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OPEN

REVIEW

HMGB1, IL-1α, IL-33 and S100 proteins: dual-function
alarmins

Damien Bertheloot1 and Eicke Latz1,2,3

Our immune system is based on the close collaboration of the innate and adaptive immune systems for the rapid
detection of any threats to the host. Recognition of pathogen-derived molecules is entrusted to specific germline-
encoded signaling receptors. The same receptors have now also emerged as efficient detectors of misplaced or
altered self-molecules that signal tissue damage and cell death following, for example, disruption of the blood
supply and subsequent hypoxia. Many types of endogenous molecules have been shown to provoke such sterile
inflammatory states when released from dying cells. However, a group of proteins referred to as alarmins have both
intracellular and extracellular functions which have been the subject of intense research. Indeed, alarmins can
either exert beneficial cell housekeeping functions, leading to tissue repair, or provoke deleterious uncontrolled
inflammation. This group of proteins includes the high-mobility group box 1 protein (HMGB1), interleukin (IL)-1α,
IL-33 and the Ca2+-binding S100 proteins. These dual-function proteins share conserved regulatory mechanisms,
such as secretory routes, post-translational modifications and enzymatic processing, that govern their extracellular
functions in time and space. Release of alarmins from mesenchymal cells is a highly relevant mechanism by which
immune cells can be alerted of tissue damage, and alarmins play a key role in the development of acute or chronic
inflammatory diseases and in cancer development.
Cellular & Molecular Immunology (2017) 14, 43–64; doi:10.1038/cmi.2016.34; published online 29 August 2016
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INTRODUCTION

The immune recognition of an infection and the subsequent

battle against the infecting pathogen is governed by the

concerted efforts of both the innate and the adaptive immune

systems. The first sensing of microbial invasion requires

germline-encoded signaling receptors, also known as pattern-

recognition receptors (PRRs), that evolved to acquire sensing

specificity for foreign signature molecules generally termed

pathogen-associated molecular patterns. This system was first

theorized by Charles Janeway1 25 years ago, and has since been

extended to include the more recently recognized ability of the

innate immune system to also sense tissue damage by

recognizing mislocalized or altered endogenous molecules

termed damage-associated molecular patterns (DAMPs).2,3

These molecules found in a foreign environment trigger

sterile inflammation and, in the best case, promote tissue repair

and the resolution of the inflammation. However, innate

immune responses can also fuel uncontrolled or chronic

inflammation. Since the introduction of the DAMP model by

Polly Matzinger,2 many molecules that are released during

proinflammatory cell death have been ascribed a DAMP

function. These include heat-shock proteins (HSPs), adenosine

triphosphate (ATP), nucleosomes, mitochondrial components

and several alarmins: dual-function proteins that have distinct

roles inside or outside the cells. The term alarmin describes

protein functions leading to a rapid inflammatory response upon

the release of these biologically active molecules. Notably,

alarmins are also found in the nucleus in the resting state and

likely exert biologically meaningful, yet understudied, functions.

For example, failure of interleukin (IL)-33 to translocate to the

nucleus results in a lethal inflammatory response, suggesting that

the nuclear localization of, in this case, IL-33 has a protective

function.4 In this review, we summarize recent knowledge on

the most thoroughly studied dual-function proteins, the high-

mobility group box 1 (HMGB1) protein, IL-1α, IL-33 and S100

proteins, with a focus on their extracellular functions.
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HIGH-MOBILITY GROUP BOX 1

HMGB1 is one of the most abundant nonhistone nuclear

proteins and is a member of the HMG protein family that

contributes to chromatin architecture and modulates gene

expression. Once released from stromal or immune cells, and

upon interaction with a large panel of cell surface receptors,

HMGB1 exerts a plethora of cell regulatory functions, from

maturation, proliferation and motility to inflammation, survi-

val and cell death (Figure 1).

HMGB1 expression, cellular localization and post-

translational modifications

In resting cells, HMGB1 is localized in the nucleus, where it

exerts an important function for chromatin structure and gene

expression (Figure 1).5,6 HMGB1 is involved in chromosomal

DNA repair and contributes to nucleosome mobility by

promoting histone sliding along the DNA strand. Conse-

quently, Hmgb1 gene knockout is lethal, further arguing for

the importance of HMGB1. Structurally, HMGB1 is composed

of two DNA-binding HMG-box domains, namely Box A and

Box B, followed by a flexible and negatively charged C-terminal

tail. The C-terminal tail is believed to mediate a change in the

three-dimensional structure of HMGB1 from a collapsed to a

more linear conformation that most likely regulates HMGB1

binding to its ligands.7 Interestingly, post-translational mod-

ifications, such as acetylation, methylation and phosphoryla-

tion, have been shown to govern HMGB1 cellular localization

(Figure 1).8–11 Upon activation, monocytes and macrophages

were found to hyperacetylate HMGB1 at nuclear localization

sites, leading to its cytosolic relocalization. This process was

Figure 1 Role of HMGB1 in inflammation. Under resting conditions, HMGB1 is localized in the nucleus, where it plays an important role
in chromatin structure and gene expression. The translocation of HMGB1 to the cytoplasm is regulated by post-translational modifications
such as acetylation, methylation and phosphorylation (1). Because of the lack of a secretion signal, HMGB1 is actively secreted through a
caspase-1-dependent, noncanonical secretory vesicular pathway (2). HMGB1 can also be passively released from damaged cells either
alone or in complex with RNA, DNA or nucleosomes (3). Interestingly, during apoptotic cell death, ROS production induces the terminal
oxidation of HMGB1 that inhibits its proinflammatory function and switches HMGB1 function toward tolerogenicity (4). Once in the
extracellular space, HMGB1 binds to several receptors in either free or complexed form (5). HMGB1 receptors, including RAGE and TLR4,
bind free HMGB1 or HMGB1 in complex with DNA or LPS. Through its interaction with RAGE, the internalization of the HMGB1–DNA
complex increases the activation of TLR9 localized in the endosome. However, HMGB1 complex formation with nucleic acids and
potentially with other molecules can be inhibited by direct interaction with TIM-3. Other receptors, such as TLR2, IL-1R and CXCR4,
recruit HMGB1 in complex with nucleosomes, IL-1β or CXCL12, respectively. Thus, sensing of HMGB1 mediates mechanisms of
inflammation, cell migration, proliferation and differentiation (6). Furthermore, acting through the CXCL12/CXR4 axis, HMGB1 enhances
chemotaxis (7). HMGB1, high-mobility group box 1 protein; IL, interleukin; LPS, lipopolysaccharide; RAGE, receptor for advanced glycation
end-products; ROS, reactive oxygen species; TLR, Toll-like receptor.
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recently shown to be mediated by the activation of the

JAK/STAT1 (Janus kinase/signal transducer and activator of

transcription 1) pathway.12 In addition, in monocytes, HMGB1

cytoplasmic localization can be regulated by the phosphoryla-

tion of its nuclear localization signal,11 and this was found to

depend on protein kinase C activity.9 Furthermore, in neu-

trophils, HMGB1 cytosolic translocation seems to depend on

the methylation of Lys42 that decreases HMGB1 binding

affinity to DNA and thus enables its translocation to the

cytosol.8 These studies investigated the role of each modifica-

tion in a rather exclusive manner. It is therefore difficult to

conclude whether these mechanisms regulating HMGB1 cel-

lular localization function in parallel or are differentially

modulated in a cell type- or cell activation-dependent manner.

Because the nuclear localization of HMGB1 is likely to act as a

regulatory mechanism with regard to HMGB1 extracellular

function, a more integrative study of HMGB1 post-

translational modification will be necessary to better compre-

hend the regulation of HMGB1 cytosolic translocation before

its release.

Adding to the complexity of HMGB1 activity, the redox state

of HMGB1 is believed to orchestrate its extracellular

function.13 HMGB1 possesses three cysteines at positions 23,

45 and 106. These enable three different oxidation states of

HMGB1 that license three mutually exclusive functions:

alarmin, chemoattraction or tolerance.14–16 In fact, the forma-

tion of a disulfide bond between Cys23 and Cys45 was shown

to confer proinflammatory properties to HMGB1.14,15 Reduced

HMGB1, with all cysteines in the thiol state, loses its alarmin

function and behaves as a chemoattractant.15 In addition, upon

cellular stress or apoptotic cell death, reactive oxygen species

(ROS) production by mitochondria leads to the terminal

oxidation of HMGB1 (sulfonate cysteines), granting HMGB1

tolerogenic properties that seem to mainly depend on Cys106

(Figure 1).16

Consequently, post-translational modifications orchestrate

HMGB1 activity from cell localization to extracellular function

and thus act as a crucial functional switch.

HMGB1 release and extracellular functions

HMGB1 can be released either passively by necrotic and

damaged cells or by active mechanisms triggered upon immune

cell activation. Once released in the extracellular space,

HMGB1 mediates inflammation, cell migration, proliferation

and differentiation (Figure 1).17–19 In fact, extracellular

HMGB1 was shown to act as a chemoattractant for myeloid

cells,20 smooth muscle cells (SMCs)21 and mesoangioblasts,

thereby promoting muscle tissue repair.22

HMGB1 is considered to be one of the most mobile nuclear

proteins and interacts only very transiently with chromosomal

DNA. This loose nuclear DNA binding enables the leakage of

HMGB1 upon cell damage or necrosis.5,23 In contrast, during

apoptosis, HMGB1 was long believed to be trapped inside the

nucleus, where it binds strongly to hypoacetylated chromatin.23

However, it was since demonstrated that oxidized HMGB1 can

be released from late-stage apoptotic cells, thereby promoting

tolerance in a caspase-1-dependent manner.16,24,25 It was also

proposed that macrophages secrete HMGB1 following the

phagocytosis of apoptotic cells,26 thus further challenging the

idea that apoptosis is a ‘silent’ death.

