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HMM-Based Multipitch Tracking for Noisy
and Reverberant Speech

Zhaozhang Jin, Student Member, IEEE, and DeLiang Wang, Fellow, IEEE

Abstract—Multipitch tracking in real environments is critical for
speech signal processing. Determining pitch in reverberant and
noisy speech is a particularly challenging task. In this paper, we
propose a robust algorithm for multipitch tracking in the presence
of both background noise and room reverberation. An auditory
front-end and a new channel selection method are utilized to ex-
tract periodicity features. We derive pitch scores for each pitch
state, which estimate the likelihoods of the observed periodicity fea-
tures given pitch candidates. A hidden Markov model integrates
these pitch scores and searches for the best pitch state sequence.
Our algorithm can reliably detect single and double pitch contours
in noisy and reverberant conditions. Quantitative evaluations show
that our approach outperforms existing ones, particularly in rever-
berant conditions.

Index Terms—Hidden Markov model (HMM) tracking, multi-
pitch tracking, pitch detection algorithm (PDA), room reverbera-
tion.

I. INTRODUCTION

P
ITCH determination is a fundamental problem that at-

tracts much attention in speech analysis. A robust pitch

detection algorithm (PDA) is needed for many applications

including computational auditory scene analysis (CASA),

prosody analysis, speech enhancement/separation, speech

recognition, and speaker identification. Designing such an

algorithm is challenging due to harmonic distortions brought

about by acoustic interference and room reverberation.

Numerous PDAs have been developed to detect a single pitch

track under clean or modestly noisy conditions (see [6] for a

review). The presumption of a single pitch track, however, puts

limitations on the background noise in which PDAs perform.

A multipitch tracker is required when the interfering sound

also contains harmonic structure (e.g., background music or

another voice). A number of studies have investigated detecting

multiple pitches simultaneously. Tolonen and Karjalainen [27]

designed a two-channel multipitch analyzer with an enhanced
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summary autocorrelation function. Wu et al. [32] modeled pitch

period statistics on top of a channel selection mechanism and

used a hidden Markov model (HMM) for extracting continuous

pitch contours. Bach and Jordan [2] presented a model based

on direct probabilistic modeling of the spectrogram of the

signal using a factorial HMM for characterizing pitch. More

recently, the mixture power spectrum was modeled as a sum

of parametric source models that were trained from the voiced

parts of speech [23]. Klapuri [15] proposed an “estimation

and cancellation” model that iteratively detects pitch points

for polyphonic music and speech signals. Hu and Wang [12]

suggested a tandem algorithm to estimate pitch and segregate

voiced speech jointly and iteratively.

Room reverberation smears the characteristics of pitch (i.e.,

harmonic structure) in speech and thus makes the task of pitch

determination more difficult. The performance of existing sys-

tems is expected to degrade substantially in reverberant environ-

ments [3]. Little research has attempted to design and evaluate a

multipitch tracker for reverberant speech signals, and what con-

stitutes true pitch is even unclear in these conditions.

This paper proposes a multipitch tracking algorithm for both

noisy and reverberant environments. First, we suggest a method

to extract ground truth pitch for reverberant speech and use it as

the reference for performance evaluation. After front-end pro-

cessing, reliable channels are chosen based on cross-channel

correlation and they constitute the summary correlogram for

mid-level pitch representation. A pitch salience function is de-

fined from which the pitch score of the observed correlogram

given a pitch state is derived. The notion of ideal binary mask

[30] is employed to divide selected channels into mutually ex-

clusive groups, each corresponding to an underlying harmonic

source. Finally, an HMM is utilized to form continuous pitch

contours. The proposed method will be shown to be robust to

room reverberation.

The paper is organized as follows. The next section discusses

the question of what the pitch of reverberant speech should be.

Sections III–V describe the detail of the proposed algorithm

stage by stage. Results and comparisons are given in Section VI.

We discuss related issues and conclude the paper in Section VII.

II. WHAT SHOULD BE GROUND-TRUTH PITCH IN

REVERBERANT SPEECH?

Before embarking on designing a multipitch tracker for rever-

berant speech, it is essential to establish a working definition of

pitch in reverberant speech. This would not only point to what

should be pursued, but also give a reference (or ground truth)

pitch for evaluation purposes.

1558-7916/$26.00 © 2010 IEEE
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Pitch is a percept which is closely related to fundamental fre-

quency. Following the tradition of computational literature (see,

e.g., [10]), we use the term “pitch” to refer to fundamental fre-

quency in later sections. In voiced speech, the fundamental fre-

quency is usually defined as the rate of vibration of the vocal

folds [33]. PDAs are then designed to estimate these glottal pa-

rameters directly from the speech signal which tends to be less

periodic because of movements of the vocal tract that filters the

excitation signal.

However, room reverberation causes the relationship between

the excitation signal and the received speech signal to degrade

due to the involvement of another filter which characterizes the

room acoustics. According to the image model [1], the filtering

effect can be modeled as an infinite number of image sources

that are created by reflecting the actual source in room walls.

