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HMGA1 promotes breast cancer
angiogenesis supporting the stability,
nuclear localization and transcriptional
activity of FOXM1
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Abstract

Background: Breast cancer is the most common malignancy in women worldwide. Among the breast cancer
subtypes, triple-negative breast cancer (TNBC) is the most aggressive and the most difficult to treat. One of the
master regulators in TNBC progression is the architectural transcription factor HMGA1. This study aimed to further
explore the HMGA1 molecular network to identify molecular mechanisms involved in TNBC progression.

Methods: RNA from the MDA-MB-231 cell line, silenced for HMGA1 expression, was sequenced and, with a
bioinformatic analysis, molecular partners HMGA1 could cooperate with in regulating common downstream gene
networks were identified. Among the putative partners, the FOXM1 transcription factor was selected. The
relationship occurring between HMGA1 and FOXM1 was explored by qRT-PCR, co-immunoprecipitation and protein
stability assays. Subsequently, the transcriptional activity of HMGA1 and FOXM1 was analysed by luciferase assay on
the VEGFA promoter. The impact on angiogenesis was assessed in vitro, evaluating the tube formation ability of
endothelial cells exposed to the conditioned medium of MDA-MB-231 cells silenced for HMGA1 and FOXM1 and in
vivo injecting MDA-MB-231 cells, silenced for the two factors, in zebrafish larvae.

Results: Here, we discover FOXM1 as a novel molecular partner of HMGA1 in regulating a gene network implicated
in several breast cancer hallmarks. HMGA1 forms a complex with FOXM1 and stabilizes it in the nucleus, increasing
its transcriptional activity on common target genes, among them, VEGFA, the main inducer of angiogenesis.
Furthermore, we demonstrate that HMGA1 and FOXM1 synergistically drive breast cancer cells to promote tumor
angiogenesis both in vitro in endothelial cells and in vivo in a zebrafish xenograft model. Moreover, using a dataset
of breast cancer patients we show that the co-expression of HMGA1, FOXM1 and VEGFA is a negative prognostic
factor of distant metastasis-free survival and relapse-free survival.

Conclusions: This study reveals FOXM1 as a crucial interactor of HMGA1 and proves that their cooperative action
supports breast cancer aggressiveness, by promoting tumor angiogenesis. Therefore, the possibility to target
HMGA1/FOXM1 in combination should represent an attractive therapeutic option to counteract breast cancer
angiogenesis.
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Background
Breast cancer (BC) is the most commonly diagnosed can-

cer and is the leading cause of cancer-related death in

women. Different breast cancer subtypes have been de-

scribed based on gene expression analysis and it is widely

accepted that there are five distinct intrinsic molecular

subtypes: luminal A, luminal B, HER2-enriched, normal-

like and basal-like breast cancer [1]. The majority of basal-

like breast cancers are defined triple-negative breast can-

cers (TNBC), as they lack the expression of the estrogen

receptor (ER), progesterone receptor (PR) and human epi-

dermal growth factor receptor 2 (HER2/neu), making them

difficult to treat [2, 3]. TNBC accounts for approximately

15% of invasive breast cancers and represents the most ag-

gressive breast cancer subtype: indeed TNBC is a typically

high-grade tumor, poorly differentiated, and associated

with poor prognosis and molecular heterogeneity [2–4].

Since TNBC does not respond to hormonal and target

therapies, the only current therapeutic options are repre-

sented by tumor excision, radiation therapy and conven-

tional chemotherapy. Increasing evidence points out that

the microvascular density in TNBC is higher with respect

to other breast cancers subtypes, thus highlighting that

angiogenesis crucially supports TNBC progression. There-

fore, the study of efficacious anti-angiogenic therapies in

TNBC is critical [5, 6].

One of the factors involved in TNBC aggressiveness is the

High Mobility Group A1 (HMGA1), a member of non-

histone chromatin proteins [7]. HMGA1 is an architectural

transcription factor which, by altering chromatin structure

and interacting with transcription factors, can regulate the

transcription of several genes [8–10]. HMGA1 is defined as

an oncofetal protein due to its expression pattern: indeed, it

is highly expressed during embryogenesis, while its expres-

sion decreases or is absent in adults; it is then re-expressed

in a variety of tumors, including breast cancer [11, 12]. In

this context, several works established that HMGA1 expres-

sion is correlated with high tumor grade and metastatiza-

tion, resistance to therapies and poor prognosis [7, 13–15].

Furthermore, a causal role of HMGA1 in breast cancer

onset and progression has been demonstrated. In fact,

HMGA1 over-expression in non-tumorigenic MCF-7 hu-

man breast epithelial cells leads to the acquisition of a trans-

formed and aggressive phenotype [16], whereas HMGA1

silencing in highly aggressive TNBC cell lines causes the

reversion of the tumorigenic phenotype, as assessed both by

in vitro and in vivo approaches [13, 17]. We have previously

reported that HMGA1 exerts its action by governing the

transcription of gene networks fundamental in supporting

TNBC aggressiveness [13, 18–20]. In detail, HMGA1 in-

duces the expression of epithelial to mesenchymal transition

(EMT) - and stemness-associated genes and, through the

regulation of CCNE2/CDK2 complex, it is able to modulate

the Hippo pathway, finally regulating the localization and

activity of YAP and conferring metastatic abilities to TNBC

cells [18]. In addition, HMGA1 regulates a gene network

linked to secreted proteins. In fact, by inducing the expres-

sion of key components of the plasminogen activation

system, such as PLAU and SERPINE1, HMGA1 is able to

modulate the TNBC cell secretome stimulating TNBC

cell migration in an autocrine way [20]. However, little

is known about how HMGA1 governs these cancer-

related gene networks.

In order to identify HMGA1-molecular partners involved

in developing TNBC aggressiveness, we performed RNA

sequencing analysis (RNA-Seq) on the MDA-MB-231

TNBC cell line at 24 and 72 h after HMGA1 silencing,

looking for transcription factors as putative upstream regu-

lators of HMGA1-gene networks. We found Forkhead box

M1 (FOXM1) transcription factor as a novel HMGA1-

molecular partner. FOXM1 overexpression is detected in a

variety of human cancers, where it drives the expression of

critical genes involved in the regulation of different cancer

hallmarks including high proliferation, invasion, drug resist-

ance and angiogenesis; moreover, its overexpression is asso-

ciated with poor clinical prognosis [21, 22]. Intriguingly,

FOXM1-associated pathway has been found to be the top

up-regulated pathway in TNBC but not in other breast

cancer subtypes, suggesting a crucial role of FOXM1 in

TNBC [23]. Our results indicate that HMGA1 and FOXM1

together regulate a common pro-tumorigenic TNBC gene

network. Specifically, HMGA1 stabilizes FOXM1 in the nu-

cleus preventing its degradation and increasing FOXM1-

dependent transcriptional activity. Furthermore, we found

that HMGA1 and FOXM1 cooperatively promote the

tumor angiogenic process in in vitro and in vivo models.

Our study thereby describes a new molecular mechanism

fundamental in TNBC aggressiveness.

Materials and methods

Cell culture and treatments

MDA-MB-231, MDA-MB-157 and HEK293T cell lines

were routinely grown in high glucose DMEM, with 10%

tetracycline-free FBS, 2mML-Glutamine, 100 U/ml Peni-

cillin and 100 μg/ml Streptomycin (Euroclone). Lipofecta-

mine™ RNAiMAX reagent (Thermo Fisher Scientific) was

used for transfection of 30 pmol of siRNA/35-mm dish, fol-

lowing the manufacturer instructions. For co-silencing ex-

periments, 30 pmol of each specific siRNA was used up to

a final amount of 60 pmol/condition. The cells were proc-

essed after 24, 48 and 72 h of silencing, depending on the

specific experiment. siCTRL and siRNAs against HMGA1

and FOXM1 have been previously used [13, 24]. Plasmid

transfections were carried out using Lipofectamine 3000

(Invitrogen/ThermoFisher Scientific) for MDA-MB-231

cells following the manufacturer protocols, and the stand-

ard Calcium Phosphate transfection method for HEK293T

cells. For the treatment with MG132 proteasome inhibitor

Zanin et al. Journal of Experimental & Clinical Cancer Research          (2019) 38:313 Page 2 of 23



(Sigma), 48 h after the siRNA transfection, MDA-MB-

231 cells were treated with 10 μM of the proteasome

inhibitor MG132 or DMSO, as negative control, for 6

h and then lysed in SDS sample buffer [62.5 mM Tris,

pH 6.8; 2% SDS; 10% glycerol; 200 mM DTT, 1 mM

Na3VO4, 5 mM NaF and mammalian protease inhibi-

tor cocktail (PIC) (Sigma)] for Western blot analysis.

For the cycloheximide (Sigma) treatment, 48 h after

siRNA transfection, MDA-MB-231 cells were treated

with 50 μM of cycloheximide and lysed at different

time points (45, 90, 150 and 240 min) in SDS sample

buffer for western blot analysis.