In addition to the cell death-dependent release of HMGB1,

which likely represents its most important role, immune cells

such as macrophages and monocytes are known to actively

secrete HMGB1 once stimulated by cytokines (interferon-γ

(IFNγ), tumor necrosis factor (TNF) and IL-1) or pathogen-

derived molecules (lipopolysaccharide (LPS)).27–30 Moreover,

macrophages release HMGB1 following the activation of the

NLRP3 or NLRC4 inflammasomes.27,28,31 Because HMGB1

lacks a leader sequence that would enable its transfer to the

endoplasmic reticulum (ER) and the Golgi, active secretion of

HMGB1 follows a nonclassical vesicular pathway.32 Indeed,

several proteins, including not only HMGB1 but also IL-1β and

IL-18, have been shown to depend on autophagy for their

active secretion through the unconventional secretory

pathway.33,34 Interestingly, following cell starvation, HMGB1

was proposed to enhance autophagy through its interaction

with Beclin1, and this was dependent on ROS production and

the HMGB1 redox state.35 HMGB1 cytoplasmic translocation

both promoted autophagy and limited the apoptotic pathway.

Thus, HMGB1 cytoplasmic translocation not only enables

release but also can actively promote its own secretion.

Several receptors have been shown to trigger downstream

signaling upon binding to HMGB1 either directly or in

complex with other molecules (Figure 1). In macrophages

and dendritic cells, HMGB1 binds directly to Toll-like receptor

4 (TLR4) and induces the secretion of proinflammatory

cytokines.36 Interestingly, binding of HMGB1 to TLR4 depends

on reduced Cys106.14,36 Moreover, the activation of TLR4 by

proinflammatory HMGB1 (disulfide form) was recently shown

to require myeloid differentiation factor 2 (MD-2).37 Upon

binding to TLR4-MD-2, HMGB1 triggers the MyD88-

dependent activation of nuclear factor (NF)-κB and the

subsequent release of proinflammatory cytokines (i.e., TNFα,

IL-1β and IL-6). Intriguingly, HMGB1 can also bind directly to

LPS, thereby strengthening its ability to activate TLR4 through

CD14.38 In contrast, binding of HMGB1 to CD24 and the

further mobilization of Siglec-10 (or mouse Siglec-G) was

shown to antagonize HMGB1-induced TLR4 activation in

dendritic cells.39 In this study, Chen et al.39 found that the

effect of CD24/Siglec-10 was restricted to stimulation with

endogenous proteins (HMGB1, HSP70 and HSP90) and did

not hold upon the activation of cells with pathogen-derived

molecules. Hence, the authors proposed that the CD24/Siglec-

10 pathway is a self-regulatory mechanism, limiting deleterious

immune activation by endogenous damage-signaling

molecules.

Another important cell surface receptor for HMGB1 is the

receptor for advanced glycation end-products (RAGE). In fact,

HMGB1 binding to RAGE was demonstrated shortly after

RAGE discovery40 and has since been characterized in many

settings. First, RAGE proved to mediate the previously

described role of HMGB1 in neurite outgrowth during the
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development of the nervous system.40,41 In dendritic cells,

HMGB1 release and sensing by RAGE was shown to be critical

for homing to the lymph nodes and further cross-activation of

T lymphocytes.42–44 In endothelial cells, HMGB1 was further

shown to promote the expression of RAGE and surface

adhesion proteins (intercellular adhesion molecule 1 (ICAM-1)

and vascular cell adhesion molecule 1 (VCAM-1)) and also to

induce RAGE-dependent cytokine production.45–47

In addition to TLR4 and RAGE, HMGB1 interacts with

several more receptors once in complex with other molecules.

Indeed, extracellular HMGB1 can interact with IL-1β,48

CXCL12,49 and nucleosomes,50 thereby promoting the activa-

tion of IL-1 receptor (IL-1R), CXCR4 and TLR2, respectively.

Furthermore, extracellular HMGB1, like other HMGB pro-

teins, is found in complex with either DNA or RNA, promot-

ing sensing by their putative receptors.51–53 Interestingly, yet

another receptor of HMGB1, TIM-3, expressed at the surface

of tumor-associated dendritic cells, was recently shown to

compete with nucleic acids for binding to HMGB1, thereby

dampening the efficacy of antitumor DNA vaccines or

chemotherapy.54 These studies revealed the importance of

controlling the purity of the recombinant HMGB1 protein

used in experiments. In fact, several publications have argued

that high-purity HMGB1 has a limited proinflammatory

activity on its own.48,51,53,55 Yet, the propensity of HMGB1

to co-purify with innate immune stimulants is not the only

characteristic that can influence its biological function. One has

to take into account that different HMGB1 preparations can

vary in their amount of protein oxidation, thus influencing the

biological activity of recombinant HMGB1. In addition,

although HMGB1 redox status has now been described as a

major regulatory mechanism of HMGB1 extracellular function,

the role of other known post-translational modifications of

HMGB1 in the extracellular space remains unknown. Hence, in

the future, it would be beneficial to further analyze the

extracellular functions of HMGB1, paying special attention to

its purity and to the exact nature of its post-translational state.

HMGB1 in sepsis and sterile injury

HMGB1 was shown to mediate several acute effects in the

context of infection or sterile tissue damage following myo-

cardial infarction, stroke, acute lung injury or ischemia–

reperfusion injury often occurring after transplantation and

trauma. During sepsis, HMGB1 acts as a late mediator of

inflammation that can be sustained for several days and

correlates with an unfavorable prognosis.29 In fact, upon

infection, the presence of large amounts of pathogen-derived

molecules, such as endotoxin, induces a biphasic secretion of

cytokines:56 (1) the release of conventional proinflammatory

cytokines, such as TNFα and IL-1β (peak levels are found

within hours) and (2) the late release of HMGB1 that often

leads to lethality. Interestingly, treatment of animals with anti-

HMGB1 antibodies or the HMGB1-binding antagonist throm-

bomodulin provides protection even when administered several

hours after the peak secretion of the early cytokines.45,57 In

accordance with these findings, conditional deletion of

HMGB1 in myeloid cells protected mice against LPS-induced

endotoxic shock.58 Furthermore, a recent clinical study in

which septic patients were treated with a combination of

Polymyxin B and thrombomodulin found improved survival of

the treated cohort.59 These data argue that HMGB1 may

represent a pharmacological target for the treatment of septic

shock. However, a study with larger groups and across different

microbes and infection routes will be necessary before large-

scale use in the clinic.

It is worth noting that the treatment of septic animals with

recombinant HMGB1 A box, an antagonist competing with

full-length HMGB1 for receptor binding, was also shown to

provide protection against sepsis.60 In addition, the use of a

monoclonal anti-RAGE antibody after cecal ligation and

puncture (CLP) reduced lethality even when it was adminis-

tered 36 h after CLP.61 This study followed the previous work

by Liliensiek et al.,62 who first indicated a role for RAGE in the

development of acute inflammation during sepsis. In addition

to RAGE, the effects of HMGB1 in sepsis are believed to be

partly mediated through TLR4.37,38 Further reinforcing this

hypothesis, treatment of CLP-elicited septic mice with a specific

inhibitor of HMGB1 binding to MD-2 (P5779) decreased

lethality.37 However, as mentioned earlier, binding of HMGB1

to LPS strengthens TLR4 activation and thus could potentially

contribute to HMGB1-induced acute inflammation following

bacterial infection.

