Computer Science Technical Report TR95-015, 1995.

[OGL98] Advanced Graphics Programming Techniques Using OpenGL, ACM
SIGGRAPH Course Notes, Course #17, 1998.

[Popo97] Popovic, J., and Hoppe, H., “Progressive Simplicial Complexes,” Computer
Graphics (SIGGRAPH 97 Proceedings), 217-224, 1997.

[Rohl94] Rohlf, J., and Helman, J., “IRIS Performer: A High Performance
Multiprocessing Toolkit for Real-Time 3D Graphics,” Computer Graphics
(SIGGRAPH 94 Proceedings), 381-394, 1994

Ronf96] Ronfard, R., and Rossignac, J., “Full-range Approximation of Triangulated
Polyhedra,” Computer Graphics Forum (Eurographics ’96 Proceedings), 67-76,
1996.

[Ross93] Rossignac, J., and Borrel, P., “Multi-Resolution 3D Approximations for
Rendering Complex Scenes,” Geometric Modeling in Computer Graphics, 455-465,
1993.

[Scha96] Schaufler, G., and Stuerzlinger, W. “Three Dimensional Image Cache for
Virtual Reality,” Computer Graphics Forum (Eurographics ’96 Proceedings), 227-
235, 1996.

[Schn94] Schneider, B., Borrel, P., Menon, J., Mittleman, J., and Rossignac, J., “Brush
as a Walkthrough System for Architectural Models,” Fifth Eurographics Workshop
on Rendering, 389-399, 1994.

[Schr97] Schroeder, W., “A Topology Modifying Progressive Decimation Algorithm,”
IEEE Visualization ’97 Proceedings, 205-212, 1997.

[Shad96] Shade, J., Lischinski, D., Salesin, D., DeRose, T., and Snyder, J.,
“Hierarchical Image Caching for Accelerated Walkthroughs of Complex
Environments,” Computer Graphics (SIGGRAPH 96 Proceedings), 75-82, 1996.

[Suda96] Sudarsky, O., and Gotsman, C., “Output-Sensitive Visibility Algorithms for
Dynamic Scenes with Applications to Virtual Reality,” Computer Graphics Forum
(Eurographics ’96 Proceedings), 249-258, 1996.

[Tell91] Teller, S., and Séquin, C., “Visibility Preprocessing for Interactive
Walkthroughs,” Computer Graphics (SIGGRAPH 91 Proceedings), 61-69, 1991.

[TERR] Terrain Experts, Inc. http://www.terrex.com.
[Torr90] Torres, E., “Optimization of the Binary Space Partitioning Algorithm (BSP)

for the Visualization of Dynamic Scenes,” Computer Graphics Forum (Eurographics
’90 Proceedings), 507-518, 1990.

[Xia97] Xia, J., El-Sana, J., Varshney, A., “Adaptive Real-Time Level-of-Detail-
Based-Rendering for Polygonal Models,” IEEE Transactions on Visualization and
Computer Graphics, 171-183, 1997.

[Zhan97] Zhang, H., Manocha, D., Hudson, T. and Hoff, K., “Visibility Culling using
Hierarchical Occlusion Maps,” Computer Graphics (SIGGRAPH 97 Proceedings),
77-88, 1997.

 LODs HLODs

Figure 10: Comparison of LODs and HLODs for the Torpedo
Room model. (left) LODs consisting of 883,537 faces, 6,160
faces, 822 faces, and 95 faces. (right) HLODs consisting of
883,537 faces, 6,160 faces, 822 faces, and 95 faces.

120

LODs

HLODs

Plate 1: (top) LODs of the Ford Bronco. They consist of 74,308
faces (the original model), 1,357 faces, 341 faces, and 108 faces.
(bottom) HLODs consisting of 74,308 faces, 1,357 faces, 338
faces, and 80 faces.

Plate 2: Dynamic modification of the Ford Bronco from Plate 1.
We have moved the top of the Bronco in order to look into its
interior. The two HLODs consist of 552 and 136 faces
respectively and took 3 seconds to recompute using 4
simplification processes on an SGI Reality Monster with 300 MHz
R12000 processors and 16GB of main memory.

Plate 3: (left) The original power plant model consisting of
12,731,154 faces. (middle) LODs of the power plant consisting of
2,515 faces. (right) HLODs consisting of 2,379 faces.

Plate 4: Comparison of LODs and HLODs of the Double Eagle Tanker. The original model is shown in Figure 1 with an alternate color
scheme. (above) LODs consisting of 7,887 and 1,922 faces. (below) HLODs consisting of 7,710 and 1,914 faces respectively.

 LODs

 HLODs

HLODs for Faster Display of Large Static and Dynamic Environments
Carl Erikson, Dinesh Manocha, and William V. Baxter III

121