Plasmids construction

pEGFP-N1, pEGFP-N1 HMGA1a, pRL-CMV Renilla (Pro-

mega) and pGL4.11 (Promega) were already present in the

laboratory. pEGFP-FOXM1 and pGL3-5BS (containing five

repetitions of FOXM1 binding sites-TAAACA) were kind

gifts of Dr. Muy Teck Teh (Department of Diagnostic and

Oral Sciences, Blizard Institute, Barts and The London

School of Medicine and Dentistry, Queen Mary University

of London, London, UK). The vectors used in this work

named pGL4.10-VEGFprom (− 1000–1), pGL4.10-VEGF-

prom (− 1000–500), pGL4.10-VEGFprom (− 500–1), as they

contain a portion of the VEGFA promoter that goes from −

1000 to − 1 bp, from − 1000 to − 500 bp and from − 500 to

− 1 bp respectively, were a gift from David Mu (Addgene

plasmid #66128, #66129, #66130). The deletion mutants

pGL4.11-VEGFpromWT(− 388–1), pGL4.11-VEGFprom (−

338–1), pGL4.11-VEGFprom (− 172–1) and the pGL4.11-

VEGFprom (− 104–1), containing a region of the VEGFA

promoter spanning from − 388 to − 1 bp, from − 338 to − 1

bp, from − 172 to − 1 bp, and from − 104 to − 1 bp from the

TSS respectively, were generated in the laboratory by ampli-

fying the pGL4.10-VEGFprom (− 1000–1) with the forward

primers 5′-GGGGTACCCCGGGGCGGGCCGGGGGCGG

GGTCC-3′, 5′-GGGGTACCCCCTTTTTTTTTTAAAAG

TCGGC-3′, 5′- GGGGTACCTGGAATTTGATATTCATT-

GATCCG -3′, 5′- GGGGTACCTGTATTGTTTCTC GTT

TTAATTT- 3′ for the − 388, − 338, − 172 and− 104 to − 1

bp fragments respectively and the common reverse primer

5′- CCCAAGCTTAAAATCCACAGTGATTTGGGGAA -

3′. We then created a pGL4.11-VEGFpromMUT (− 388–1)

mutated in two SP1 binding sites (GGGCGG ➔ GGAAGG)

by amplifying the pGL4.10-VEGFprom (− 1000–1) with the

forward primer 5′- GGGGTACCCCGGGAAGGGC

CGGGGAAGGGG TCC -3′ (GC ➔ AA) and the reverse

primer used in previous experiments. Subsequently, all

the PCR products were cloned in KpnI and HindIII

(Amersham Biosciences) restriction sites of pGL4.11

vector. All the plasmids generated in the laboratory

were sequenced by Eurofins Genomics sequencing

service.

Luciferase assay

HEK293T cells were plated at the density of 35*104 cells

per 35-mm-diameter culture dish and processed 40 h after

the Calcium phosphate transfection. Specifically, cells were

transfected with 200 ng of the specific Luciferase reporter

construct, 600 ng of pEGFP-N1 HMGA1a or/and 600 ng

pEGFP-FOXM1 and 10 ng of pRL-CMV Renilla expression

vector (Promega), as a normalizer for transfection effi-

ciency. The luciferase assay was also carried out by trans-

fecting 30 pmol of HMGA1 siRNA/35-mm dish followed,

24 h later, by the transfection of 200 ng of the reporter con-

struct and 600 ng of pEGFP-FOXM1. The Dual-Luciferase®

Reporter Assay System (Promega) was used for the lucifer-

ase reporter assay, following the manufacturer instructions.

The measurements were carried out using the Berthold

Lumat LB 9501 Tube Luminometer; two technical repli-

cates were performed for each sample.

Immunoblotting

Cells were washed in ice-cold PBS and then lysed in SDS

sample buffer, supplemented with proteases inhibitors, as

reported before. Total lysates were separated by SDS-

PAGE and then transferred to nitrocellulose membrane ∅

0.2 μm (GE Healthcare, WhatmanTM). Western blot ana-

lyses were performed according to standard procedures,

using the following antibodies: αHMGA1 [13]; α-β-actin

(A2066, Sigma); αFOXM1 (A301-533A-M, Bethyl Labora-

tories; D3F2B Cell Signaling Technology); αGFP (kind gift

of L. Collavin, LNCIB, Trieste).

Co-immunoprecipitation

MDA-MB-231 cells protein extracts were prepared in an IP

buffer containing 25mM Tris/HCl pH 7.4, 0.5% v/v NP40

and 125mM NaCl supplemented with 1mM PMSF, 1mM

Na3VO4, 5mM NaF and protease inhibitors cocktail

(Sigma). For the Co-IP experiment, 250 μg of cell lysate was

incubated with 1 μg of either α-HMGA1 or α-GFP

(GTX113617 Genetex), as a negative control, in IP buffer

O/N at 4 °C. Subsequently, pre-washed A/G proteins agar-

ose beads (GE Healthcare) were blocked in PBS 0.1%

Bovine serum albumin (BSA-Sigma) and 100 μl of beads in

IP buffer were added to the solution of lysate/antibody and

incubated 2 h at 4 °C. After the incubation, the beads were

washed three times in IP buffer and proteins were eluted by

boiling the beads for 4min in SDS sample buffer and

subjected to western blot analysis with the indicated

antibodies.

Immunostaining

HEK293T, MDA-MB-231 and MDA-MB-157 cells were

grown on glass coverslips and silenced for HMGA1 and/

or FOXM1, as previously described. HEK293T cells were

transfected with 1 μg of pEGFP-FOXM1 1 day post

HMGA1-silencing, by Calcium phosphate method. Then
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cells were fixed in a solution of 4% PFA. After a

permeabilization with 0.3% Triton/PBS and saturation in

5% BSA/PBS, cells were incubated with the following

primary antibodies: αFOXM1 (Cell Signaling Technol-

ogy); α-20S Proteasome β2 (MCP165 - sc-58410); α-20S

Proteasome β5 (A10 - sc-393931). The α-rabbit and α-

mouse Alexa 594 and 488 were used respectively. The

images were visualized using a Nikon Eclipse e800

microscope and acquired using Nikon ACT-1 software,

then analyzed by the ImageJ software analyser.

Migration assay

For the wound healing assay, MDA-MB-231 and MDA-

MB-157 cells were seeded in antibiotics-free DMEM at a

density of 2*105 cells/well in a 35-mm dish in biological

triplicates and silenced for HMGA1 and/or FOXM1

expression, as described before. Cells were cultured to 90%

confluence and then scraped with a 200-μl tip, and wound

closure has been followed for 7 h. Two images for the same

area were taken for each well and the wound areas were

analyzed by ImageJ software.

Gene expression analysis

Total RNA from MDA-MB-231 cells was isolated fol-

lowing the manufacturer’s instructions of the TRIzol re-

agent (Thermo Fisher Scientific), subjected to DNase-I

(Thermo Fisher Scientific) treatment and subsequently

purified using phenol-chloroform. For quantitative RT-

PCR (qRT-PCR), mRNA was reverse transcribed with

Random primer by the Superscript III (Thermo Fisher

Scientific), according to the manufacturer’s instructions.

qRT-PCR was carried out with iQ™ SYBR Green Super-

mix (BIO-RAD); specific primers used are listed in Add-

itional file 1: Table S1. The data obtained were analyzed

with BIO-RAD CFX Manager software and the relative

gene expression was calculated by the ΔΔCt method,

using the GAPDH as a normalizer.

Preparation of cells for RNA-sequencing analysis

MDA-MB-231 cells were silenced for HMGA1 and the

RNA was collected at 24 and 72 h after the silencing.

Three biological replicates were made for each condi-

tion. The total RNA was then extracted and checked as

described above. Then, an aliquot of RNA was reverse

transcribed and the silencing of HMGA1 was confirmed

by qRT-PCR.

RNA-sequencing analysis

Demultiplexed raw reads (fastq) generated from the Illu-

mina HiSeq were checked using FASTQC tool (Version

0.11.3). All samples passed the quality standards. Then

we aligned them to the reference genome (UCSC-hg19)

using STAR [25], version 2.0.1a using recommended op-

tions and thresholds. HTSeq-count (version 0.6.1) was

used to generate gene counts. Starting from read counts,

differential gene expression analysis was performed using

EdgeR (version 1.10.1, R version: 3.2.3, [26]) comparing the

different time points using a quantile-adjusted conditional

maximum likelihood (qCML) method. In order to identify

the relationship between each sample and every other sam-

ple, the Euclidean distance between each pair of samples

was calculated using the log-transformed values of the

complete dataset. Average linkage clustering was then used

to generate a sample-to-sample distance heatmap, via the

cluster3 package (Cluster3: http://bonsai.hgc.jp/~mde-

hoon/software/cluster/software.htm#ctv) [27]. For statis-

tical analyses the adjusted p-values were generated via the

Benjamini-Hochberg procedure. Finally, genes were se-

lected as differentials with a cutoff of 0.5 for the log Fold

change and 0.05 for the False Discovery Rate.

Functional analysis of differentially expressed genes

Differentially expressed genes were analyzed using GSEA

[28, 29] and Ingenuity Pathway Analysis (IPA, Ingenuity®

Systems, www.ingenuity.com) [30]. The prediction of the

transcription factors was obtained using the “upstream

regulators” module (IPA suite). For every upstream regu-

lator an overlap p-value and a z-score were calculated:

the p-value indicates the significance based on the over-

lap between dataset genes and known targets regulated

by the molecule, while the z-score is used to infer the

possible activation (z-score ≥ 1.8) or inhibition (z-

score ≤ − 1.8) of the molecule based on prior know-

ledge stored in the proprietary Ingenuity Knowledge

Base. All statistical test and calculation have been

performed in R [31] environment. For the enrichment

in protein localization, genes were annotated using

Uniprot (https://www.uniprot.org) and proteins were

analyzed with David/Ease [32, 33] interrogating the

Geoterm Cellular Compartment gene ontology. For

Fig. 6a) we selected the most significant terms in en-

richment clusters (enrichment score > 3) including nu-

clear, microtubules, adherence/junction and secreted/

exosome terms.

