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Abstract—With the current increase in the data produced
by the Large Hadron Collider (LHC) at CERN, it becomes
important to process this data in a corresponding manner. To
begin with, to efficiently select events that contain relevant
information from a massive flow of data. This is the task of
the tau lepton decay triggering algorithm. The implementation
is based on the High-Level Synthesis (HLS) approach that
allows generating a hardware description of the design from
the algorithm written in a high-level programming language like
C++. HLS tools are intended to decrease the time and complexity
of hardware design development, however, their capabilities are
limited. The development of an efficient application requires
substantial knowledge of the hardware design and HLS specifics.
This paper presents the optimizations introduced to the algorithm
that improved latency and area and more importantly solved the
problems with the routing, making it possible to implement the
algorithm on the FPGA fabric.

Index Terms—HLS, algorithm optimization

I. INTRODUCTION

With the current increase in the data produced by the
Large Hadron Collider (LHC) at CERN, it becomes important
to process this data in a corresponding manner. Firstly, to
efficiently select events that contain relevant information from
a massive flow of data. This is the main objective of the tau
lepton decay triggering algorithm.

Tau lepton is an important particle for analysis of the
physical processes happening in LHC, it ”plays an important
role in both precise measurement of Standard Model physics
and search for physics beyond the Standard Model” [1].
However, it has a short lifetime and short decay length and
can be found and reconstructed only by its decay products.
The tau triggering algorithm is designed to identify the events
that have hadronically decaying tau leptons [1].

The algorithm consists of 3 major steps. In the first step,
the event data is buffered, and the 16 objects (seeds) with the
highest pT (transverse momentum) value are selected. Selected
seeds and buffered data from the whole event are then passed
to the select candidates step. The task of this step is to select
up to 30 tau candidates from the neighborhood of each seed.
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Then, selected candidates are analyzed to find information that
can be used to reconstruct tau objects.

The implementation of the algorithm is based on the High-
Level Synthesis (HLS) approach that allows generating a
hardware description from the algorithm written in a high-
level programming language like C++. HLS tools are intended
to decrease the time and complexity of hardware design de-
velopment, which is especially useful in the case of compute-
and data-intensive applications. However, the capabilities of
HLS tools are limited. Proper optimization of the algorithm
requires knowledge of the hardware design and HLS specifics.

The algorithm is developed using Vivado HLS targeting
Xilinx Virtex UltraScale+ FPGA VCU118 Evaluation Kit.

The task of the case study was to optimize the critical parts
of the algorithm in order to solve problems with timing, area,
and routing. Considering the selected development approach,
in order to optimize the algorithm two tasks should be solved:
first, optimized design development and, second, its implemen-
tation in a correct way so that Vivado HLS can synthesize it
accordingly.

The paper is organized in the following way. Section 2
presents the main concepts of high-level synthesis and its
current state. Section 3 presents the sorting algorithm devel-
oped for the project. Section 4 provides an overview of the
candidates selection task optimization. Conclusions are given
in Section 5.

II. HIGH-LEVEL SYNTHESIS

With the increased popularity of the FPGAs (Field-
Programmable Gate Array) and heterogeneous systems com-
bining processor units and programming logic on one platform,
there arises the necessity to introduce new programming
methods for the FPGAs that will make them more accessible
to the broader public.

FPGAs have certain benefits over traditional computational
platforms like CPU and GPU. Due to their natural parallel
computing capabilities, they are faster than the CPU. While
GPUs are capable of parallel computing as well, FPGAs are
characterized by lower cost and much lower power consump-
tion.

However, the complexity of programming that requires sub-
stantial knowledge of the underlying architecture and hardware
specifics and increased time to develop the product makes
FPGA platforms less accessible to the broader public. Using978-1-6654-6295-2/22/$31.00 ©2022 IEEE



IP (Intellectual Property) cores, ready-to-use functional blocks,
is one way to solve the problem; they allow building an
application in a Lego-like fashion by combining needed blocks
together. Nevertheless, not every functionality can be imple-
mented using IPs. More complex algorithms require tailored
solutions designed specifically for the application.