In contrast to its role during sepsis, in the context of sterile

tissue damage and cell death, HMGB1 mediates early inflam-

mation responses that only last hours. Indeed, HMGB1 levels

increase in the circulation following major events such as

stroke, myocardial infarction or hemorrhagic shock. These

conditions induce an ischemia–reperfusion injury in tissues

where HMGB1 is passively released.63–69 In these settings, both

TLR4- and RAGE-dependent inflammatory pathways mediate

the early effect of HMGB1 release. Indeed, in the ischemic liver

and kidney, TLR4 was shown to trigger inflammation in

response to HMGB1 release.64,65 Furthermore, RAGE

expressed at the surface of microglial cells was found to

mediate part of the deleterious function of extracellular

HMGB1 in the ischemic brain.68 Strikingly, following brain

injury, released HMGB1 was found to signal through RAGE in

the lung, thereby mediating pulmonary dysfunction after lung

transplantation.69,70 In accordance with this finding, HMGB1

release from gut epithelial cells was recently shown to mediate

lung injury following trauma and hemorrhagic shock.71 These

studies illustrate the ability of HMGB1 to mediate its alarmin

function in a systemic manner across the entire body. Here

again, collaboration between RAGE and TLR4 is responsible

for the deleterious effects of HMGB1 in acute sterile inflam-

mation. Hence, direct targeting of HMGB1 with antibodies or

thrombomodulin will probably be the most appropriate treat-

ment strategy for transplanted patients or for those suffering

from a traumatic injury. In fact, anti-HMGB1 antibodies have

already shown some success in animal models of sterile

inflammation and could therefore be promising for use in

humans.68,72,73
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Role of HMGB1 in cancer

HMGB1 was studied for many years for its role in cancer and is

now considered a central modulator of cancer development.74

In fact, HMGB1 expression increases in many types of

cancer,75–79 correlates with tumor invasion and metastasis

and relates to unfavorable prognosis.76,77,80,81 At the onset of

tumorigenesis, rapid cell growth can overwhelm the limited

blood circulation, thereby forming an ischemic environment

that induces local cell necrosis and contributes to HMGB1

release.78 Moreover, during hypoxia, released HMGB1 activates

the NLRP3 inflammasome and the subsequent caspase-1-

dependent release of IL-1β and IL-18, fostering the inflamma-

tory environment and promoting cell invasion.78 Ultraviolet

irradiation of melanoma cells and the subsequent release of

HMGB1 from damaged keratinocytes was also recently shown

to induce a TLR4-dependent inflammatory environment that

proved to be an important step toward perivascular invasion

and metastasis in melanoma.82 Intriguingly, in pancreatic

cancer cell lines, the presence of extracellular HMGB1 and its

binding to RAGE seems necessary for mitochondrial ATP

production and sustained cell growth.79 This study proposed

that upon HMGB1 binding, RAGE translocates to the mito-

chondria, where it interacts with electron transport chain

complexes I and II and thereby positively regulates oxidative

phosphorylation. In addition, in the context of colorectal

cancer, released HMGB1 can act on endothelial cells, promot-

ing cell proliferation and neovascularization.81,83 Indeed,

in vitro extracellular treatment with recombinant HMGB1

promotes endothelial cell migration and the NF-κB-dependent

expression of adhesion and angiogenic proteins. Moreover,

treatment with recombinant HMGB1 leads to TLR4 and RAGE

expression. However, knockdown studies showed that

HMGB1-dependent neovascularization is mainly mediated

through RAGE.81 Further emphasizing the role of the RAGE–

HMGB1 axis in cancer progression, blockade of either HMGB1

or RAGE can reduce malignant mesothelioma and glioma

tumor growth and metastasis.80,84 Interestingly, upon antic-

ancer treatment, the HMGB1 redox state balances the cell fate

between autophagy-mediated cell survival or apoptosis.85,86

Indeed, using pancreatic and colon cancer cell lines (Panc2.03

and HCT116, respectively), Tang et al.85,86 demonstrated that

treatment with cytotoxic anticancer agents could induce both

the autophagy and apoptosis pathways and subsequent

HMGB1 release. In this study, the inhibition of autophagy

decreased HMGB1 release and pushed the balance toward

apoptosis. Reduced extracellular HMGB1 promoted autophagy

and cell survival through a RAGE- and Beclin-1-dependent

pathway. In contrast, oxidized HMGB1 promoted cell death

and increased the efficiency of chemotherapeutic drugs. In

accordance with these data, studies using different cancer cell

lines (leukemia, colorectal carcinoma and pancreatic cancer

cells) demonstrated a role for both RAGE and HMGB1 in the

balance between autophagy and apoptosis through the mod-

ulation of p53-dependent apoptosis and the activation of

ATG5-dependent autophagy pathways.87–89 In contrast,

HMGB1 has been implicated in the antitumor immune

response induced by radiation therapy or chemotherapy.90,91

In this case, HMGB1 enables the TLR4-dependent activation of

dendritic cells and promotes antigen cross-presentation to

cytotoxic T cells. However, these experiments did not consider

the HMGB1 redox state. Hence, further analysis of the HMGB1

redox state in this setting would be of interest.

HMGB1 mediates chronic inflammation

There are many examples of the central role of HMGB1 in the

development and aggravation of chronic inflammation. As a

first example, extracellular HMGB1 has been associated with

the development of arthritis, particularly with the inflammation

of the synovial space. Indeed, HMGB1 levels are increased in

the serum and synovial fluid of patients with rheumatoid

arthritis (RA).92,93 The use of recombinant HMGB1 demon-

strated that extracellular HMGB1 promotes the macrophage-

and neutrophil-dependent development of arthritis.93,94

HMGB1 is actively secreted by synovial macrophages and

fibroblasts in collagen-induced arthritis and hypoxic

conditions.95 In this system, the effect of HMGB1 was shown

to be partly mediated by TLR2 and TLR4.96 Consequently, the

use of anti-HMGB1 monoclonal antibodies, thrombomodulin

or A box peptide efficiently diminished inflammation and

arthritis.95,97,98 Similarly, blocking HMGB1 release by nuclear

sequestration using oxaliplatin had protective effects.99 In

accordance with these data, gold sodium thiomalate, a mole-

cule often used to treat RA, was shown to block HMGB1

cytosolic translocation and thereby inhibit its secretion from

macrophage cell lines.100

In addition, HMGB1 has been studied for its role in the

development of systemic lupus erythematosus. Indeed, several

studies have found the level of HMGB1 in the serum and skin

lesions to be increased in patients with lupus, and this

correlated with disease activity.101–105 Extracellular nucleo-

somes in complex with HMGB1 are believed to disrupt self-

tolerance and promote the production of anti-double-stranded

DNA antibodies.50,106 HMGB1 binding to DNA contained in

immune complexes was also shown to enhance RAGE-

dependent DNA intake and TLR9 activation, further increasing

cytokine secretion and inflammation in lupus patients.51,53

Finally, in atherosclerotic plaques, SMCs are activated to

secrete HMGB1. Interestingly, HMGB1 expression can be

induced upon treatment with cholesterol, further linking

HMGB1 to atherosclerosis.107,108 Upon sensing the Box B

domain of HMGB1, SMCs proliferate and migrate. However,

SMCs are not the only cell type secreting HMGB1 in

atherosclerotic plaques. In fact, endothelial cells, macrophages,

foam cells and activated platelets are also able to secrete

HMGB1.109 As the NLRP3 inflammasome contributes to the

formation of atherosclerotic plaques upon activation with

cholesterol crystals,110 and its activation in macrophages leads

to the active release of HMGB1,27,28 it is likely that the

secretion of HMGB1 by plaque-infiltrating macrophages is

NLRP3 dependent and contributes to the inflammation

induced by cholesterol crystals present in the plaques. In this

context, in vitro experiments showed that treatment with
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extracellular HMGB1 increases the expression of adhesion

molecules (ICAM-1 and VCAM-1) and promotes the secretion

of proinflammatory cytokines (i.e., TNFα) and chemokines

(i.e., CXCL8 and CCL2).46,47 In addition, RAGE expressed in

endothelial cells is an important mediator of plaque formation.

In fact, RAGE has long been known to promote the expression

of adhesion proteins such as VCAM-1 in endothelial cells.111

During atherosclerosis, RAGE increases HMGB1 expression

and release,112,113 and in vitro treatment of endothelial cells

(human umbilical vein endothelial cells) with extracellular

HMGB1 induces RAGE-dependent ER stress.114 This implica-

tion of the RAGE–HMGB1 axis in the induction of ER stress

could contribute to the previously mentioned induction of

autophagy by HMGB1 through RAGE.89,115 Furthermore,

during atherosclerosis, the HMGB1–RAGE axis has recently

been implicated in platelet activation.116 Hence, in athero-

sclerotic plaques, HMGB1 sensing by platelets, endothelial cells

and SMCs promotes the migration and adhesion of immune

cells, thereby fostering plaque formation and growth.

For the past two decades, HMGB1 commanded the attention

of many groups because of its central role in signaling infection

and cellular damage. It has become clear that even if HMGB1 is

an important mediator of necessary antimicrobial and tissue

repair mechanisms, it also often acts as powerful deleterious

‘double-agent’ in the development of multifactorial diseases

such as cancer and acute or chronic inflammation. Hence, the

development of clinical tools targeting HMGB1 to moderate its

negative effects will be crucial for the efficient treatment of

many patients.

INTERLEUKIN-1a

The IL-1 family of proteins contains 11 members. The best-

studied family members are IL-1α and IL-1β. Both are highly

similar in structure and bind to the same cell membrane

receptor, IL-1R. Interestingly, IL-1 receptor antagonist (IL-1Ra)

is a naturally expressed member of the IL-1 family that is

nonimmune stimulatory and inhibits both IL-1α and IL-β

function by competing for binding to their receptor. Members

of the IL-1 family are expressed as pro-forms (pIL-1) that are

usually matured through enzymatic cleavage. Unlike IL-1β but

similarly to all alarmins described herein, IL-1α is a dual-

function cytokine that presents both nuclear and extracellular

functions. Extracellular IL-1α is now recognized to be an

important player in sterile inflammatory diseases and

cancer.117–119

IL-1α expression and intracellular function

IL-1α precursor (pIL-1α) is constitutively expressed in most

resting nonhematopoietic cells, such as epithelial cells lining the

gastrointestinal tract, liver, kidney and skin.120,121 Moreover,

pIL-1α expression can be increased in conditions of stress and

inflammation.122 In resting cells, pIL-1α is found in the nucleus,

where it promotes gene expression by acting as a transcription

factor (Figure 2),123 regulating cell growth and differentiation.