Preparation of the conditioned medium (CM) for

angiogenic assays

MDA-MB-231 were seeded and silenced for HMGA1

and/or FOXM1 as described and 1 day before the super-

natant collection the culture medium was substituted

with serum-free DMEM. After 72 h of silencing, the CM

was collected, centrifuged at 240Xg at 4 °C for 5 min to

deposit cells debris and stored at − 80 °C. Next, the cells

were washed in PBS 1X and lysed in SDS sample buffer

as described. The HMGA1 and FOXM1 protein levels

were checked by western blot analysis.
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Endothelial cells proliferation analysis

Human umbilical vein endothelial cells (HUVEC) have been

isolated from human umbilical cords [34] and seeded in 96-

well plate at the density of 5*103 cells/well. The cells were in-

cubated with HMGA1, FOXM1 and HMGA1/FOXM1 con-

ditioned medium and the control medium for 18 h. Normal

Human Serum 10% was used as conditioned medium for

the positive control experiments. After a washing step, the

cells were fixed and permeabilized with Fix&Perm kit (Nor-

dic-MUbio) for 15min at room temperature in the dark.

After two washing steps, the cells were incubated with the α-

Ki-67 antibody (Dako), followed by the incubation with the

secondary antibody α-mouse FITC (Dako). The cells were

washed twice and lysed. Measurements were performed

using Infinite200 (Tecan).

Transwell migration assay of endothelial cells

HUVEC cells were seeded in 200 μl of Endothelial serum-

free medium (Invitrogen) at the density of 15*104 cells /well

in the upper compartment of 8 μm pore 24-transwell plate,

pre-coated with human Fibronectin (Sacco) in the lower face.

Then HUVEC were incubated with 500 μl of HMGA1 and/

or FOXM1 CMs, and with serum-free medium as a negative

control or Normal Human Serum 10% (NHS) as a positive

control in the lower compartment of the transwell. After 18

h of incubation, HUVEC were lysed with lysis buffer for

Coulter and the number of migrated cells were counted with

Coulter Counter BD.

In vitro tube formation of endothelial cells

HUVEC at the density of 5.5*104 were plated on wells pre-

coated with Matrigel (12 μg/ml) (Becton Dickinson) and

incubated for 18 h with CMs diluted 1:2, with 20 ng/ml

VEGF as a positive control or with serum-free medium as

a negative control. After a 4% paraformaldehyde fixation

step and staining with Phalloidin-Alexa Fluor 546 (Invitro-

gen), the number of tubules was counted under a Leica

AF6500 microscope using LAS software (Leica).

Preparation of cells for zebrafish injection

MDA-MB-231 cells were seeded at the density of 1.2*106

per 10-mm-diameter culture dish and silenced for

HMGA1 and/or FOXM1 as described before. After 40 h

of silencing the cells were counted and injected in the yolk

sack of zebrafish embryos.

Zebrafish xenograft

Zebrafish were raised and maintained as previously de-

scribed [35]. Embryos were generated by natural pair-wise

mating and were kept and handled for all experiments in

E3 medium (5mM NaCl, 0.17mM KCl, 0.33mM CaCl2,

0.33 nM MgSO4) and PTU (1-phenyl 2-thiourea, 0.03mg/

ml) to reduce zebrafish skin pigmentation for microscope

analysis. All experimental procedures were performed

conforming to the ITA guidelines (Dgl 26/2014) in ac-

cordance with EU legislation (2010/63/UE); this protocol

was approved by a committee of the Italian Health Minis-

try (cod. 04086.N.15Y). In this study, the Tg (fli1:EGFP)

(y1) zebrafish embryos were used. This transgenic fluores-

cent strain expresses in the entire vasculature EGFP under

the control of the fli1 promoter [36]. Before all experimen-

tal procedures, animals were properly anesthetized by

using 1:100 dilution of 4mg/ml Tricaine (Sigma-Aldrich

Co., St Louis, MO, USA). Two days post fertilization

(2dpf), zebrafish embryos were dechorionated and micro-

injected with MDA-MB-231 siCTRL and siHMGA1/

siFOXM1 cells or cellular medium alone (vehicle) as

control experiment. Each cells suspension was stained by

2 μg/ml DiI (Sigma Aldrich) for 10min at 37 °C, re-sus-

pended in DMEM medium and kept on ice before

injection. Microinjections were performed with the elec-

tronic FemtoJet microinjector (Eppendorf) using borosili-

cate glass micro-capillaries (20mm O.D. Fifteen

millimeters I.D.; Eppendorf). Approximately 500 cells

were microinjected into the yolk of each embryo, which

was then maintained in E3 medium/PTU for 1 h at 28 °C.

Afterwards embryos were kept at 34 °C to allow tumor

cells survival and growth as previously described [37].

Twenty-four hours after microinjection, the embryos were

observed with a fluorescence microscope (Leica DM

2000). During all the procedures living animals, properly

anesthetized, were positioned in 1.5% methylcellulose

(Sigma Aldrich Co). The images of the tumor masses were

acquired in red signal (DiI staining) and then merged with

the respective bright field image by using the Leica Appli-

cation Suite X (LAS X) software. Instead, to evaluate the

host angiogenic response to the injected tumor cells, ves-

sels images were acquired in green (GFP) signal and then

analyzed using the ImageJ software. For both analyses, 30

animals for each cell line condition, divided into two inde-

pendent experiments, were considered. For gene expres-

sion, total RNA was extracted from at least 20 embryos

for each experiment using Trizol Reagent (Invitrogen, Life

Technologies, Milan, Italy). RNA concentration was deter-

mined by Nanoquant (Tecan). One microgram of total

RNA was reverse transcribed using M-MLV reverse tran-

scriptase (Life Technologies). Gene expression was ana-

lyzed by qRT-PCR (Step One Plus, Applied Biosystems)

using the SYBR Green system (Life Technologies). The

primer sequences are listed in Additional file 1: Table S1.

The gene analysis was repeated three times and the values

were normalized respect to medium treated animals.

Breast cancer dataset

Data from breast cancer patients have been obtained from

the TCGA BRCA dataset (updated to September 2018)

using the cgdsr package for R. Survival analysis has been

performed using Kaplan Meier plotter [38] with distant
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metastasis-free survival (DMFS) as a read-out on a cohort

of 1746 breast cancer patients and relapse-free survival

(RFS) as a read-out on cohorts of 3951 breast cancer

patients or 255 TNBC patients.

Statistical analysis

Data were analyzed by a two-tailed Student’s t-test, and

results were considered significant at a p-value < 0.05. The

results are presented as the mean and standard deviation

(±SD). Specifically, a p-value< 0.05 is indicated with *, a p-

value< 0.01 with ** and a p-value< 0.001 with ***.

Results
Identification of upstream regulators of HMGA1 breast

cancer gene networks

We previously demonstrated the pivotal role of HMGA1

in conferring several cancer hallmarks in TNBC, showing

that HMGA1 is involved in modulating an intricate mo-

lecular network [13]. To better define HMGA1-dependent

molecular networks in sustaining breast cancer aggressive-

ness, we analyzed global gene expression profiles after

HMGA1 depletion in the MDA-MB-231 TNBC cell line.

To this end, we silenced the expression of HMGA1 by

transfecting cells with siRNAs specific for HMGA1

(siHMGA1) or with no-target control siRNAs (siCTRL) as

previously described [13]. Then, RNA was isolated at two

time points after transfection (24 and 72 h) and the RNA

was subjected to RNA-Seq analysis. To identify HMGA1-

molecular partners potentially critical in governing breast

cancer aggressiveness we proceeded with a bioinformatic

analysis that consisted mainly of three steps: 1. identifica-

tion of differentially expressed genes (DEGs) upon

HMGA1 silencing; 2. analysis of gene networks in which

DEGs are involved; 3. prediction of transcription factors

regulating these gene networks (Fig. 1a).

After the identification of the transcripts whose expres-

sion changed upon HMGA1 depletion at the different

time points (Fig. 1b and Additional file 2: Figure S1), we

analyzed the potential pathways regulated by HMGA1 by

interrogating the Ingenuity Pathway software (IPA). This

tool crosses the gene expression changes observed with

known datasets collected from literature data to build up

the gene networks in which these DEGs are included.

Next, using the “upstream regulators” module of IPA, we

predicted the regulative molecules that could govern the

gene networks modulated by HMGA1. To each upstream

factor identified, an overlap p-value (a measure of how

much the overlap between their known dataset and our

HMGA1-modulated gene list is significant) and a z-score

(an indicator of the state of activation/inhibition of the

gene network when the molecule we identified as hub is

active) were assigned. We considered as upstream regula-

tors of the HMGA1-molecular network the factors with a

z-score ≤ − 1.8 or ≥ 1.8 in at least one time point analyzed.

Then, we decided to focus on transcription factors as pu-

tative molecular partners of HMGA1 (Fig. 1c). Interest-

ingly, E2F, RB1 and STAT3 have already been identified as

HMGA1-molecular partners [39, 40] confirming the reli-

ability of our approach. Specifically, we found that when

HMGA1 is active the molecular network of RB1 is inhib-

ited (negative z-score) whereas that of E2F is activated

(positive z-score) (Fig. 1c). This is consistent with the no-

tion that HMGA1 binds RB1, inducing in this way the re-

lease of E2F and the consequent activation of E2F-

dependent transcription [40]. This observation is also sup-

ported by GSEA analysis from both the 24 and 72 h

HMGA1 silencing data (Additional file 3: Tables S2 and

S3). For further analysis, we focused on FOXM1, a tran-

scription factor involved in cell cycle regulation with a piv-

otal role in cancer initiation and progression [41].