Therefore, the reverberant speech is an aggregated signal from

all image sources and no longer consistent with the glottal pa-

rameters in the original source. Several studies have attempted

to extract the glottal information by counteracting the reverbera-

tion effects. Unoki et al. [28] utilized the concept of modulation

transfer function and the source-filter model for complex cep-

strum analysis. Prasanna and Yegnanarayana [21] predicted the

location of glottal closure events using the Hilbert envelope of

the linear prediction residual. Flego and Omologo [8] used a mi-

crophone array to remove channel variations for distant-talking

speech. One result of doing so is that it creates a mismatch be-

tween the detected pitch and the actual periodicity of the re-

ceived, reverberant speech, which may cause problems in appli-

cations. For example, a CASA system performing pitch-based

speech segregation [14] would prefer a pitch estimate that is

consistent with the harmonic structure of the reverberant speech

rather than the rate of the glottal movements.

With these considerations, we consider the pitch in rever-

berant speech as the period of the quasi-periodic reverberant

signal itself. Following this definition, we generate reference

pitch contours for reverberant speech by adopting an interactive

PDA [17]. This technique combines automatic pitch determi-

nation and human intervention. Specifically, it utilizes a simul-

taneous display (on the frame-by-frame basis) of the low-pass

filtered waveform, the autocorrelation of the low-pass filtered

waveform, and the cepstrum of the wideband signal. Each sep-

arate display has an estimate of the pitch period and the final

decision is made by a knowledgeable user. More discussion is

given in Section VI-A.

III. FRONT-END PROCESSING

In this stage, our system decomposes the input signal into

the time–frequency (T-F) domain and extracts correlogram and

cross-channel correlation features.

A. Gammatone Filterbank

The input signal is first passed through a gammatone fil-

terbank for time–frequency decomposition. This filterbank sim-

ulates cochlear filtering and is a standard model of the audi-

tory periphery [20]. We use the fourth-order gammatone filter-

bank with 128 channels whose center frequencies are quasi-log-

arithmically spaced from 80 to 5000 Hz. The equivalent rect-

angular bandwidth (ERB) of each channel increases with the

center frequency. The response of a filter channel is

further transduced by the Meddis model of auditory nerve trans-

duction [18], which simulates the nonlinear characteristics of

inner hair cells and produces firing activity in the auditory nerve,

denoted by . Note that both and retain the

original sampling frequency. In each channel, the output is then

cut into 20-ms time frames with 10-ms frame shift. The resulting

time–frequency representation is called a cochleagram and im-

plementation details can be found in [31, Chap. 1]. We use

to denote a T-F unit for frequency channel and time frame

in the cochleagram.

B. Correlogram

The normalized correlogram for T-F unit of

time frame and channel with a time delay is computed

by the normalized autocorrelation shown in (1) at the bottom of

the page, where denotes the frame length in samples. For the

sampling frequency of 16 kHz, the frame size of 20-ms trans-

lates to samples; note that we allow samples from the

neighboring frames to be used in calculating the correlogram.

The denominator in (1) normalizes the correlogram to . The

range of should include the plausible pitch range.

Studies of pitch perception indicate that the pitch of complex

sounds may be derived by combining information from both

fine-structure phase-locking responses (resolved harmonics) in

low-frequency channels and envelope-locking responses (unre-

solved harmonics) in high-frequency channels [4], [19]. Use of

the neural underpinnings of pitch perception have proven to be

useful in several CASA-based pitch detection models [11], [32].

However, in the reverberant case, pitch-related temporal-enve-

lope cues are more degraded than fine-structure cues [24]. This

is because the phase relationship of the harmonic components is

randomized due to the filtering effect of reverberation, causing

the complex sound reaching our ears to have a much less-modu-

lated temporal envelope than the waveform of the sound source.

In contrast to envelope responses, adding reverberation has little

effect on temporal responses [24]. To make our system robust

to room reverberation, we choose to only use the correlogram

computed directly from the filter responses , rather than

the temporal envelopes of .

(1)



JIN AND WANG: HMM-BASED MULTIPITCH TRACKING FOR NOISY AND REVERBERANT SPEECH 1093

Fig. 1. Percentage of energy belonging to selected channels. (a) � � � s.
(b)� � ��� s. The solid lines represent “speech � speech” cases and the
dotted lines represent “speech � white noise” case.

C. Cross-Channel Correlation

To detect pitch in noisy speech, it is suggested that selecting

less corrupted channels from the correlogram improves the ro-

bustness of the system [22], [32]. In [32], for example, the max-

imum peak value at nonzero lags in is compared

against a predetermined threshold to decide whether a low-fre-

quency channel is noisy. A high-frequency channel is selected

when the envelope of has a similar shape to that of

another calculated using a bigger time window, but

we find that it does not work well when reverberation is present.

The main problem lies in high-frequency channels where enve-

lope responses become highly degraded by reverberation.

We suggest the use of cross-channel correlation as an alter-

native method for channel selection. Due to their overlapping

bandwidths, adjacent channels tend to have very similar pat-

terns of periodicity in the correlogram if they are activated by a

single harmonic source [25]. The cross-channel correlation be-

tween and is

(2)

where is further normalized over to

have zero mean and unit variance, and is the maximum delay

in the plausible pitch range. gives a high value when a

harmonic source has its strong presence and a low value when

no harmonic source is present or background noise is dominant.