This relies on the N-terminal domain containing the nuclear

localization signal,124 which is absent in mature IL-1α.124,125

Interestingly, following cleavage, the N-terminal domain of

IL-1α was shown to independently translocate to the nucleus,

where it interacts with certain members of the RNA splicing

and processing machinery.126 In the nucleus, pIL-1α (but not

mature IL-1α) also interacts with histone acetyltransferases and

thus acts as a transcriptional regulator.123,127 In addition, upon

stimulation with LPS or TNFα, pIL-1α translocates to the

nucleus, where it was shown to promote the expression of

inflammatory genes such as IL-6 and IL-8.125,128 In accordance

with these findings, in systemic sclerosis fibroblasts, pIL-1α

translocation was shown to depend on binding to HS1-

associated protein X-1 (HAX-1) and induce the expression of

IL-6 and pro-collagen (Figure 2).129 Interestingly, HAX-1 was

also found to interact with the cleaved IL-1α N-terminal

domain.130 Together, these studies suggest that the nuclear

function of pIL-1α is predominantly dependent on its N-term-

inal domain. Upon cell activation, pIL-1α cleavage acts as a

regulatory mechanism, keeping IL-1α outside the nucleus and

promoting its secretion. Furthermore, pIL-1α cleavage could

support a distinct transcriptional function for the ‘freed’

nuclear N-terminal peptide. However, this hypothesis remains

to be proven.

IL-1α secretion and extracellular activity

In stimulated cells, IL-1α is processed by the membrane-bound

protease calpain, a calcium-dependent cysteine protease, and

then released into the extracellular space.131–134 Similar to

IL-1β and HMGB1, IL-1α does not contain any secretion signal

and thus relies on the noncanonical vesicular secretion pathway

(Figure 2). As for IL-1β, IL-1α secretion is believed to partially

depend on caspase-1 activity.135,136 In fact, it was recently

demonstrated that IL-1α secretion is antagonized by the

intracellular presence of IL-1R2 which, through binding to

pIL-1α, prevents its processing by calpain and further

secretion.134 Active caspase-1 cleaves IL-1R2, thereby enabling

pIL-1α processing by calpain and the release of mature IL-1α.

However, Gross et al.137 showed that caspase-1 dependency for

IL-1α secretion can differ depending on the stimulus and the

targeted inflammasomes and does not seem to require the

protease activity of caspase-1. IL-1α secretion may therefore

rely on redundant parallel pathways. In fact, elevated intracel-

lular Ca2+ triggers IL-1α secretion from bone marrow-derived

cells.132,137,138 An increase in the Ca2+ concentration was

shown to be sufficient for inflammasome-independent IL-1α

processing by calpain and its subsequent secretion.137 Interest-

ingly, increased levels of Cu2+ were also shown to promote

IL-1α secretion through an S100A13-dependent secretion

mechanism.139,140 Further differentiating itself from IL-1β

and HMGB1, IL-1α activation and secretion is inhibited by

autophagy. Indeed, in the context ofMycobacterium tuberculosis

infection, ATG5-dependent autophagy was shown to block

both the calpain-dependent activation of IL-1α and its secre-

tion, thereby limiting lung inflammation and tissue damage.141

Another regulatory mechanism seems to reside in the close

proximity of IL-1α to the nucleus. Indeed, like HMGB1, cells

undergoing apoptosis retain IL-1α in the chromatin fraction,
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whereas necrotic cells can release pIL-1α, resulting in myeloid

cell chemotaxis and inflammation.142 In fact, the IL-1α pro-

form is known to bind to IL-1R1 and to induce inflammation.

To date, however, it is not entirely clear which of the two forms

is the most relevant following cell damage. Notably, IL-1α

release by stressed endothelial cells was also proposed to be

mediated by the formation of pIL-1α-containing apoptotic

bodies that possessed chemotactic and proinflammatory

properties.143

In addition to calpain- and caspase-1-dependent pIL-1α

processing, other proteases, such as granzyme B, elastase or

chymase, have been proposed to cleave pIL-1α, producing the

mature form of IL-1α and potentiating its proinflammatory

activity.144 Interestingly, IL-1α may also be displayed at the cell

surface, where it can activate juxtaposing target cells expressing

its receptor, such as T cells or endothelial cells (Figure 2).145–148

As for IL-1β, once it is released into the extracellular space,

soluble or membrane-bound IL-1α binds to IL-1R1 and further

triggers the recruitment of the accessory receptor IL-1R3 (also

known as IL-1RAcP) for signal transduction. Downstream

signaling is triggered by the recruitment of the MyD88 adaptor

protein to the Toll–interleukin receptor domain of IL-1R3.

As for other MyD88-dependent TLR signaling, MyD88 recruit-

ment activates IRAK4/IRAK1 and subsequent downstream

mitogen-activated protein kinase (MAPK) signaling and NF-

κB activation (Figure 2).149,150 Thus, IL-1α activates neighbor-

ing fibroblasts or epithelial cells, further triggering the release of

chemokines that leads immune cells, preferentially

neutrophils,151 to infiltrate and enhance local inflammation.

IL-1α in sterile inflammation: from acute to chronic disease

As previously mentioned, pIL-1α is constitutively expressed in

most resting cells. It is therefore not surprising for pIL-1α to

play a key role in inflammation induced by necrosis or tissue

damage following ischemia. Indeed, liver lysates containing

IL-1α promote neutrophilic migration in matrigel.152

Moreover, in peritonitis, IL-1α is released from necrotic cells

and subsequently activates IL-1R1 present at the surface of

mesothelial cells. This was proposed to be the prime event

inducing neutrophil infiltration and peritoneal inflammation

rather than the HMGB1 pathway.152,153 This proinflammatory

role of IL-1α was recently confirmed in a mouse model of

acute colon inflammation (dextran sodium sulfate-induced

colitis), where epithelial IL-1α played a key role in the

establishment of inflammation.121 In contrast, IL-1β originat-

ing from myeloid cells promoted healing and tissue repair.

One of the main triggers of cell necrosis is the hypoxia that

follows poor oxygen supply associated with, for example, early-

Figure 2 Proinflammatory role of extracellular interleukin (IL)-1α. IL-1α precursor (pIL-1α) is constitutively expressed in most resting
nonhematopoietic cells. In these cells, IL-1α is primarily localized in the nucleus, where it promotes gene expression by acting as a
transcription factor (1). IL-1α nuclear transport depends on its interaction with HS1-associated protein X-1 (HAX-1) (2). In stimulated
cells, pIL-1α is processed by the membrane-bound protease calpain, a calcium-dependent cysteine protease, before active release into the
extracellular space through a noncanonical vesicular pathway (3). Interestingly, HAX-1 was also found to interact with the cleaved IL-1α
N-terminal domain, suggesting its independent nuclear function (2). pIL-1α processing is inhibited by the cytosolic expression of IL-1
receptor-2 (IL-1R2) that binds to pIL-1α and thereby prevents its interaction with calpain and its subsequent secretion (4). However, active
caspase-1 cleaves IL-1R2 and thereby enables pIL-1α processing. pIL-1α can also be passively released from damaged cells and, similar
to mature IL-1α, interacts with IL-1 receptor-1 (IL-1R1) (5). In addition to being released in the extracellular space, IL-1α can be
displayed at the plasma membrane, where it activates IL-1R1-expressing juxtaposing cells (6). Once sensed by IL-1R1, soluble or
membrane-bound IL-1α induces the recruitment of the accessory receptor IL-1R3 and triggers proinflammatory signaling pathways (7).
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stage tumor growth or blood vessel clogging. Interestingly,

pIL-1α expression was shown to be increased before epithelial

cell necrosis in a hypoxia-induced factor (HIF)-1a- and

HIF-2a-dependent manner.154 The release of IL-1α promotes

chemokine secretion and neutrophil infiltration. Moreover,

extracellular pIL-1α itself can trigger the increased expression

of pIL-1α (and pIL-1β) in surrounding cells, thereby fueling

local inflammation.151,155 Following this early IL-1α-dependent

inflammation and recruitment of neutrophils, inflammasomes

and caspase-1 activation enable the cleavage of pIL-1β,

promoting inflammation through the recruitment of

macrophages.151,156 This mechanism is confirmed by the IL-1α

dependency of IL-1β secretion following inflammasome

activation.137

During brain ischemia, activated platelets present in the

brain vasculature were shown to release pIL-1α and thereby

stimulate endothelial cells to secrete the chemokine CXCL1

and express the endothelial surface adhesion proteins VCAM-1

and ICAM-1. Hence, upon ischemic injury, pIL-1α fosters

inflammation by enabling neutrophils to migrate through the

endothelial barrier.157 Interestingly, platelets are known to be

one of the first cell types to reach the brain and to be activated

in response to stroke or in patients with multiple

sclerosis.158–160 Thus, platelet-originating IL-1α would be an

early signal playing a central role in the establishment of

cerebrovascular inflammation and subsequently devastating

brain injury.