IPA analysis showed that FOXM1 is a hub of HMGA1-

dependent gene networks (Fig. 1d), thus revealing that

several genes found to be differentially expressed at 24

and 72 h after HMGA1 silencing were also predicted to be

downstream targets of FOXM1 (Additional file 4: Table

S4). These data suggest that HMGA1 could cooperate

with FOXM1 in regulating specific gene networks funda-

mental in sustaining breast cancer aggressiveness.

FOXM1 is a new molecular partner of HMGA1 in breast

cancer progression

Given the potential role of FOXM1 as a molecular partner

of HMGA1, we searched for a relationship between

HMGA1 and FOXM1 in The Cancer Genome Atlas

(TCGA), a public database collecting information from a

high number of cancer patients obtained from high-

throughput approaches. From this catalogue, we selected a

dataset of 818 breast cancer patients, and we found that

FOXM1 was enriched in HMGA1 overexpressing patients,

both at mRNA and protein levels (Additional file 5: Figure

S2a and Fig. 2a). To explore a possible cooperation be-

tween HMGA1 and FOXM1, we investigated the effects of

HMGA1 on FOXM1 transcriptional activity in HEK293T

cells using a FOXM1-responsive luciferase reporter with 5

binding elements for FOXM1 (Additional file 5: Figure

S2b). HMGA1 itself was not able to activate the reporter

gene but it increased FOXM1-transcriptional activity (Fig.

2b), indicating a relationship between these two factors in

the transcriptional regulation. Notably, we observed an in-

crease of exogenous FOXM1 protein following HMGA1

transfection, suggesting that HMGA1 could regulate

FOXM1 at a post-transcriptional level (Fig. 2b). This effect

is tightly dependent on HMGA1 presence, indeed, trans-

fecting HEK293T cells with a fixed quantity of FOXM1 and

increasing amounts of HMGA1, we detected increased

levels of exogenous FOXM1 protein in a HMGA1 dose-

dependent manner (Additional file 5: Figure S2c). Given

these results we checked whether HMGA1 physically
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interacts with FOXM1. To this end, we performed co-

immunoprecipitation (Co-IP) of endogenous proteins in

MDA-MB-231 cells, revealing the presence of FOXM1 in

the HMGA1 immunocomplex (Fig. 2c).

To better elucidate the cooperative action of HMGA1

and FOXM1 in breast cancer cells, we performed qRT-

PCR on RNA derived from the TNBC MDA-MB-231

cell line in which we silenced the expression of HMGA1

or FOXM1 or the two factors in combination (Add-

itional file 5: Figure S2d) and we analyzed the expression

of CCNE2, LEF1 and VEGFA that emerged, from our

bioinformatics analysis, as common target genes of

HMGA1 and FOXM1 (Additional file 4: Table S4). We

found that the expression of all tested genes is downreg-

ulated after both HMGA1 and FOXM1 silencing and

that, interestingly, their expression is even more down-

regulated when both factors were silenced (Additional

file 5: Figure S2e). These results confirmed that HMGA1

and FOXM1 are molecular partners and that they act

cooperatively in the regulation of gene transcription.

Since the target genes analyzed are key factors of sev-

eral cancer hallmarks such as EMT, migration and

angiogenesis, we next considered the possibility that

HMGA1 and FOXM1 could act in concert in mediating

cancer-related cell abilities. To this end, we took into

consideration the same conditions analyzed for qRT-

PCR and we observed that the concomitant depletion of

HMGA1 and FOXM1 brought the cells to a more epi-

thelial phenotype than single silenced conditions in two

TNBC cell lines, MDA-MB-231 and MDA-MB-157 (Fig.

2d). Moreover, we performed scratch migration assay

and we found that the concomitant depletion of

HMGA1 and FOXM1 decreased migration properties of

MDA-MB-231 and MDA-MB-157 with more efficiency

than the single silenced conditions (Fig. 2e and Add-

itional file 5: Figure S2f ). Thus, our results suggest that

HMGA1, by interacting with FOXM1, could stabilize

FOXM1 protein and increase its transcriptional activity;

this cooperative action is fundamental in conferring ag-

gressive features in TNBC cells.

HMGA1 regulates FOXM1 at a post-transcriptional level

via the proteasome pathway

Different reports describe that FOXM1 is regulated at

multiple levels and that its regulation is crucial for its

activity and cancer development [42]. Therefore, we de-

cided to go deeper in investigating the mechanisms by

which HMGA1 regulates FOXM1. Thus, we silenced the

expression of HMGA1 in MDA-MB-231 cells and we eval-

uated the expression of FOXM1 at mRNA and protein

levels at different time points. At 24 and 48 h after

HMGA1 silencing, the FOXM1 mRNA level remained un-

changed and only at 72 h it was slightly downregulated

(Fig. 3a). Instead, at the protein level, already at 48 h we

observed a reduction in FOXM1 expression that became

stronger at 72 h (Fig. 3b), confirming the above-described

observation on the regulation of FOXM1 at the post-

transcriptional level.

Taking into account that one of the levels of FOXM1

protein regulation is its nucleo-cytoplasmic shuttling and

subsequent degradation [43], we investigated FOXM1

localization after HMGA1 silencing in MDA-MB-231 and

MDA-MB-157 cells. We observed that the silencing of

HMGA1 caused a more cytoplasmic localization of FOX

M1 with respect to control condition in which FOXM1 is

predominantly nuclear (see FOXM1 staining in Fig. 3e and

Additional file 6: Figure S3a-c). We confirmed these results

by exploring the localization of transfected FOXM1-GFP in

MDA-MB-231 and in HEK293T cells upon HMGA1 silen-

cing: indeed, after HMGA1 depletion, FOXM1-GFP shows

a cytoplasmic localization (Additional file 6: Figure S3d and

e). These results suggest that HMGA1 could modulate the

stability of FOXM1 protein by controlling its localization.

Then, we compared FOXM1 protein levels between

HMGA1-silenced and control MDA-MB-231 cells after cy-

cloheximide (CHX) treatment. We observed that, in the

presence of CHX, the half-life of FOXM1 protein was

shorter in HMGA1-silenced cells with respect to control

cells (Fig. 3c), showing a lower stability of FOXM1 in the

absence of HMGA1. Next, we asked whether HMGA1

might modulate FOXM1 protein degradation and therefore

we exposed cells to the 26S proteasomal inhibitor MG132.

The treatment of MG132 rescued the FOXM1 levels that

were reduced by HMGA1-silencing (Fig. 3d). Consistently,

we observed that, in MDA-MB-231 and -157 cell lines si-

lenced for HMGA1, FOXM1 co-localized with the prote-

asome subunits β2 and β5 (Fig. 3e and Additional file 6:

Figure S3 a-c). All together our evidence indicates that

HMGA1 prevents FOXM1 proteasomal degradation and

stabilizes it in the nucleus.

(See figure on previous page.)
Fig. 1 Identification of upstream regulators of HMGA1 breast cancer gene networks. a The flow-chart shows the main steps used to identify new
molecular partners (TF in figure) of HMGA1, in regulating cancer-related gene networks, starting from RNA-Seq data. b Heatmap showing the
expression of the top differentially expressed genes (DEGs) upon HMGA1 silencing after 24 and 72 h in MDA-MB-231 cells. Color intensity
corresponds to the row Z-Score. c Pathways associated to DEGs were rebuilt by Ingenuity Software analysis. Using the Upstream regulators
function (IPA suite) the transcription factors and regulative molecules of these networks were predicted. The figure shows the list of the top 5
transcription factors, putative molecular partners of HMGA1, ranked by their 24 h p-value (obtained from 24 h data). d Visual representation of
Ingenuity pathway interactive-network of FOXM1. The connected-factors are found activated or inhibited by HMGA1 from RNA-Seq analysis
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HMGA1 increases the transcriptional activity of FOXM1 on

VEGFA promoter

Among the genes belonging to the HMGA1/FOXM1-

gene network, we found VEGFA. Vascular Endothelial

Growth Factor is a potent promoter of angiogenesis- the

formation of a novel vasculature system from a pre-

existing one- both in physiological and pathological con-

ditions such as cancer. Given its crucial role, it is not

surprising that VEGFA expression is finely regulated at

different levels including transcription. In fact, multiple

response elements, several trans-activating factors and

many stimuli are known to regulate VEGFA transcrip-

tion [44]. Some reports underline the involvement of

HMGA1 and FOXM1 in controlling VEGFA expression

in different biological contexts [45, 46]. Moreover, in a

TCGA dataset of breast cancer patients, we found an

enrichment of VEGFA mRNA in HMGA1 or FOXM1

overexpressing patients (Additional file 7: Figure S4a).

To deepen the mechanism by which HMGA1 and

FOXM1 regulate VEGFA expression, we evaluated their

transcriptional activity on a luciferase reporter vector

containing a portion of the VEGFA promoter spanning

from − 1000 to − 1 bp from the Transcriptional Start Site

(TSS) [47]. We transfected this vector along with expres-

sion vectors for HMGA1 or FOXM1 in HEK293T cells.