A better way to solve the problem is the High-Level
Synthesis (HLS) tools that introduce a higher level of ab-
straction for the hardware programming, namely they allow
developers to write algorithms in high-level languages like C
and C++ that will be automatically translated by the tool into
HDL specification considering characteristics of the selected
board. This way, HLS tools allow non-hardware specialists
to program FPGAs. Additionally, they increase the portability
and maintainability of the application, code written in C/C++
can be easily re-synthesized for different target platforms,
debugged, and changed in case there is a need. Since the
input code for HLS describes the algorithm, what the program
does, rather than how exactly it is implemented on the target
platform.

However, HLS is not a panacea. It still requires domain-
specific knowledge to write well-optimized code. HLS tools
suggest different pragma directives for hardware-specific opti-
mization of the algorithm. Nevertheless, those directives alone
are not enough to synthesize optimal RTL implementation.
They will not be able to improve the algorithm not suitable for
the hardware implementation. In order to produce an efficient
hardware description, the input code should be restructured
accordingly. Licht et al. [2] states that naive unoptimized HLS
implementations show worse performance than naive software
implementations. Matai et al. [3] present a case study for
insertion sort optimization, showing how properly written code
can increase the performance of the algorithm, reducing the
latency and resource usage. Restructured code shows the best
result time- and area-wise compared to the software version
of the algorithm optimized with different pragma directives.

Huang et al. [4] compare the HLS-based development
process to embedded systems development. Even though com-
panies like STM and Arduino producing development boards
provide great support for their products including frameworks
for automated settings and board-specific libraries in order to
make the programming of the devices easier, it still requires
domain-specific knowledge to write efficient applications and
solve arising problems.

The main difference is that high-level languages used in
HLS for input code are not designed to describe hardware
specifications, they are designed to describe software instruc-
tions executed sequentially, which introduces a challenge of
describing hardware constructs with software languages.

Additionally, it requires the knowledge of how HLS tools
themselves work, in what order they implement directives,
how they represent the algorithm internally, and how they
synthesize different constructs in order to restructure the
design of the application in a way that will produce a desirable
result.

Several works report that the quality of results (QoR) of
the HLS generated hardware description is far behind that of
manually written RTL design [2], [4]–[7]. On the contrary, [8]
shows an HLS-generated design that reduces resource usage
by 11-13 % compared to the design written by an RTL expert,
proving that HLS can produce competitive results. The case
study presented in [9] shows comparable results as well.

A serious limitation of HLS tools is that physical layout and
routing estimation is difficult on the HLS level and therefore
require again logic synthesis and implementation in order to
identify whether synthesized design has routing problems and
congestions. Reported congested areas should then be mapped
to the original code, which is a problem on its own since the
generated hardware description of the design differs drastically
from the input code.

Nevertheless, the complex nature of the algorithm which is
both compute-intensive and data-intensive calls for the HLS-
based development process. And therefore, the aforementioned
specifics of the HLS should be addressed and solved during
the work on the project.

A. Vivado HLS overview

Vivado HLS [10] is the commercial tool provided by Xilinx.
It accepts code written in C, C++, and SystemC as input
and synthesizes hardware description in VHDL, Verilog, and
SystemC. The tool includes a variety of pragma directives
for design optimization and libraries for hardware-specific
features, such as arbitrary precision data types, Xilinx IP
(Intellectual Property) functions for streams, shift registers,
etc. Additionally, it provides automatic test-bench creation,
C and RTL co-simulation, and support for floating-point and
fixed-point arithmetics.

After synthesis, Vivado HLS creates a report describing
the performance metrics of the generated design, including
the maximum frequency of the design based on the longest
combinational delay, latency of the design, initiation interval
(number of clock cycles before the application can accept new
input), number of utilized resources based on the number of
resources available on the target platform, types of interfaces
used for input and output signals. The same information
is presented for every function and loop instantiated in the
design.

In order to guarantee the synthesizability of the design,
Vivado HLS does not accept some C/C++ language constructs,
including recursion, dynamic memory allocation, function
pointers, and operating system calls.

III. SORTING

The first step of the algorithm is dedicated to buffering the
input data and selecting 16 seeds out of 144 candidates with
the highest pT (transverse momentum) value. The candidates
are sorted, and 16 elements from the top are saved into the
Seeds array for further analysis.