Notably, similar mechanisms are involved in the ischemic

heart following myocardial infarction. Indeed, IL-1α release

from necrotic myocytes was shown to trigger acute inflamma-

tion by activating surrounding myofibroblasts.161

The importance of IL-1α and IL-1β in sterile inflammation is

further highlighted by the case of patients born with a

deficiency in the IL-1R antagonist, IL-1Ra.162,163 Indeed,

deficiency in IL-1Ra triggers IL-1-dependent inflammation

and the infiltration of neutrophils to the skin, joints and

bones. Systemic treatment with recombinant IL-1Ra (anakinra)

has been an efficient way to decrease inflammation and prevent

death.156 However, because anakinra can inhibit both IL-1α

and IL-1β by binding to their common receptor, it is unclear

which is the main cytokine at the root of the sterile

inflammation affecting these patients. Nonetheless, anakinra

is currently also used to treat RA as well as neonatal-onset

multisystem inflammatory disease.164 Other drugs, such as

monoclonal antibodies (canakinumab) and decoy receptors

(rilonacept), are also used to treat patients presenting with, for

example, juvenile idiopathic arthritis or cryopyrin-associated

autoinflammatory syndrome, this time with a clear aim at

blocking IL-1β-derived inflammation.156

Yet, some evidence suggests a role for IL-1α in the

development of these chronic inflammatory diseases. In fact,

early IL-1α release is recognized as an important step that

initiates inflammation, and IL-1α is thus considered a promis-

ing target for the treatment of rheumatologic disease.156,164

Interestingly, RA patients producing IL-1α-specific autoantibo-

dies in the joint synovial fluid show reduced joint erosion.165

This supports the idea that IL-1α is a major player in the

establishment of long-term inflammation. Furthermore, in a

recent clinical trial, Coleman et al.166 used a monoclonal

antibody (MABp1) targeting IL-1α for the treatment of

psoriasis.

The role of IL-1α in cardiovascular diseases is not restricted

to its proinflammatory function following myocardial infarc-

tion. Indeed, mounting evidence now suggests an important

role for IL-1α in the development of atherosclerosis.167,168 This

might come as a surprise because IL-1β has long been predicted

to be the most important IL-1 cytokine responsible for vascular

inflammation and the development of atherosclerotic plaques.

Indeed, mice lacking either IL-1R or IL-1β or those treated

with IL-1β-blocking antibodies presented decreased plaque

formation.169,170 However, others have since shown that IL-1α

deficiency in hematopoietic cells has an even more important

protective effect.171,172 Together, these results therefore indicate

a potential role for both IL-1α and IL-1β in atherosclerosis.

Perhaps, the greater effect of IL-1α in the development of

aortic plaques might be in part attributed to the fact that IL-1α

deficiency induces the decreased expression of IL-1β,172 thereby

not only acting on IL-1α-dependent cell signaling but also

acting in parallel on IL-1β function. Nevertheless, another

study recently confirmed the results of Kamari et al.172 and

further showed that IL-1α (but not IL-1β) secretion from LPS-

primed macrophages is induced by unsaturated fatty acids (i.e.,

oleic acid) in an inflammasome-independent manner.173. In

this study, unsaturated fatty acids were shown to act on the

mitochondrial respiratory chain and induce its uncoupling,

thereby promoting calcium fluxes and subsequent calpain-

dependent IL-1α release. Moreover, by inducing mitochondrial

uncoupling, oleic acid not only promoted IL-1α secretion but

was also shown to inhibit IL-1β release. Hence, unsaturated

fatty acids accumulating in atherosclerotic plaques would shift

the IL-1 secretion by macrophages from IL-1β to IL-1α.

Strikingly, analysis of IL-1α and IL-1β expression in either

IL-1α/β-deficient macrophages indicated that not only IL-1α

was upstream of IL-1β secretion but also that the reverse was

potentially true. Indeed, IL-1β-deficient but not IL-1R-deficient

macrophages showed markedly decreased IL-1α secretion and

LPS-induced expression. This may indicate the existence of an

IL-1β-dependent intracellular transcriptional control of IL-1α

expression. However, this effect was only found in macro-

phages derived from the Il1btm1Yiw background. Macrophages

derived from the Il1btm1Dch background had no effect on IL-1α

secretion. These findings reveal the potential misconception

regarding the role of IL-1β in atherosclerosis that might have

been the result of underlying partial IL-1α downregulation.

Caution will therefore be needed in the future when studying

the role of IL-1β in atherosclerosis development.

IL-1α in cancer development

The existence of a link between chronic inflammation and the

onset of tumorigenesis has long been postulated and is

supported by many clinical conditions as well as cancer animal

models.174–176 Yet, inflammation is also necessary for the
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organism to fight against the tumor.177 In the middle of this

tight equilibrium, the presence of proinflammatory signals,

such as the previously mentioned HMGB1, can lead to tumor

growth and invasion either way.74 Interestingly, IL-1R auto-

crine stimulation by IL-1α and downstream MyD88 activation

were shown to be crucial for the establishment of the

inflammation involved in RAS-dependent carcinogenesis.178

In these settings, IL-1α and MyD88 (but not IL-1β) activation

trigger the loss of keratinocyte differentiation and promote

invasiveness. Similar results have previously been found in

melanoma patients, where IL-1α induced the MyD88-

dependent activation of the NF-κB and MAPK pathways as

well as an increase in ROS production, thereby promoting

tumor progression.179 Furthermore, in pancreatic ductal ade-

nocarcinoma, tumor-associated IL-1α release, probably

through cell damage, can also induce tumor growth via

immune activation of the surrounding tumor fibroblasts.180

IL-1α is furthermore implicated in tumor vascularization by

promoting the expression of vascular endothelial growth factor

(VEGF) in endothelial cells.181 Interestingly, IL-1α seemed to

have a more dramatic effect in hypoxic conditions, which fits

to the proposed role of IL-1α in the often hypoxic tumor

microenvironment. Following these first steps of tumor devel-

opment, IL-1β takes over and is thus believed to be of greater

importance.182 Yet, clinical trials are underway using MABp1

antibody to target IL-1α in the treatment of refractory cancers

with metastasis.183

In contrast to the role of secreted IL-1α, intracellular and

membrane-bound IL-1α activates immune mechanisms that

lead to tumor destruction. Indeed, in a large panel of cancer

cell lines, pIL-1α modulates cell cycle and induces

apoptosis.126,184 In addition, overexpression of membrane-

bound IL-1α at the surface of fibrosarcoma or lymphoma

cell lines induced loss of tumorigenicity. Once injected into

mice, such cells form tumors that rapidly regress or cannot

grow.185–187 Furthermore, after injection into wild-type

(WT) mice, these cells induced the appearance of a long-

term memory against tumor cells that relied on the

infiltration of CD8+ T cells, natural killer (NK) cells and

macrophages.

Together, these data show that IL-1α could, in certain

settings, represent a key initiator of proinflammatory mechan-

isms that drive chronic inflammatory diseases. Drugs in clinical

use, such as anakinra, give hope for the targeting of IL-1α in

these pathologies. However, the complex multifaceted func-

tions of IL-1α, sometimes beneficial and at other times

deleterious, make IL-1α a difficult clinical target.

INTERLEUKIN-33

IL-33 is a member of the IL-1 family that is mainly expressed in

the epithelium lining the surfaces in contact with the environ-

ment. IL-33 has long been considered to exclusively mediate

type-2 immune responses. However, recent findings extended

its influence to a broader panel of functions at the junction

between innate and adaptive immune responses, from the

maintenance of homeostasis to the mediation of deleterious

proinflammatory reactions.

IL-33 protein expression and post-translational modification

Similar to IL-1α, IL-33 is an alarmin mostly expressed in

stromal cells, such as endothelial cells, fibroblasts and the

epithelial cells of tissues in contact with the environment. IL-33

(before known as NF-HEV) localizes to the nucleus thanks to a

signal present at its N-terminal end (Figure 3).188,189 Because of

its nuclear location and its release upon the loss of cell integrity,

IL-33 was proposed to be another dual-function alarmin in line

with HMGB1 and IL-1α.190 However, unlike HMGB1 and

IL-1α, nuclear IL-33 represses gene expression by facilitating

chromatin compaction.191 Furthermore, in addition to repres-

sing gene expression, IL-33 nuclear location was recently

shown to act as a strong regulator of IL-33 extracellular

function.4 Indeed, in chimeric mice expressing a N-terminally

truncated IL-33, the exclusion of IL-33 from the nucleus

induced lethal inflammation, suggesting that its nuclear

location acts as a sink, preventing its uncontrolled extracellular

release. This IL-33 nuclear ‘docking’ is even more important

since its release is independent of prior processing either by

caspase-1, caspase-8 (required for IL-1β or IL-18) or calpain

(required for IL-1α).192,193 In fact, processing by capsase-1 or

apoptotic caspases (caspase-3 and -7) occurs inside the

IL-1-like domain, after asparagine 178, and was reported to

inactivate the alarmin function of IL-33.194,195 Inactivation of

IL-33 by caspases led at first to the consensus that full-length

IL-33 is the active form (Figure 3). Yet, it was since proposed

that IL-33 is cleaved to a mature and more proinflammatory

form.196 In fact, in vitro studies demonstrated the cleavage of

IL-33 by neutrophil elastase and cathepsin G. The resulting

C-terminal cleavage products, containing the entire IL-1-like

domain, had stronger proinflammatory activity (Figure 3).