In agreement with literature data, both HMGA1 and

FOXM1 increased VEGFA-luciferase activity in a dose-

dependent manner (Additional file 7: Figure S4b and c).

To evaluate the contribution of HMGA1 on FOXM1

transcriptional activity, we co-transfected FOXM1 and

increasing amount of HMGA1 expression vectors and

we showed that HMGA1 enhanced FOXM1 transcrip-

tional activity on VEGFA promoter in a dose-dependent

manner (Fig. 4a). Consistently, by silencing the expres-

sion of endogenous HMGA1 and transfecting FOXM1

expressing vector, we observed that HMGA1 silencing

diminished the transcriptional activity of FOXM1 on

VEGFA promoter, confirming the role of HMGA1 on

FOXM1-transcriptional activity (Fig. 4b).

HMGA1 regulates VEGFA promoter with two independent

ways: via Sp1 and FOXM1

Subsequently, we asked where HMGA1 and FOXM1

exert their transcriptional action on the VEGFA pro-

moter. To this end, we analyzed the − 1000 to − 1 bp

VEGFA promoter region by searching potential binding

sites for the two factors. Specifically, we looked for AT-

rich regions with at least three consecutive A/T as a pu-

tative binding site for HMGA1 [48], and the Forkhead

proteins family common binding sequence RYAAAYA

(R = A or G and Y=C or T) for FOXM1 [49]. We found

several AT-rich sequences and 9 putative FOXM1 bind-

ing sites (Additional file 8: Figure S5a). On the bases of

the promoter analysis carried out, we explored whether

the cooperative action between HMGA1 and FOXM1

occurs in the VEGFA promoter region spanning from −

1000 to − 500 or the subsequent region from − 500 to −

1 bp from the TSS (Additional file 8: Figure S5b). We

co-transfected the full-length promoter (− 1000–1 bp) or

the two deletion reporter constructs (− 1000–500 bp

and − 500-1 bp) [47] with expression vectors for

HMGA1 and FOXM1. We observed that the (− 500–1

bp) construct maintained a transactivation of the re-

porter at high levels, comparable to the full-length pro-

moter condition, whereas this effect was lost in the (−

1000–500 bp) VEGFA reporter vector (Additional file 8:

Figure S5c). These results clearly indicate that the region

spanning from − 500 to − 1 bp of VEGFA promoter is re-

sponsible for HMGA1 and FOXM1 activity. Next, on

the bases of the AT-rich regions and the FOXM1 puta-

tive binding elements found with the promoter analysis,

we generated three mutant reporter vectors, introducing

progressive deletions in the − 500-1 bp VEGFA promoter

(− 338–1 bp, − 172-1 bp and − 104-1 bp) (Fig. 5a). We

transfected the above described VEGFA deletion mutant

reporters together with expression vectors for HMGA1,

FOXM1 and a combination of both and we evaluated

their luciferase activity in comparison with the (− 500–1

bp) reporter vector. Firstly, we observed that HMGA1

(See figure on previous page.)
Fig. 2 FOXM1 is a new molecular partner of HMGA1 in breast cancer progression. a Boxplots showing the FOXM1 protein levels in breast cancer
patients. The samples were stratified based on HMGA1 mRNA expression levels. b HEK293T cells were transiently co-transfected with the
luciferase reporter plasmid pGL3-5BS (see Additional file 5: Figure S2b for promoter reporter diagram), the expression plasmid pEGFP-HMGA1
(grey bar), pEGFP-FOXM1 (blue bar) or the combination of two (red bar). pRL-CMV Renilla luciferase expression vector was included to normalize
for transfection efficiencies. Values are reported as relative luciferase activity compared to cells transfected with the expression vector pEGFP
(black bar). The data are represented as the mean ± SD (n = 3); *p < 0.05, **p < 0.01; two-tailed Student’s t-test. Below the graph, representative
western blot validations of HMGA1-GFP and FOXM1-GFP over-expressions are shown. c Co-immunoprecipitation (co-IP) of FOXM1 and HMGA1.
The experiment was performed with either the negative control α-GFP or the α-HMGA1 antibodies on MDA-MB-231 cells lysates. Inputs (15% of
the amount used for IP) and the immunoprecipitated proteins were subjected to western blot analysis with the α-HMGA1 and the α-FOXM1
(Bethyl Laboratories) antibodies. d Representative pictures of cell morphology of MDA-MB-231 (upper figures) and MDA-MB-157 (lower figures) in
control condition and after HMGA1, FOXM1 and HMGA1/FOXM1 depletion (siHMGA1, siFOXM1 and siHMGA1/siFOXM1). e Wound healing assay
of MDA-MB-231 and MDA-MB-157 silenced for HMGA1 and/or FOXM1. The wound areas were measured with ImageJ software and results are
plotted on the graphs. The data are represented as the mean of percentage of the wound closure relative to siCTRL ±SD (n ≥ 3), *p < 0.05,
***p < 0.001; two-tailed Student’s t-test. Below the graphs, representative images of wound closure, taken at 4X magnification, are reported
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was able to transactivate the (− 500–1 bp) reporter con-

struct whereas it failed to transactivate the other three

deletion constructs tested, indicating that HMGA1 alone

acts preferentially in the region of the VEGFA promoter

spanning from − 500 to − 338 (Fig. 5b). In addition, we

observed that HMGA1 maintained its ability to potenti-

ate the activity of FOXM1 in all the reporters except for

the (− 104–1 bp) construct (Fig. 5b and Additional file 8:

Figure S5d). These results suggest that HMGA1 regu-

lates VEGFA expression in two different ways: a

FOXM1-independent mechanism in the region from −

500 to − 338 bp of the VEGFA promoter and a FOXM1-

dependent way, in the region from − 338 to − 104 bp,

where a functional FOXM1 binding element has been

previously identified [46].

Interestingly, Sp1, a well-known transcription factor,

can bind VEGFA promoter in the region from − 385 to

− 352 bp. Specifically, in this region three Sp1 consensus

elements have been reported, the first and the second

binding sites being more relevant [50]. Intriguingly, it

has been described that HMGA1 interacts with Sp1 po-

tentiating its activity in the activation of the Insulin re-

ceptor promoter [51]. Therefore, to explore whether

HMGA1 cooperates with Sp1 on the VEGFA promoter,

we used two deletion reporter constructs containing a

region of the VEGFA promoter spanning from − 388 to

− 1 bp from the TSS, and, in one of them, we mutated

the two Sp1 binding sites previously described [50] (Fig.

5c). We transfected these reporters along with the (−

500–1 bp) reporter and we evaluated the transcriptional

activity of HMGA1, FOXM1 and a combination of both.

The results showed that while HMGA1 is able to acti-

vate the (− 338–1 bp) promoter construct at the same

level of the (− 500–1 bp) one, the activity of HMGA1 on

this promoter region is disrupted by the mutation of Sp1

binding sites, indicating the tight dependence of

HMGA1 activity from Sp1 on this promoter region (Fig.

5d and Additional file 8: Figure S5e). Interestingly,

HMGA1 is still able to enhance FOXM1 transcriptional

activity on the VEGFA promoter regardless of the muta-

tion of Sp1 binding elements (Fig. 5d). All these results

together indicate that HMGA1 controls VEGFA

transcription by cooperating with FOXM1 and Sp1

transcription factors and that these two ways are

independent.

HMGA1 and FOXM1 cooperative action in breast cancer

cells governs angiogenic processes of endothelial cells

Gene Ontology (GO) analysis of our RNA-Seq data re-

vealed that the proteins coded by HMGA1-differentially

expressed genes are enriched in exosome-secreted and

cell-cell junction terms; this result suggested that

HMGA1 regulates secreted or membrane-bound pro-

teins (Fig. 6a). Moreover, we found a significant number

of genes associated with GOs related to angiogenesis

(Fig. 6b). We, therefore, asked whether HMGA1 and

FOXM1 are involved in tumor angiogenesis. To this

aim, we treated primary human umbilical vein endothe-

lial cells (HUVEC) (ECs) with conditioned medium de-

rived from MDA-MB-231 silenced for the expression of

HMGA1, FOXM1 or the combination of the two factors

and we analyzed their proliferation, migration and vessel

formation capacity. HUVEC proliferation was assessed

analyzing the expression of the proliferation marker Ki-

67. We observed that the silencing of HMGA1 and

FOXM1 reduced the ability of breast cancer cells-

conditioned medium to promote the proliferation of ECs

(Additional file 9: Figure S6a). Then, we investigated the

impact on ECs migration by assessing the migratory

ability of HUVEC cells through transwell membrane in-

serts coated with fibronectin. ECs were plated on the

upper chamber and conditioned medium from MDA-

MB-231 cells was added in the lower chamber as angio-

genic inducer. We observed that ECs migrated slower

under the stimuli of the conditioned medium derived

from MDA-MB-231 cells silenced for HMGA1 or

FOXM1 (Additional file 9: Figure S6b). Finally, we evalu-

ated the capacity of conditioned medium derived from

MDA-MB-231 cells to induce vessel formation using an

in vitro tube formation assay. ECs were grown in Matri-

gel and incubated for 18 h with conditioned medium;