Input data is a continuous stream of particle events. The
event data includes data from 36 regions that come one region
at a time. Every region contains 22 charged tracks, 13 photon



tracks, and 10 tracks from neutral particles. First 4 tracks from
every region form an array of seed candidates (36×4 = 144).
Later an array of seed candidates is sorted to find the 16 best
seeds based on their pT value since a high pT value can be
an indication of decaying tau leptons.

A. Original algorithm

The original sorting algorithm was a hardware-optimized
version of bubble sort that was taking too many resources
causing problems with the routing of the whole algorithm.
The task was to develop a new sorting algorithm that will
significantly decrease the number of utilized resources and
potentially decrease the latency of the first step since the total
latency of the algorithm is very strict. The latency of the first
step can be defined as max(B,S), where B is the latency
of the buffering process and S is the latency of the sorting.
Buffering takes 56 clock cycles, the original sorting solution
takes 57 clock cycles. Therefore, an optimized solution should
take the same amount of clock cycles or less than the buffering.

In the beginning, it was decided to try some modifications
of the original algorithm to explore possible optimizations
without introducing a completely new sorting algorithm. Each
seed candidate object is represented by a structure with 6
members. During the sorting, seed candidates are read and
written numerous times. The idea was to use a smaller
structure containing the pT value and index of the candidate
for the sorting and then write the 16 best seeds using obtained
indices. Another idea was instead of a smaller structure use
a temporary array of 8 + 16 bit integers that will hold both
the index of the candidate (8 bits) and its pT value (16 bits).
Both approaches only slightly reduced the resource usage of
the function, did not reduce the latency and introduced the
problem of using many multiplexers at the stage when the
selected seeds should be written to the output array based
on their indices in the seed candidates array. The results are
presented in Table I.

TABLE I
RESULTS OF THE ORIGINAL ALGORITHM MODIFICATIONS

Algorithm Latency, cycles FF LUT
Original 57 151,287 (6%) 262,690 (22%)
Smaller struct 58 132,448 (5%) 208,487 (17%)
8 + 16 bit integer 72 146,627 (6%) 238,428 (20%)

Eventually, it was decided to try a different sorting algo-
rithm. The algorithm should consider the streaming nature of
incoming data, the fact that it comes in chunks of 4, and that
only 16 elements out of 144 should be saved for further pro-
cessing. The straightforward approach to use some hardware-
optimized sorting architecture to sort all 144 elements would
not be applicable, because even sorting algorithms with time
complexity O(n) would take much more clock cycles than
desired.

B. Streaming merge sort

At first, it was decided to implement a merge sorter tree that
at every level will leave only the 16 best elements, discarding
the others.

On the first level, there are 16 arrays, 9 elements each (16×
9 = 144). On the second level, they are merged into 8 arrays
of size 16, and so on until there is only one array left with
the best seeds. 16 arrays on the first level were sorted in an
insertion sort manner: a new coming element would traverse
through the array to find its place, then if needed elements
greater than the new one will be shifted, and a new element
inserted. To parallelize the process, each seed candidate from
one region would be inserted into a different array. This way,
a new element is inserted in the array on the first level every
third cycle, giving the previous element 2 clock cycles to find
its place, which was proved sufficient during the runs of the
algorithm.

Three different variants of the merge sorter were tried: OUT
arrays implemented as BRAMs, OUT arrays partitioned and
implemented as separate registers, and finally OUT arrays
implemented as FIFO streams. The results prove that streams
are the best solution for the merge sorter as they decrease
the latency of the merge stage. However, they have a certain
drawback: all elements from the previous level that are not
passed to the next level should anyway be read from the
stream. The results are presented in Table II.

TABLE II
RESULTS FOR MERGE SORT IMPLEMENTATIONS

OUT arrays Latency, c BRAM FF LUT
As BRAM 104 48 35,333 (1%) 146,998 (12%)
Partitioned 84 0 63,552 (2%) 439,358 (37%)
As streams 72 0 41,117 (1%) 391,176 (33%)

It can be seen that the implemented merge sort does not
fit into defined latency and does not decrease the number
of resources used and therefore does not satisfy the task
description. The increased latency is attributed to the fact
that it was required to divide the buffering process and the
merge sorter between different functions. Buffering requires
a pipeline directive in order to read new region data every
clock cycle and start processing new event data every 36
cycles. Merge sorter though requires a dataflow directive to
make all merge levels work in parallel, and Vivado HLS
cannot instantiate the dataflow region from pipelined function.
Therefore, the merge sorter waits until the buffering stage is
over and starts to work only after.