However, it remains unclear whether IL-33 processing is

physiologically important, and deeper study of the nature of

released IL-33 in a pathological environment is required. Once

released, IL-33 binds to a member of the IL-1R family, ST2

(also known as IL-1RL1),197 through which IL-33 can activate

both innate and adaptive immune cells. Indeed, ST2 is

particularly expressed in lymphocytes, such as T helper 2

(Th2) cells and mast cells.198,199

Further amplifying the similarity of IL-33 with other

alarmins, a recent study demonstrated that post-translational

modification of IL-33 is an important regulator of IL-33

inflammatory function.200 However, unlike HMGB1, the

oxidation of IL-33, occurring rapidly in the extracellular space,

proved to be a crucial downregulator of IL-33 function

(Figure 3). Such a mechanism would limit IL-33 in time and

space, restricting its activity to the local environment. Inter-

estingly, this study also showed that all IL-1 family members

(except IL-1α and IL-36β) are subject to oxidation, thus

revealing a potential common regulatory mechanism.
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IL-33 downstream signaling

Similar to IL-1/IL-1R1 signaling, upon binding of IL-33, ST2

activation requires the accessory receptor IL-1R3 to

function.198,199 Upon activation, ST2/IL-1R3 trigger signal

transduction through a MyD88-IRAK-dependent pathway,

leading to NF-κB, c-Jun N-terminal kinase (JNK) and MAPK

activation.197 Thus, in mast cells, activation of NF-κB leads to

the production of proinflammatory cytokines, such as IL-1β,

IL-6 and TNFα.193,201,202 However, in mast cells or T cells,

production of IL-5, IL-13 and the chemokines CCL5,

CCL17 and CCL24 depends on the activation of MAPK

signaling rather than NF-κB. Importantly, IL-33 activates naive

T cells and promotes their maturation toward a Th2 pheno-

type, leading to the release of Th2-type cytokines and

chemokines.203,204

Interestingly, similar to RAGE, several ST2 splicing variants

exist, producing either full-length, membrane-bound ST2 or a

soluble protein thought to act as decoy receptor (sST2).205 For

example, the use of recombinant soluble ST2 antagonizes the

effect of IL-33 in allergic airway inflammation.206 In fact,

soluble ST2 can bind to extracellular IL-33, thereby inhibiting

its interaction with membrane-bound and signaling-competent

ST2 (Figure 3).

IL-33 in infection and sepsis

Depending on the context, IL-33 was found to exert either

deleterious or protective effects upon parasitic or viral infection

by driving Th2-type responses. The role for IL-33 in parasitic

infection was first suggested by the finding that upon infection

of mice with Leishmania major, treatment with ST2-specific

blocking antibodies ameliorated the disease, decreased parasite

replication and switched the T cells toward a protective Th1

response.207 In a similar manner, following infection with

respiratory syncytial virus, treatment with ST2-blocking anti-

bodies reduced lung inflammation and the disease severity in

mice primed for Th2-type but not Th1-type responses.208 In

contrast, in the context of Trichuris muris infection, IL-33

expression was enhanced in resistant mice. After infection with

T. muris, treatment with recombinant IL-33 conferred resis-

tance against the infection and promoted a Th2 response (IL-4,

IL-13 and IL-9) whereas it suppressed Th1- and Th17-type

cytokine expression (IFNγ, TNFα and IL-6).209

In the context of systemic inflammation, such as that

occurring during sepsis, IL-33 was found to be beneficial.210

Indeed, in the murine CLP model, extracellular IL-33 inhibited

the expression of G protein-coupled receptor kinase-2 (GRK2)

and thereby blocked the TLR4-dependent downregulation of

Figure 3 Extracellular role of interleukin (IL)-33. IL-33 is present in the nucleus of most stromal cells of tissues in contact with the
environment. In the nucleus, IL-33 represses gene expression by facilitating chromatin compaction. Little is known concerning IL-33
translocation to the cytoplasm (1). IL-33 lacks a secretion signal and, therefore, active release may require packaging in noncanonical
secretory vesicles (2). Processing by caspases inhibits the proinflammatory function of IL-33 (3). It is therefore likely that IL-33 is released
in its full-length form either actively or passively following cell damage (4). However, in the extracellular space, cleavage of IL-33 by
neutrophil cathepsin G or elastase promotes its proinflammatory activity (5). Both full-length and cleaved IL-33 interact with the ST2
receptor and further recruit the accessory receptor, IL-1 receptor-3 (IL-1R3), to trigger proinflammatory signals or T helper 2 (Th2)-type
cell maturation and response (6). Interestingly, IL-33 extracellular function is regulated in time and space by rapidly occurring oxidation
that inhibits its binding to ST2 (7).
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the chemokine receptor CXCR2 in neutrophils. This fostered

neutrophil recruitment and microbial clearance at the local

site of infection. Interestingly, although IL-33 did not affect

the local release of proinflammatory cytokines, systemic

IL-33 treatment reduced the concentration of blood and lung

cytokines, thereby limiting the systemic inflammation induced

by sepsis.

IL-33 and chronic inflammatory diseases

In the lung, epithelial cells are the main source of IL-33.

Indeed, upon inflammatory stress, epithelial cells can be

damaged and release IL-33 into the extracellular space. For

example, IL-33 was shown to be deleterious during the

development of asthma. In fact, the levels of IL-33 are higher

in asthma patients than in normal individuals,211,212 and the

same is true in a mouse model of ovalbumin (OVA)-elicited

inflammation.213 Interestingly, when treated with blocking

antibodies specific for ST2 or IL-33 at the time of OVA

stimulation, mice presented diminished eosinophil infiltration,

less inflammation and reduced airway hyperresponsiveness

(AHR).214,215

The role for IL-33 in the development of exacerbated lung

inflammation was recently further characterized in the context

of chronic obstructive pulmonary disease (COPD) and viral

infection-induced development of AHR.216 Cigarette smoke is

considered one of the most important causes of COPD

development. Moreover, in COPD patients, viral infection is

often associated with acute exacerbation and AHR.217–219

Kearley et al showed that cigarette smoke induces the increased

expression of IL-33 in epithelial cells.216 Upon tissue damage

induced by viral infection, this increased supply of IL-33 is

released and exacerbates inflammation. Interestingly, the

authors also demonstrated that cigarette smoke induced a shift

in the type of immune response by controlling the expression

of ST2 and IL-1R3. Indeed, cigarette smoke induced a dramatic

decrease in ST2/IL-1R3 expression in Th2 T cells and type 2

innate lymphoid cells, thereby reducing the release of Th2-

related cytokines (i.e., IL-5 and IL-13) by these cells. In parallel,

cigarette smoke induced an increase in ST2/IL-1R3 expression

in macrophages and NK cells that led to an increase in the

secretion of TNFα, IL-12 and IFNγ. This could therefore

explain the exacerbated inflammation found in COPD patients.

Like HMGB1 and IL-1α, IL-33 was shown to be involved in

other chronic inflammatory settings, such as atherosclerosis

and arthritic joint inflammation. Indeed, recombinant IL-33

treatment of high-fat-diet ApoE − /− mice, an animal model

of atherosclerosis, induced increased blood concentrations of

IL-4, IL-5 and IL-13, whereas it decreased the level of IFNγ.220

Hence, in these settings, IL-33 switched the immune response

from a Th1-type to a protective Th2-type response. In a similar

manner, IL-33 and ST2 proved to have protective effects in the

context of obesity.221 In fact, treatment of obese mice (ob/ob)

with IL-33 increased the ST2-dependent levels of Th2 cytokines

in the blood and adipose tissue and improved the metabolic

parameters of these mice.

In opposition with its role in atherosclerosis, IL-33 was

previously found to be deleterious in the context of arthritic

joint inflammation.222,223 In fact, a dramatic increase in

the synovial and serum levels of IL-33 was detected in

patients with active RA.224 Moreover, when immunized with

collagen, ST2-deficient mice developed strongly reduced

arthritis when compared with WT mice. Treatment with

recombinant IL-33 increased synovial inflammation and the

secretion of proinflammatory cytokines by mast cells.222 As

expected, treatment of collagen-immunized mice with ST2-

specific blocking antibodies reduced the development of

arthritic joint inflammation.223

Together, the central position of IL-33 at the junction

between the innate and adaptive immune responses makes it

an important modulator of inflammation in a broad array of

both acute and chronic inflammatory diseases. However,

similarly to HMGB1 and IL-1α, IL-33 may prove to be a

challenging drug target because of its variable effects in distinct

inflammatory contexts.