then, ECs were stained for actin to visualize tube forma-

tion. The conditioned medium from MDA-MB-231 in-

duced the formation of capillary-like tubular structures

connected to each other creating a mesh-like structure

on the gel, a pattern analogous to the one observed with

(See figure on previous page.)
Fig. 3 HMGA1 regulates FOXM1 at a post-transcriptional level via the proteasome pathway. a qRT-PCR of FOXM1 mRNA level in MDA-MB-231
cells after 24, 48 and 72 h after HMGA1 silencing. GAPDH was used for normalization. The data are compared to the control condition and are
presented as the mean ± SD (n ≥ 3), **p < 0.01; two-tailed Student’s t-test. b Western blot analysis of FOXM1 protein level in MDA-MB-231 cells
upon 24, 48 and 72 h of HMGA1 silencing. β-actin was used as a loading control. c Western blot analysis of FOXM1 protein levels in MDA-MB-231
control cells and cells silenced for HMGA1, treated with cycloheximide (CHX) for the indicated times. The FOXM1 band intensity was normalized
to total protein lysate stained with Red Ponceau, based on ImageJ quantification. The protein levels of FOXM1 relative to the time point 0 of
each group were calculated and are shown in the graph on the right, n = 3, *p < 0.05; two-tailed Student’s t-test. d Western blot analysis of
FOXM1 protein level in MDA-MB-231 cells silenced for HMGA1 and treated with the proteasome inhibitor MG-132. e Representative
immunofluorescence images of the translocation of FOXM1 (green) and its colocalization with the Subunit β2 of the proteasome (red) in MDA-
MB-231 control cells versus cells silenced for HMGA1. Images were taken at 60X magnification
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VEGFA treatment used as positive control (Fig. 6c). In

contrast, ECs incubated with conditioned medium from

breast cancer cells silenced for HMGA1 and FOXM1

formed aggregates losing the capillary-like structures

(Fig. 6c). Interestingly, this outcome is stronger when

HMGA1 and FOXM1 were silenced concomitantly, as

we can appreciate from the quantitative analysis of the

data (Fig. 6d). These results indicate a clear role of

HMGA1 and FOXM1 in modulating the tumor angio-

genic capacity of breast cancer cells on ECs.

HMGA1 and FOXM1 modulate the in vivo proangiogenic

activity

To further assess the activity of HMGA1 and FOXM1 in

regulating vessel formation, we took advantage of zebra-

fish (Danio rerio) embryos as in vivo animal models for

angiogenesis studies, that are widely used for their rapid

development, optical transparency and because they pos-

sess a circulatory system similar to that of mammals [52,

53]. With this aim, we used a zebrafish strain expressing

the Enhanced Green Fluorescence Protein (EGFP) in

endothelial cells, which allows following tumor neo-

angiogenesis. The same number of MDA-MB-231 cells,

silenced for HMGA1, FOXM1 and the two factors in

combination or with a control siRNA, was injected into

the yolk sac of zebrafish embryos. At 1 day post injec-

tion (1dpi), we clearly observed the growth of a tumor

mass (Additional file 10: Figure S7a) and we quantified

the proliferation rate analyzing the expression of the

proliferation marker Ki-67. Reduced expression of Ki-

67 was observed in the tumor mass of MDA-MB-231

cells silenced for HMGA1 and FOXM1 (Add-

itional file 10: Figure S7c).

a

b

Fig. 4 HMGA1 increases the transcriptional activity of FOXM1 on
VEGFA promoter. a Luciferase assay on HEK293T cells transiently co-
transfected with the luciferase reporter plasmid pGL4.10-VEGFprom
(− 1000–1) and with pEGFP-FOXM1 and increasing quantities of
pEGFP-HMGA1 expression vectors (red bars). pRL-CMV Renilla
luciferase expression vector was included to normalize for
transfection efficiencies. Values are reported as relative luciferase
activity compared to cells transfected with pEGFP-FOXM1 in the
absence of pEGFP-HMGA1 and are presented as the mean ± SD
(n = 3). **p < 0.01, ***p < 0.001; two-tailed Student’s t-test. Below the
graph, the correspondent western blot validations of HMGA1 and
FOXM1 protein levels are reported. b Luciferase assay on HEK293T
cells silenced for HMGA1 by siRNA and transiently co-transfected
with the luciferase reporter plasmid pGL4.10-VEGFprom (− 1000–1)
with the expression plasmid pEGFP-FOXM1. pRL-CMV Renilla
luciferase expression vector was included to normalize for
transfection efficiencies. Values are reported as relative luciferase
activity compared to cells transfected with the control expression
vector pEGFP. The data are represented as the mean ± SD (n = 3),
*p < 0.05; two-tailed Student’s t-test. Below the graph, the
correspondent western blot validation. β-actin was used as a
loading control for endogenous HMGA1
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Next, we examined the neovascularization of the sub-

intestinal veins (SIVs) at 1dpi (Fig. 7a and b); embryos

injected with medium without cells (vehicle) were used as

control normal condition. We firstly evaluated the SIVs

morphology in our experimental conditions and we classi-

fied the animals as with “normal SIVs” or “branched SIVs”

with respect to the absence/presence of ectopic processes

from the vessels in the yolk (Fig. 7b). The quantitative

analysis showed a strong induction of branched SIVs after

injection of MDA-MB-231 control cells, whereas cells si-

lenced for HMGA1 and FOXM1 reduced the number of

animals with branched SIVs. Interestingly, the simultan-

eous depletion of HMGA1 and FOXM1 enable to almost

complete abolish the alteration in the neovascularization

(Fig. 7b). To better define these results we quantified the

area, length and diameter of the SIVs. For all the parame-

ters analyzed we found that breast cancer cells silenced

for HMGA1 and FOXM1 reduced these parameters and,

moreover, the concomitant silencing of the two factors re-

stored normal conditions (Fig. 7c-e). Strikingly, the ana-

lysis of mRNA of zebrafish angiogenesis markers (zVEGF-

A, zFTL-1 and zFLK-1) correlates with the observed

tumor neo-angiogenesis. In fact, zVEGF-A, zFTL-1 and

zFLK-1 expression levels were increased in animals

injected with control cells, whereas in embryos with cells

silenced for HMGA1 and FOXM1 their levels were com-

parable to normal levels (Fig. 7f). Our data demonstrate a

synergic role of HMGA1 and FOXM1 in governing tumor

angiogenesis using an in vivo model.

HMGA1, FOXM1 and VEGFA co-expression is associated

with a poor prognosis in breast cancer patients

To assess whether our findings could be related to the

pathogenesis of human breast cancer, we interrogated

public available datasets in the TCGA repository. Firstly,

we investigated the relationship between the combined

expression of HMGA1 and FOXM1 with the VEGFA ex-

pression in breast cancer patients. Thus, we stratified

breast cancer samples according to their relative expres-

sion levels of HMGA1 and FOXM1, obtaining a signifi-

cant enrichment in VEGFA expression in patients in

which the HMGA1/FOXM1 axis is activated (Fig. 8a).

Furthermore, in gene-expression datasets of breast cancer

samples we observed that patients with high levels of

HMGA1, FOXM1 or VEGFA had a statistically significant

lower survival probability in terms of distant metastasis-

free survival and relapse-free survival with respect to

HMGA1, FOXM1 and VEGFA low expression patient

groups (Additional file 11: Figure S8). Interestingly, the

low survival probability of patients that co-express

HMGA1, FOXM1 and VEGFA at high levels has also been

observed both in breast cancer datasets and in a subset of

TNBC patients (Fig. 8b-d). Overall, clinical datasets ana-

lysis confirmed that VEGFA expression positively corre-

lates with HMGA1 and FOXM1, and that their presence

has an impact on breast cancer development, since a sig-

nature combining HMGA1, FOXM1 and VEGFA expres-

sion is associated to a worse prognosis.

Discussion

HMGA1 is an architectural transcription factor, widely

considered a master regulator of breast cancer progression

[7, 13, 17, 54]. Indeed, it has a causal role, both at early

stages, bringing the mammary epithelial cells to acquire a

malignant phenotype [55], and during breast cancer pro-

gression, by promoting cellular migration and invasion

capabilities, consequently leading to the metastatization

event [13, 17]. Thus, deepening the knowledge about the

molecular mechanisms that HMGA1 controls will be

paramount for the discovery of new targeted and effica-

cious therapies. With the aim to identify new molecular

partners of HMGA1 in regulating breast cancer gene

(See figure on previous page.)
Fig. 5 HMGA1 regulates the VEGFA promoter with two independent ways: via Sp1 and FOXM1. a Schematic representation of the VEGFA
deletion mutant reporter vectors obtained with progressive deletions of the pGL4.10-VEGFprom (− 500–1) and used in the experiments. FOXM1
binding sites are represented with light blue ovals, whereas the AT-enriched sequences bound by HMGA1 are shown as grey boxes. b Luciferase
assay on HEK293T cells transiently co-transfected with the luciferase reporter plasmid pGL4.10-VEGFprom (− 500–1), the deletion mutant vectors
pGL4.11-VEGFprom (− 338–1), pGL4.11-VEGFprom (− 172–1) or pGL4.11-VEGFprom (− 104–1) with the expression plasmid pEGFP-HMGA1 (grey
bar), pEGFP-FOXM1 (blue bar) and pEGFP-HMGA1/pEGFP-FOXM1 (red bar). pRL-CMV Renilla luciferase expression vector was included to
normalize for transfection efficiencies. Values are reported as relative luciferase activity compared to cells transfected with the correspondent
reporter vectors and the expression plasmid pEGFP. The data are represented as the mean ± SD (n = 3). *p < 0.05, **p < 0.01, ***p < 0.001, NS: Not
Significant; two-tailed Student’s t-test. An example of western blot validations is reported in Additional file 8: Figure S5d. c Schematic
representation of pGL4.10-VEGFprom (− 500–1) and deletion reporter vectors, pGL4.11-VEGFprom (− 388–1) wild-type (WT) and mutated in SP1-
binding sites (MUT). FOXM1 binding site is represented with light blue oval, the AT-enriched sequence bound by HMGA1 is figured as grey box,
the orange rhombus represents the SP1 binding element and the black cross indicates the mutation of SP1 binding element. d Luciferase assay
on HEK293T cells transiently co-transfected with the luciferase reporter plasmids pGL4.10-VEGFprom (− 500–1), pGL4.11-VEGFpromWT (− 388–1) or
pGL4.11-VEGFpromMUT(− 388–1) with the expression plasmids pEGFP-HMGA1(grey bar), pEGFP-FOXM1 (blue bar) or pEGFP-HMGA1/ pEGFP-
FOXM1 (red bar). pRL-CMV Renilla luciferase expression vector was included to normalize for transfection efficiencies. Values are reported as
relative luciferase activity compared to cells transfected with the reporter vectors used and the expression plasmid pEGFP. The data are
represented as the mean ± SD (n = 3). **p < 0.01, ***p < 0.001, two-tailed Student’s t-test. An example of western blot validations is reported in
Additional file 8: Figure S5e
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networks, we performed RNA-Seq analysis of TNBC cells