C. Spatial insertion sort

The first algorithm developed that improved the timing and
the resource usage was a modification of insertion sort. A
spatial sorter was built that included 16 insertion cells. The
sorting architecture is presented in Figure 1.

The sorting algorithm considers that 4 inputs from each
region are already sorted and, therefore, 4 elements are used



Fig. 1. Spatial sorter architecture

as an input for each insertion cell, unlike traditional imple-
mentation that has 1 new coming element as an input.

Each insertion cell works on one element of the Seeds
array. First, the insertion cell gets 4 elements from the new
region and compares it to the first element of the Seeds array.
The biggest element is saved to the CURR_REG variable.
Since it is known that elements in the IN array are sorted,
the biggest element is either CURR_REG or IN[0]. If it is
not CURR_REG, IN[0] is saved into the CURR_REG, the
previous value of CURR_REG is inserted in the appropriate
place in the OUT array. The OUT array is then passed to the
next sorting cell. The work of the insertion cell is presented
in Figure 2.

Fig. 2. Sorting cell architecture

In order to make Vivado HLS implement 16 different
instantiations of the insertion cell function, so each of them
will use its own static variable CURR_REG, the function is
defined as a template with an integer parameter that acts as an
ID number. Otherwise, Vivado HLS will generate the design,
in which all insertion cells will share the same CURR_REG
variable.

Generally, the complexity of a spatial sorter is O(2n), but
in our case, the complexity is O(n/4 + m), where n is the
number of seed candidates and m is the number of top seeds.

With this approach, sorting takes 36 + 1 + 16 (53 cycles),
because the first region elements are passed to the first sorting
cell on the second cycle and the elements from the last
region take 16 cycles to pass through all sorting cells. Since
the latency of the first step function is determined by either
buffering or sorting, depending on which operation takes
more clock cycles, the total latency of the function with the
described sorting algorithm is 56 clock cycles.

It was possible to modify the created algorithm to decrease
the timing of the sorting part even more. Instead of working
on 1 element from the Seeds array, new sorting cells work
on 2 elements from the Seeds array. Graphically, a modified
sorter is presented in Figure 3.

The architecture of the insertion cell has changed as well.
The solution for the modified insertion cell was inspired by
[11] that presents a single-stage N sorter based on a compari-
son counting matrix. The suggested N -sorter does not require
calculating the rank of each element, it is built according to
the equations derived from the comparison counting result.

Since it is known that the IN array is sorted and REG0
and REG1 are sorted, several simple rules were deducted to
sort those elements. 6 elements should be sorted into 6 output
positions: out1, out2, out3, out4, out5, and out6. out1 and out2
are saved into REG0 and REG1, and out3–out6 are saved into
the OUT array.

The examples of the rules are presented below:
1) Only two elements can go to the out1: REG0 or IN[0].

The biggest one goes to the out1.
2) Four elements can go to the out2: REG0, REG1, IN[0],

or IN[1]. If REG1 is bigger than IN[0], then it goes to
the out2. If IN[0] is smaller than REG0 but greater than
REG1, then it goes to the out2. If IN[1] is bigger than
REG0, then it goes to the out2. Else, REG0 goes to the
out2.



Fig. 3. Modified spatial sorter

3) The rules for the other output positions are depicted in
the same way.

The latency of the modified sorting algorithm is 36+1+8 (45)
cycles. The resource usage for the spatial sorter modifications
is presented in Table III.

TABLE III
RESULTS FOR SPATIAL INSERTION SORTER VERSUS ORIGINAL ALGORITHM

Algorithm Latency, c FF LUT
Original 57 (57)* 151,287 (6%) 262,690 (22%)
Spatial sorter 56 (53) 104,749 (4%) 33,822 (2%)
Modified spatial sorter 56 (45) 103,783 (4%) 22,987 (1%)

* The latency of the sorting process is given in the brackets.

It can be seen that a developed spatial sorter significantly
decreases the usage of the resources and provide an opportu-
nity to decrease the latency of the first step function if it will
be possible to decrease the latency of the buffering process.