S100

The S100 family of proteins is composed of 25 members that

exert a large variety of intracellular and/or extracellular

functions. Inside cells, S100 proteins regulate cell prolifera-

tion, differentiation, migration, energy metabolism, Ca2+

homeostasis, inflammation and cell death. Once released

into the extracellular space, particular S100 proteins act as

alarmins through their interaction with different receptors,

orchestrating both innate and adaptive immune responses,

cell migration and chemotaxis as well as tissue development

and repair.225–227

S100 protein expression and intracellular functions

S100 proteins are part of the calcium homeostasis machinery

that has a crucial role in maintaining sufficient concentra-

tions of intracellular Ca2+ for cell metabolism yet restricting

excessive storage that could lead to Ca2+ precipitation or

overwhelm the cell metabolism (Figure 4). The expression of

the different S100 proteins is cell dependent and is regulated

by specific growth factors, cytokines or activation of cell

surface PRRs.225,227 Most S100 proteins are of rather small

size (⩽14 kDa) and are encoded by genes clustered on

chromosome 1q21.228 One interesting exception to this rule

is S100B, the coding gene of which is located on chromo-

some 21q22.3 and is found to be overexpressed in patients

with Down syndrome.229,230 S100B is also unique in the fact

that its expression has been associated with cells of neural

crest origin, and it is now considered one of the best

biomarkers of melanoma.231,232

S100 proteins exert their intracellular functions in the

nucleus or cytoplasm by interacting with other target

molecules, such as enzymes, cytoskeletal proteins, receptors,

transcription factors and nucleic acids.227 These interactions

are often a critical step for Ca2+ binding and are therefore

integral parts of calcium homeostasis. Another critical step

for S100 protein activation is the formation of homo- or
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heterodimers. Binding of ions (Ca2+, Zn2+ or Cu2+) occurs via

interactions with the S100 EF-hand domain, a conserved helix-

loop-helix motif found in all calcium-binding proteins. Each

S100 protein present in the dimer contributes to ion binding as

well as to the interaction with the target molecules.233

In healthy conditions, the functions of S100 proteins are

extremely diverse and not only relate to the management of

calcium storage and shuffling but also extend to specific cell

functions, such as scavenging of ROS and nitric oxide

(i.e., S100A8/A9), cytoskeleton assembly (i.e., S100A1,

S100A4, S100A6, S100A9), membrane protein recruitment

and trafficking (i.e., S100A10, S100A12), transcriptional

regulation and DNA repair (i.e., S100A4, S100A11, S100A14,

S100B), cell differentiation (i.e., S100A6, S100A8-A9, S100B),

release of cytokines and antimicrobial agents (degranulation)

(i.e., S100A8-A9, S100A12, S100A13), muscle cell contractility

(i.e., S100A1), cell growth and migration (i.e., S100A4, S100A8-A9,

S100B, S100P) and apoptosis (i.e., S100A6, S100A9, S100B)

(Figure 4). Because of space constraints, we will not discuss

the physiological roles of S100 proteins in additional

detail. However, others have described the biological

mechanisms involving S100 proteins.225,226,228,234–236

S100 protein secretion, receptor interaction and post-

translational modifications

S100 proteins have been detected in the extracellular space and

certain body fluids, such as serum, urine, sputum, cerebrosp-

inal fluid and feces, where they are generally associated with a

state of disease.237–240 S100A8/A9, S100A12 and S100B are even

considered biomarkers of specific diseases, such as cancer,

atherosclerosis and stroke.231,241–245

Like all alarmins previously described, S100 proteins lack a

secretion leader sequence and therefore cannot be secreted

through the classical ER–Golgi secretion pathway. The exact

mechanisms that regulate the release of S100 proteins remain

unclear thus far. Nevertheless, the secretion of S100 proteins

occurs either passively upon cell necrosis or actively following

cell activation (Figure 4). In fact, S100A8/A9 and S100A12 (also

called calgranulins) were found to be released actively upon

myeloid cell activation and subsequent tubulin-dependent

translocation to the plasma membrane.245–248 S100A8/A9 were

also found to be part of neutrophil extracellular traps, a

mesh-like agglomerate composed of proteins and nucleic acids

that are released as antimicrobial weapons by activated

neutrophils.249 Similarly, S100B is released upon brain, lung

or muscle tissue damage.250–253

Figure 4 Role of S100 protein in cell housekeeping and inflammation. S100 proteins are ubiquitously expressed in all cells and are
crucial regulators of the calcium homeostasis machinery (1). The intracellular functions of S100 proteins also extend to specific cell
functions such as transcriptional regulation and DNA repair (2), membrane protein recruitment and trafficking (3) and cytoskeleton
assembly (4). The exact mechanisms that regulate the release of S100 proteins remain unclear thus far. Nevertheless, the secretion of
S100 proteins occurs either passively upon cell damage or actively following cell activation (5). Once released into the extracellular space,
S100 proteins interact with several receptors, most importantly RAGE and TLR4 (6). Upon binding to their receptors, S100 proteins trigger
proinflammatory pathways promoting cell migration, proliferation and differentiation (7). S100 protein-induced signaling pathways also lead
to the expression of MMPs and CAMs, thereby promoting chemotaxis and tissue remodeling (8). Certain S100 proteins, such as S100A8/
A9, are extremely sensitive to oxidation (9). Their redox state acts as a molecular switch from proinflammatory function to protective
wound-healing and antioxidant function. In return, oxidation-sensitive S100 proteins are believed to act as scavengers of ROS and NO and
thereby prevent oxidative stress. CAM, cell adhesion molecule; MMP, matrix metalloproteinase; NO, nitric oxide; RAGE, receptor for
advanced glycation end-products; ROS, reactive oxygen species; TLR4, Toll-like receptor 4.
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Once released to the extracellular space, S100 proteins trigger

immune cell activation through binding to different cell surface

receptors, thereby mediating different effects depending on the

S100 protein and the target cell. Similar to HMGB1, RAGE is

considered the most important cell surface receptor for S100

proteins (Figure 4). S100A12 was the first S100 protein for

which binding to RAGE was characterized,254 and this inter-

action is greatly increased by S100A12 capture of Ca2+ or Zn2+

ions.255,256 RAGE N-glycosylation also appears to play an

important role for the recruitment of several S100 proteins

and is believed to promote receptor clustering.257,258 Like

S100A12, S100B binds to the RAGE V-domain and promotes

RAGE multimerization and subsequent activation, thus pro-

moting cell survival.259 In contrast, S100A6 is one of the rare

RAGE ligands shown to interact with the RAGE C2-domain

and was shown to have more of a proapoptotic effect.227,260

Interestingly, at the surface of myoblasts, S100B was shown to

interact with the basic fibroblast growth factor and its receptor,

fibroblast growth factor receptor 1, leading to the recruitment

and subsequent inactivation of RAGE.250 The S100A8/A9

heterodimer has also been proposed to bind to RAGE,

triggering proinflammatory signaling and cell migration.261,262

Yet, the binding is rather weak263 and seems to rely on S100A9

and the presence of Ca2+ or Zn2+ ions. In fact, an extracellular

function of S100A8/A9 has been associated with the activation

of other receptors, and this has been the subject of controversy.

Indeed, the S100A8/A9 heterocomplex was first believed not to

bind to TLR4, and it was rather the S100A8 homodimer that

was thought to bind to TLR4.264 More contradictory results

came from another study that concluded that S100A9 bound

better to TLR4-MD2 and that this was enhanced by the capture

of Ca2+ and Zn2+.263 Recent data reinforced the potential role

of S100A8 in the activation of TLR4 in monocytes.265 Treat-

ment of mouse and human monocytes with S100A8 closely

resembled LPS stimulation on the transcript level. TLR4 gene

knockdown or steric inhibition studies demonstrated the

proinflammatory effect of S100A8 stimulation to be TLR4

dependent.265 Furthermore, other receptors have been impli-

cated in sensing S100 proteins, and these include G protein-

coupled receptors,266,267 scavenger receptors 268,269 and cell

surface heparan sulfate proteoglycans.270

It is important to note that similar to HMGB1 and IL-33,

some S100 protein functions can be modulated by post-

translational modifications, such as oxidation.271–273 For exam-

ple, S100A8/A9 are very sensitive to oxidation, and their redox

state acts as a molecular switch from a proinflammatory

function (reduced) to a protective wound-healing and anti-

oxidant function (oxidized).271 In contrast, oxidation of S100B

was shown to be necessary for binding to RAGE and the

subsequent increase in the expression of the angiogenic factor

VEGF, an important player in the development of macular

degeneration.273

S100 proteins at the onset of acute inflammation

Upon release following cell death and tissue damage, several

S100 proteins are passively released and act as DAMPs,

signaling mainly through RAGE and TLR4, and thus contribute

to the regulation of post-traumatic injury and inflammation

following myocardial infarction, stroke or brain trauma.

For example, S100A1 is the most highly expressed S100

protein in cardiomyocytes and was shown to be released upon

cell damage following ischemia–reperfusion injury associated

with myocardial infarction.274,275 Once released, S100A1 acti-

vates the surrounding cardiac fibroblasts through TLR4 and

triggers the MAPK and NF-κB proinflammatory pathways.274

However, S100A1 not only promotes proinflammatory signals

but also regulates a complex balance between pro- and anti-

inflammatory pathways associated with the antifibrotic upre-

gulation of matrix metalloproteinase 9 (MMP9) and the

downregulation of type I collagen and connective tissue growth

factor. Moreover, S100A1-blocking antibodies increased fibro-

sis and infarction size, thus resulting in greater myocardial

dysfunction.274 Hence, S100A1 plays a beneficial role following

heart injury, promoting muscle tissue repair and maintaining

contractility. Similarly, S100A4 release following myocardial

infarction was shown to be protective by promoting SMC

motility, proliferation and differentiation.276 In stark contrast

with S100A1 and S100A4, in a mouse model of angiotensin-

induced cardiac damage, the S100A8/A9 heterodimer was

shown to be released by granulocytes that infiltrated the muscle

tissue.277 Once released, S100A8/A9 signaled through RAGE

expressed at the surface of cardiac fibroblasts and thereby

upregulated proinflammatory gene expression, inducing the

critical release of cytokines and chemokines. In this model, the

use of blocking S100A9 antibodies reduced the accumulation of

fibroblasts, thus decreasing fibrosis while diminishing local

inflammation. These data therefore indicate that the damage-

associated release of S100A8/A9 has the opposite effect of

S100A1 or S100A4 in that it promotes myocardial tissue

inflammation and fibrotic scar formation. Similarly, following

myocardial infarction, S100B can be released in high dose from

injured cardiomyocytes and, through RAGE, further promote

cell apoptosis,278 whereas in other contexts, RAGE promotes

autophagy rather than apoptosis.279 S100B also promotes the

RAGE- and NF-κB-dependent secretion of VEGF from cardi-

omyocytes, thereby engaging myofibroblast proliferation and

scar formation.280

Much attention has also been paid to the role of S100B in

the central nervous system (CNS). In the brain environment,

S100B function seems to be regulated by its concentration.