depleted for HMGA1 expression. Here, we have discov-

ered FOXM1 as a novel HMGA1-molecular partner, dem-

onstrating that HMGA1 stabilizes FOXM1 in the nucleus

preventing its degradation, increasing FOXM1-dependent

transcriptional activity and potentiating its crucial role in

tumour angiogenesis.

It is known that HMGA1 interacts with several transcrip-

tion factors and guides their action on a high number of

target genes involved in many cellular processes such as cell

growth, proliferation, differentiation and cell death [7]. We

found that our bioinformatic analysis on RNA-Seq data

from TNBC cells silenced for HMGA1 is very robust in dis-

covering HMGA1-molecular partners. In fact, among the

putative partners obtained by our analysis, we found RB1

and E2F, whose connection with HMGA family members

has been previously described. Specifically, HMGA1 en-

hances E2F transcriptional activity by directly binding RB1,

inhibiting its tumor suppressive activity [40]. Our data indi-

cate that HMGA1 could modulate the activity of these fac-

tors also in breast cancer progression, bringing to light

common crucial HMGA1-oncogenic pathways in different

cancer types. Moreover we found FOXM1, whose pathway

is the top up-regulated in TNBC [23], as HMGA1 partner.

We demonstrate that HMGA1 and FOXM1 regulate a

common gene network, characterized by factors with a

clear role in cancer EMT, migration, and angiogenesis, key

processes involved in conferring aggressiveness to TNBC.

Among the genes, CCNE2, which has been connected to

the migratory ability of tumoral cells [56], has been proved

to be under the transcriptional control of HMGA1, thus

promoting the migratory and invasive abilities of breast

cancer cells [18]. Furthermore, HMGA1 has been found to

regulate the EMT, a process necessary to cell migration, by

impacting on the WNT-beta catenin pathway, known to

contribute to metastatization [57]; indeed, HMGA1 regu-

lates LEF1, one of the actors of this pathway [13]. A consid-

erable amount of data sustains the involvement of FOXM1

in several features of breast cancer progression, such as the

EMT, the migration and invasion abilities of tumor cells, in

which FOXM1 controls the transcription of several metal-

loproteinases and the EMT inducer SNAI2 [58]. Our

results demonstrate that HMGA1 cooperates with FOXM1

in regulating the expression of a common gene network,

enhancing the aggressiveness of TNBC cells, highlighting a

dependence of breast tumor cells on HMGA1 and FOXM1

synergic action.

We observed that HMGA1 forms a complex with

FOXM1 and improves FOXM1 protein stability and nu-

clear localization, while in the absence of HMGA1,

FOXM1 is led to proteasomal degradation. These findings

suggest that HMGA1, by stabilizing FOXM1, increases its

transcriptional activity. This is consistent with literature

data showing that FOXM1 is tightly regulated by its mo-

lecular partners that can increase FOXM1 transcriptional

activity by promoting its stabilization and nuclear

localization [42, 59, 60], as for instance it has been shown

for the interaction with MTDH in glioblastoma [61].

Angiogenesis is one of the cancer hallmarks in which

FOXM1 is mainly involved, inducing matrix metallopro-

teinase genes as well as VEGFA [62]. As VEGFA is a growth

factor essential for normal and pathological angiogenesis,

its gene is finely regulated by a plethora of transcription fac-

tors, such as Sp1/Sp3, AP-2, Egr-1, STAT3 and HIF1, inte-

grating multiple signals [44]. In particular, it has been

demonstrated that HMGA1 regulates VEGFA gene expres-

sion in diabetic retinopathy and, by interacting with HIF1,

in 3T3 L1 adipocytes [45, 63]. Intriguingly, in this study we

found that HMGA1 regulates the transcription of VEGFA,

acting through two independent ways: on one side,

HMGA1 potentiates the transcriptional activity of FOXM1;

on the other, HMGA1 acts through Sp1 in a different pro-

moter region. Consistently, the observation that HMGA1

interacts with Sp1 is also reported in the control of insulin

receptor (IR) gene transcription, in which HMGA1, by

interacting with Sp1 and C/EBP beta, facilitates the binding

of both factors to the IR promoter, synergistically activating

IR transcription [51]. Similarly, HMGA1 by interacting with

FOXM1 could enhance its binding to the VEGFA pro-

moter. Our results show that HMGA1, by preventing

FOXM1 degradation, increases its level and therefore this

could account for the increase of FOXM1 transcriptional

activity. We cannot exclude that this result is attributable to

one hypothesis or the other, or to the combination of both.

(See figure on previous page.)
Fig. 6 HMGA1 and FOXM1 cooperative action in breast cancer cells governs angiogenic processes of endothelial cells. a Functional enrichment
for Cellular Compartment ontology. Color intensity corresponds to the -log2(p-value) of the enrichment significance. b A Gene ontology analysis
was carried out on DEGs upon HMGA1 silencing in MDA-MB-231 cells to cluster these genes in functions related to angiogenesis. The functions
are ranked by p-value and the number of genes found to be regulated by HMGA1/function was annotated. c Representative
immunofluorescence images of capillary-like structures (green) formed on Matrigel by HUVEC cells treated with the supernatant of MDA-MB-231
cells, which have been previously silenced for HMGA1, FOXM1 or HMGA1 and FOXM1 in combination. Serum-free medium and VEGFA were used
as negative and positive controls respectively. d The number of vessels formed by HUVEC cells were counted and plotted on the graph: the
white and the green bars correspond to the negative and positive controls respectively, while the supernatants from control MDA-MB-231 cells
or from MDA-MB-231 cells silenced for HMGA1, FOXM1 or co-silenced for HMGA1 and FOXM1 are represented with the black, grey, light blue
and purple bars respectively. The data are presented as the mean ± SD (n = 4). *p < 0.05, **p < 0.01, ***p < 0.001; two-tailed Student’s t-test is
calculated with respect to siCTRL
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Fig. 7 HMGA1 and FOXM1 modulate in vivo the proangiogenic activity. a Schematic representation of the sub-intestinal veins (SIVs) evaluated for
the assessment of the zebrafish angiogenic process. Below, representative images of SIVs (green) taken at 1 day post injection (dpi) of MDA-MB-
231 cells silenced for HMGA1 and/or FOXM1 or control cells on zebrafish Tg (fli1:EGFP)Y1 embryos. The white arrows indicate an alteration of the
SIVs. The culture medium was used as a negative control. Bar = 100 μm. b Embryos with a branched SIVs (light grey) or unaltered SIVs (dark grey)
were counted and plotted on the graph, expressed in percentage (n = 30). The area (c), length (d) and diameter (e) of the SIVs (schematic
representation of the vessels considered for each parameter is reported on the right of the graphs and coloured in red) were measured in
zebrafish embryos at 1 dpi of MDA-MB-231 cells silenced for HMGA1 (grey bar), FOXM1 (light blue bar) or co-silenced for the two factors (purple
bar). The data are normalized to control (vehicle) represented as a black dotted line and are represented as the mean ± SD (n = 30).