IV. CANDIDATES SELECTION

During the second step of the algorithm, for each seed, the
data from four neighboring regions (the region where the seed
was found plus three adjacent ones based on the seed’s location
in the region) should be saved into candidate arrays. However,
there was a problem with the way data from the selected
regions was read from the input buffer and written to the
candidate arrays. Regions were referred by their indices (from
0 to 35), but access through non-sequential indices created
huge multiplexers and caused serious routing problems. A new
representation of selected regions and a new way to write the
data from the buffered arrays were required.

A new way to represent the selected regions by the row and
column according to Figure 4 was suggested.

Every row and column was marked as either odd or even,
and every odd-even pair was numbered. This way, the seed’s

Fig. 4. New regions representation

neighborhood is defined by one even and one odd row and
one even and one odd column. For example, the neighborhood
including regions 4, 5, 8, and 9 is defined by even row 0 and
odd row 1, even column 0 and odd column 0. Since the first
row and the last row are both odd, two additional parameters
were added to indicate whether the last row is used or not, and
if it is used then whether it is considered even or odd. The
grid represents an unfolded torus, and the first and the last
rows are connected, e.g., region 0 has five adjacent regions:
1, 4, 5, 32, and 33.

It was thought that changes in the selected region’s rep-
resentation should result in 8-to-1 MUXs (multiplexers) for
row selection, 2-to-1 MUXs for last row selection, and 2-to-1
MUXs for column selection instead of the previous 36-to-1



MUXs. The problem was to make Vivado HLS infer it from
the design.

A function that reads the data from the input buffer and
writes it to the candidate arrays was redesigned in the fol-
lowing way. First, two rows should be selected: one even and
one odd. Since the number of rows is uneven, the last row is
considered as a special case. This way, if the candidate row is
not the last one, then the selection is done from only four rows:
0, 2, 4, 6 for the even row and 1, 3, 5, and 7 for the odd. Then,
from those two rows, two columns should be selected. Again,
one even and one odd, therefore, in each case the selection is
done from two columns: 0 and 2 for the even column and 1
and 3 for the odd.

In order to make Vivado HLS synthesize appropriate MUXs,
the following idea was implemented (presented in the example
of tracks.) Tracks were saved in two arrays: 2D 4 × 8 track
array for the first 8 rows and 1D trackLastRow array for the
last row. Each row in the track array contains two rows from
the original grid. This way, all even rows are on the left and
all odd rows are on the right. Selected rows are copied to two
2D 2 × 2 arrays: tRowEven and tRowOdd. This way, even
columns end up in the first column and odd columns in the
second column.

Described architecture is presented in Figure 5. Those
shapes make it clear for Vivado HLS which elements are valid
for each selection. This design gives 2-to-1 MUXs for the last
row selection, 4-to-1 MUXs for row selection, and 2-to-1 for
column selection, which is even better than predicted.

Fig. 5. Preselect candidates selection process

This task made it clear that creating a well-optimized
algorithm using HLS tools requires solving two problems:
first, designing an efficient architecture and, second, writing
an implementation that Vivado HLS will be able to synthesize
according to the idea.

V. CONCLUSION

For the first step of the algorithm, two different sorting
algorithms were implemented and compared with the original
solution: streaming merge sort and spatial insertion sort. The
merge sort solution has shown that not every design can be
implemented using HLS due to the limitations of the tools. It

was not possible to write the code in a way that Vivado HLS
can schedule merge sorter with streaming data in parallel with
the buffer process.

Insertion sort solution, on the other hand, was able to
reduce the resource usage of the function drastically (7×
fewer LUTs for the first version and 11× fewer LUTs for
the modified version compared to the original algorithm) as
well as decrease the latency of the sorting part (21 % for
the modified version) and solve the problem with the routing.
The suggested insertion sort algorithm considers the properties
of the input data (new data comes presorted in blocks of 4)
and the task specification (only 16 best elements out of 144
should be selected), proving that a solution tailored to the task
provides a better design.

For the candidates selection task, a new way was introduced
to select 4 regions for each seed and access the data from
those regions in order to avoid huge multiplexers in the RTL
design that originally caused problems with routing as well.
The new design instead of 36-to-1 MUXs uses 4-to-1 and 2-
to-1 MUXs, which take less area and do not cause problems
with implementation on FPGA.
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