Indeed, at low doses, S100B promotes neuron survival.

However, in higher doses, S100B triggers apoptosis and is

therefore associated with brain damage and neurodegeneration.

In fact, S100B is released after stroke or following surgery and

has been used as a marker to measure the extent of CNS

damage and predict clinical outcome following brain injury.242

S100 proteins and chronic inflammation

One example of the involvement of S100 proteins in the

establishment of long-term chronic inflammatory disease is

found in atherosclerosis. Indeed, while studying the influence

of RAGE in the development of atherosclerosis in the
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ApoE− /− mouse model, Harja et al.112 found the critical

contribution of the S100B–RAGE axis in vascular inflammation

and endothelial cell dysfunction during atherosclerotic plaque

development. RAGE expression by endothelial cells was found

to increase the expression of adhesion molecules (VCAM-1),

cytokines and chemokines as well as MMP2 in the aortic tissue,

thereby promoting the recruitment of immune cells to the

forming plaque. The in vitro stimulation of primary endothelial

cells with S100B was shown to replicate these findings and to

trigger the activation of the extracellular signal-regulated

protein kinase-1/2 (ERK1/2) and JNK proinflammatory path-

way. In addition to S100B, serum S100A12 levels are increased

in patients with coronary artery disease after plaque rupture.281

Thus, S100A12 is now being considered a biomarker of

coronary artery disease.244 In this circumstance, S100A12

inhibits MMP2, 3 and 9 in atherosclerotic plaques.281 More-

over, the presence of S100A12 promotes remodeling and

calcification of atherosclerotic plaques in a RAGE-dependent

manner in transgenic ApoE − /− mice expressing human

S100A12 in SMCs.282,283 Plaque calcification is believed to be

partly mediated by SMCs that, under oxidative conditions,

undergo an S100A12/RAGE-dependent procalcific phenotypic

switch to osteoblast-like cells.283,284 Similarly, S100A8/A9 are

found in abundance in macrophages and foam cells present in

human atherosclerotic plaques, where they were shown to

promote dystrophic calcification.285,286 However, the

oxidation-sensitive nature of S100A8/A9 present in high

amounts in atherosclerotic plaques might mean that the

complex acts as an oxidant scavenger and thus promotes

wound healing and protects other cell components against

damaging oxidation.271

In correlation with their role in atherosclerosis development,

S100A8/A9 were shown to drive the RAGE-dependent and

hyperglycemia-induced increase of myelopoiesis occurring in

diabetic mice.287 Indeed, in diabetic mice (streptozotocin-

elicited or from an Ins2Akita background), the release of S100A8/

A9 by activated neutrophils induced the RAGE-dependent pro-

liferation of granulocyte and macrophage progenitor cells in the

bone marrow. This increased the total quantity of monocytes and

neutrophils infiltrating atherosclerotic lesions and thus impaired

plaque regression. Interestingly, antidiabetic treatment normal-

izing the glycemia of Ldlr− /− atherosclerotic mice was sufficient

to decrease the number of circulating monocytes and neutro-

phils and thereby reduced the atherosclerotic lesions. Most

importantly, an increase in the serum white blood cell count

correlated with a higher S100A8/A9 concentration in patients

with coronary artery disease.287 In accordance with these data,

increased serum levels of S100A8/A9 were found in obese

patients and were linked to the increased expression of the

macrophage marker CD68 in the visceral adipose tissue.288,289

However, S100A8/A9 serum levels were found to be reduced to

normal levels following weight loss. These results, together with

the previously mentioned studies linking S100A8/A9 to ather-

osclerosis development, may partly explain the prevalence of

atherosclerosis associated with obesity and diabetes. In addi-

tion, blood levels of S100A12 have been found to be increased

in diabetic patients and to correlate with a higher risk of

cardiovascular disease development.244

Further implicating S100 proteins in the development of

chronic inflammatory diseases, calgranulins (S100A8/A9 and

S100A12) were shown to be involved in the joint inflammation

associated with RA.290 S100A8/A9 are highly upregulated in

macrophages and neutrophils from patients with juvenile

rheumatoid arthritis, and S100A8/A9 titers in the serum and

synovial fluid correlates with disease severity.247,291 The

S100A8/A9 and S100A12 synovial fluid protein levels were

found to specifically correlate with RA and were proposed as

specific markers to differentiate RA from other forms of

inflammatory arthritis.292,293 In this context, S100A8/A9 were

found to originate from monocytes, which release S100A8/A9

upon interaction with activated endothelial cells, thereby

enhancing the inflammatory environment.247 Extracellular

stimulation of human monocytes with S100A8/A9 was later

shown to trigger NF-κB activation with subsequent release of

proinflammatory cytokines.294 In addition to their monocytic

origin, S100A8/A9 expression was found to be increased in

chondrocytes present in the inflamed joints of IL-1Ra-deficient

mice that rapidly develop arthritis-like symptoms. In this

context, stimulation of chondrocytes with extracellular

S100A8 activated the NF-κB pathway and the subsequent

release of cytokines and several MMPs,295 and this stimulatory

activity was subsequently attributed to signaling through

TLR4.296 It is also interesting to note that RAGE expression

increases in the joints of arthritic mice.297 Indeed, an Ager

gene polymorphism coding for the G82S mutation was shown

to increase the binding of S100A12 in vitro and promoted

S100A12-induced inflammation.297 This is even more interest-

ing because this Ager G82S polymorphism has a higher

prevalence in RA patients.297 Local intra-articular corticoster-

oid treatment of RA patients induced reduced concentrations

of serum and synovial S100A12, further linking calgranulins to

the arthritic joint inflammatory environment.293 Together,

these studies demonstrate the central role of S100A8/A9

and S100A12 in the establishment of the inflammatory micro-

environment present in the arthritic joints and the

metalloproteinase-dependent destruction of cartilage. It is also

worth noting that the synovial fluid level of calgranulins found

in active arthritic joints is higher than the serum levels, further

supporting the idea of an intra-articular origin of calgranulins

(infiltrating macrophages and granulocytes or chondro-

cytes).247,294,298 However, the exact role of TLR4 or RAGE in

this context is not yet entirely clear.

In addition to calgranulins, both S100A4 and S100B

were found to activate the ERK1/2 and NF-κB proinflamma-

tory pathways through RAGE expressed at the surface of

chondrocytes, thereby triggering an increase in MMP13

expression that could potentially contribute to arthritic carti-

lage destruction.299,300

Notably, several S100 proteins have been linked to the

development of skin lesions in psoriasis. Indeed, S100A8/A9

levels were shown to be elevated in psoriatic skin lesions.301,302

Stimulation of normal keratinocytes with S100A8/A9 induced
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the secretion of proinflammatory cytokines and chemokines

that in turn promoted S100A8/A9 expression in an autocrine-

positive feedback loop,303 thus mimicking the proinflammatory

environment found in psoriatic lesions. Furthermore, S100A7

and S100A15 were shown to promote the chemoattraction of

monocytes, neutrophils and CD4+ T cells and trigger the

production of proinflammatory cytokines in the context of

psoriatic skin lesions.304–306 However, only S100A7 required

RAGE for its chemotactic activity,304 underlining potential

differences in the role of S100A7 and S100A15 in psoriasis.

S100 proteins and cancer

Like all of the alarmins described above, several S100 proteins

have been identified as central mediators for the development

of a multitude of cancers and have been shown to contribute to

tumor cell proliferation, metastasis, angiogenesis and immune

evasion.307–309 The role of S100 proteins in cancer is considered

to be type and stage specific, and each type of cancer seems to

exhibit a different S100 protein profile.307 Several groups

recently reviewed the intricate role of S100 proteins in cancer

in great detail.307–309

CONCLUDING REMARKS

A large body of evidence suggests that several proteins hidden

inside cells have both intracellular roles and extracellular

functions that contribute to the rapid recruitment and response

of the immune system to infection and damage. During

chronic damage and metabolic perturbations, these proteins

are integral to complex proinflammatory events with shared

regulatory mechanisms that result in either tissue repair or

tissue damage and organ dysfunction. The pharmacological

targeting of such DAMPs could therefore be of benefit.

However, alarmins have intricate local and systemic roles

which depend on their post-translational modification status,

differential receptor engagement and the cell-type affected.

Thus, targeting alarmins remains challenging.
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