#
p < 0.05,

##
p < 0.01 respect to the vehicle. *p < 0.05, **p < 0.01 respect to the siCTRL. f qRT-PCR analysis of zebrafish VEGFA, FLT1 and FLK1 at 1 dpi in

embryos injected with control MDA-MB-231 (black bar) or MDA-MB-231 cells silenced for HMGA1 (grey bar), FOXM1 (light blue bar) or co-
silenced for the two factors (purple bar). Data were normalized to the zebrafish β-Actin mRNA amount. The data are compared to the control
(vehicle) and are represented as the mean ± SD (n = 60). #p < 0.05 respect to the vehicle. *p < 0.05, **p < 0.01 and ***p < 0.001 respect to
the siCTRL
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Our data clearly show that HMGA1 and FOXM1, in

addition to regulating VEGFA, have a strong impact on

tumor angiogenesis. Previous works performed in a rat

model of cerebral ischemia and in HUVEC cells showed

an involvement of HMGA1 in modulating angiogenic

proteins, such as Angiopoietin-1, a factor fundamental in

maintaining the tumor vascularization [64, 65]. Our data

demonstrate for the first time a direct involvement of

HMGA1 in the process of tumor angiogenesis. Indeed,

the supernatants of TNBC cells depleted for HMGA1 and

FOXM1 abolished the ability of endothelial cells to

organize in vessel-like structures. In line with this aspect,

we observed that MDA-MB-231 cells injected in zebrafish

embryos induced abnormalities in angiogenesis of the

host and that this phenotype is abolished when HMGA1

and FOXM1 are depleted. These findings suggest that

HMGA1 and FOXM1 have a leading role in guiding

breast cancer cells to secrete pro-angiogenic factors. In

accordance to this, we previously demonstrated that

HMGA1 has a profound impact in the breast cancer cell

secretome, inducing the release of a pool of pro-migratory

proteins that act with an autocrine mechanism [20]. This

a b

c d

Fig. 8 HMGA1, FOXM1 and VEGFA co-expression is associated with a poor prognosis in breast cancer patients. a Mosaic plot showing the
proportion of patients stratified by VEGFA expression and HMGA1/FOXM1 activation. Color indicates Pearson residuals. b Kaplan Meier curve of
DMFS (distant metastasis-free survival) in a cohort of breast cancer patients stratified by HMGA1/FOXM1/VEGFA expression. c and d Kaplan Meier
curves of RFS (relapse-free survival) in a cohort of breast cancer (c) and TNBC (d) patients stratified by HMGA1/FOXM1/VEGFA expression
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study provides an additional explanation of the mechanism

of HMGA1 in promoting TNBC aggressiveness. Indeed, in

breast cancer patients a profound molecular relation be-

tween HMGA1, FOXM1 and VEGFA has been further

highlighted by TCGA analysis, which confirmed a strong

enrichment of VEGFA in patients that overexpressed

HMGA1 and FOXM1. Moreover, the co-expression of the

three factors has been found to be a poor prognostic value

of DMFS and RFS in breast cancer patients.

Conclusions

Our results provide further evidence on molecular signals

governing breast tumor angiogenesis under the coordinate

control of the two master regulators of tumorigenesis

HMGA1 and FOXM1. Drugs targeting FOXM1 such as

thiostrepton [66, 67] and FDI-6 [68] and HMGA such as

trabectedin [69, 70] have already been reported; therefore

the possibility to target HMGA1 and FOXM1 in combin-

ation should represent an attractive therapeutic option in

tumors expressing both factors.
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presented as the mean ± SD (n = 3), ***p < 0.001; two-tailed Student’s t-
test. (e) qRT-PCR analyses of selected HMGA1/FOXM1 target genes
(CCNE2, LEF1 and VEGFA) in MDA-MB-231 cells silenced for HMGA1 (grey
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GAPDH was used for normalization. The data are compared to siCTRL
and are presented as the mean ± SD (n = 3), *p < 0.05, **p < 0.01, ***p <
0.001; two-tailed Student’s t-test. (f) Western blot validations of HMGA1
and/or FOXM1 silencing in wound closure assays in MDA-MB-231 (left)
and MDA-MB-157 (right) cell lines are reported. β-actin was used as a
loading control. (PDF 3217 kb)

Additional file 6: Figure S3. (a) Representative immunofluorescence
images of the translocation of FOXM1 (green) and its colocalization with
the Subunit β5 of the proteasome (red) in MDA-MB-231 control cells ver-
sus cells silenced for HMGA1. Images were taken at 60X magnification. (b)
and (c) Representative immunofluorescence images of the translocation of

FOXM1 (green) and its colocalization with the Subunit β2 (b) and β5 (c) of
the proteasome (red) in MDA-MB-157 control cells versus cells silenced for
HMGA1. Images were taken at 60X magnification. (d) Representative images
of FOXM1-GFP after HMGA1 silencing and pEGFP-FOXM1 transfection in
MDA-MB-231 cells. White arrows indicate the translocation of FOXM1 after
HMGA1 silencing. (e) Representative images of FOXM1-GFP after HMGA1 si-
lencing and pEGFP-FOXM1 transfection in HEK293T cells. White arrows indi-
cate the cellular localization of FOXM1 after HMGA1 silencing. (PDF 1197 kb)

Additional file 7: Figure S4. (a) Boxplots showing the expression
levels of VEGFA mRNA in breast cancer samples. The samples were
stratified based on HMGA1 (left) and FOXM1 (right) mRNA expression
levels. (b) and (c) Luciferase assays on HEK293T cells transiently co-
transfected with the luciferase reporter plasmid pGL4.10-VEGFprom
(− 1000–1) with increasing quantities of either the expression plasmid
pEGFP-FOXM1 (b) or pEGFP-HMGA1 (c). pRL-CMV Renilla luciferase ex-
pression vector was included to normalize for transfection efficiencies.
Values are reported as relative luciferase activity comparing to cells
transfected with the expression control vector pEGFP. The data are
represented as the mean ± SD (n = 3). **p < 0.01, ***p < 0.001; two-
tailed Student’s t-test. On the right, the correspondent western blot
validation is reported. (PDF 507 kb)

Additional file 8: Figure S5. (a) Schematic representation of the
bioinformatic analysis of the 1000 bp VEGFA promoter sequence cloned
upstream the luciferase sequence in pGL4.10-VEGFprom (− 1000–1) used
in reporter experiments. FOXM1 binding sites are represented with light
blue ovals, whereas the AT-enriched sequences bound by HMGA1 are fig-
ured as grey boxes. In detailed, we found several AT-rich sequences in
the region from – 979 to 907 bp, from − 641 to − 521 bp, from − 355 to
− 322 bp, from − 169 to − 75 bp, where the AT stretches are particularly
long, and from − 17 to − 13 bp from the TSS of the VEGFA promoter. In
addition, we found 9 putative FOXM1 binding sites from − 993 to − 922
bp, from − 643 to – 638 bp, from − 326 to − 322 bp, from − 124 to − 104
bp, where it is located the FOXM1 preferential binding sequence TAAA
CA, and from − 17 to − 13 bp from the TSS of the VEGFA promoter. (b)
Schematic representation of deletion reporter vectors pGL4.10-VEGF (−
1000–500) and pGL4.10-VEGF (− 500–1) obtained from pGL4.10-VEGF-
prom (− 1000–1). (c) Luciferase assay on HEK293T cells transiently co-
transfected with the luciferase reporter plasmid pVEGFprom (− 1000–1),
the deletion mutants pVEGFprom (− 1000–500) or pVEGFprom (− 500–1)
with the expression plasmids pEGFP-HMGA1 and pEGFP-FOXM1. pRL-
CMV Renilla luciferase expression vector was included to normalize
for transfection efficiencies. Values are reported as relative luciferase
activity comparing to cells transfected with the expression plasmid
pEGFP. The data are represented as the mean ± SD (n = 3). NS: not
significant; two-tailed Student’s t-test. An example of western blot
validations is reported. (d) and (e) Representative images of western
blot validations of experiments presented in Fig. 5b and d respect-
ively. (PDF 2000 kb)

Additional file 9: Figure S6. HUVEC cells were treated with MDA-MB-
231 cells supernatants, who had been previously silenced for HMGA1,
FOXM1 or co-silenced for HMGA1 and FOXM1. Serum-free medium and
normal human serum (NHS) were used as negative and positive controls
respectively. (a) The proliferation of HUVEC cells was investigated by the
positivity to the Ki67 marker and expressed in terms of relative % of fluor-
escence respect to negative control (CTRL-). The data are represented as
the mean ± SD (n > 3); **p < 0.001, ***p < 0.001; two-tailed Student’s t-
test. (b) The migration of endothelial cells was assessed by Transwell
assay, adding the supernatants of MDA-MB-231 in the lower chambers of
the multiwell. The number of cells migrated were counted and the re-
sults are expressed as relative % of migration, respect to negative control
(CTRL-). The data are represented as the mean ± SD (n > 3). *p < 0.05;
two-tailed Student’s t-test. (c) Representative western blot validations of
HMGA1/FOXM1 silencing in MDA-MB-231 cells used to collect superna-
tants are reported. β-actin was used as a loading control. (PDF 704 kb)

Additional file 10: Figure S7. (a) Representative live images of the

tumor masses (red) at 1dpi in zebrafish Tg (fli1:EGFP)Y1 embryos

microinjected with MDA-MB-231 cells pre-treated with siCTRL, siHMGA1,

siFOXM1 or siHMGA1/siFOXM1. Just before the microinjection, tumor cells
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(red) were stained with the fluorescent DiI stain. Scale bar = 100 μm. (b) A

representative western blot validation of HMGA1/FOXM1 silencing in

MDA-MB-231 cells microinjected in zebrafish embryos is reported. β-actin

was used as a loading control. (c) qRT-PCR analysis of human Ki67 at 1

dpi in control MDA-MB-231 cells (black bar) and MDA-MB-231 cells si-

lenced for HMGA1 (grey bar), FOXM1 (light blue bar) or cosilenced for

the two factors (purple bar). Data were normalized to the human GAPDH

mRNA amount. The data are represented as the mean ± SD (n = 60).

*p < 0.05, **p < 0.01, ***p < 0.001; two-tailed Student’s t-test. (PDF 2803

kb)

Additional file 11: Figure S8. (a-c) Kaplan Meier curves of DMFS in
a cohort of breast cancer patients stratified by HMGA1 (a), FOXM1
(b) and VEGFA (c) expression. (d-f) Kaplan Meier curves of RFS in a
cohort of breast cancer patients stratified by HMGA1 (d), FOXM1 (e)
and VEGFA (f) expression. (PDF 387 kb)
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