Therefore, we select channels in time frame according to

(3)

where is a threshold. Note that a relatively low

threshold is used compared to [11] where the purpose is seg-

mentation, not channel selection.

To demonstrate the robustness of channel selection, we calcu-

late the percentage of energy belonging to selected channels in

each frame as , where

is the energy calculated as the sum of squares of the filter re-

sponse within . Fig. 1 displays this percentage of selected

energy as a function of time frame in different types of interfer-

ence under both anechoic and reverberant conditions. As shown

in the figure, reverberation has little consequence on selected

channels.

IV. PITCH STATE SPACE

In this paper, we aim to track up to two pitches simultane-

ously; thus, the state space of pitch can be defined as a union

space consisting of three subspaces with different dimension-

alities [26], [32]

(4)

where

The three subspaces represent zero-, one-, and two-

pitch hypotheses, respectively. We use the empty set to indi-

cate the absence of pitch, and time lags and to represent

first and second pitch candidates. The range of pitch periods

and , given in samples, corresponds to [2 ms, 12.5 ms] with the

16-kHz sampling frequency. This range translates to the pitch

detection range from 80 to 500 Hz, a typical frequency range

that covers both male and female speech in daily conversations.

A. One-Pitch Hypothesis

When a pitch state , it is assumed that there is one

and only one pitch in the current frame. To derive the pitch score

in frame given a pitch state , we first define

the salience (or strength) of pitch candidate within frame

as

if

else

(5)

The logarithmic operation acts like a pre-emphasis filter [13]

which relieves the problem of high energy concentration in the

low-frequency range for natural speech. The salience function

is essentially a weighted summary correlogram over the set

of selected channels . When a pitch exists, it is expected

to have a predominant peak at the corresponding time delay

and channel selection suppresses other “erroneous” peaks. Note

that, if no channel is selected (e.g., in the case of pure noise),

we set the salience function to zero for all pitch lags. In order

to overcome subharmonic errors, when a peak in is above

a threshold , its related higher-order peaks are sup-

pressed if they exist (see [7]).

The pitch score is then simply the modified salience

(6)

B. Two-Pitch Hypothesis

When the noise has some periodic components or is another

speech signal, we should capture both pitches—this is when the

two-pitch hypothesis comes into play. In the following, we de-

rive the pitch score given a pitch state .
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Fig. 2. Pitch salience function � in one time frame in a mixture of two speakers. Note that � is symmetric. The zero-setting step [as in (9)] is omitted in order
to display the function smoothly. Plot (a) corresponds to the anechoic condition (� � � s) and plot (b) to the reverberant condition (� � ��� s). Brighter color
indicates higher salience. The two panels show similar patterns and similar peak locations. The bright horizontal and vertical lines at multiples of 52 indicate one
harmonic source with its pitch period at � � ��. By searching for the global peaks, highlighted by white circles, the pitch period of the other source is found
correctly at � � ���.

It is not straightforward to design a pitch salience function in

this situation because we are dealing with two pitches with the

function expected to show a peak at or near the two true pitch

periods. Since detecting multiple pitches is related to sound sep-

aration [31], we employ the notion of ideal binary mask [30]

by assuming that each T-F unit is dominated by either one har-

monic source or the other. Therefore, we divide the selected

channels into two groups, each corresponding to one source:

(7)

and

(8)

In other words, among all the selected channels, we assign a

channel to source 1 if the correlogram has a higher value at

than and source 2 otherwise. Note that

and . Following this idea, we define a pitch

salience function for in each frame , shown in (9) at the

bottom of the page. The function is set to zero when either

or is the empty set. We expect that this salience function

generates a high peak near the two real pitch periods, since

and should coincide with the peak locations in the channels

from and , respectively.

An appealing property of is that room reverberation

hardly affects the peak formation near the real pitch periods.

As we know, reverberation distorts the harmonic structure

and causes damped (less peaky) periodic patterns in the cor-

relogram. However, the comparison between and

are unlikely disrupted due to similar degradation

in their values. Fig. 2 plots in one same frame with and

without room reverberation. The absolute value of salience

may be lower in reverberation, but the peak locations are robust

across the two conditions. This feature is a key of our system.

We could have defined similarly to (6), but would

dominate in this case. One way to fix this problem is to re-

place the numerator in (9) by

(10)

It is clear from (10) that is greater than either

or . In other words, the system would be prone

to detecting a “spurious” pitch in the single pitch scenario.

This problem, however, can be alleviated by scaling and

introducing a penalty term in as explained below.

To make and comparable, we define the pitch score by

scaling to the power of . Specifically,

(11)

where and it ensures the scaling

does not change the maximal peak of . The scaling factor

is set to 6 at which the marginal distribution of the scaled

if and

else

(9)
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Fig. 3. Score matching. (a) Before scaling. (b) After scaling. The dotted lines
represent the distribution derived from � and the solid lines represent the mar-
ginal distribution of � by summing across one � .

closely matches the distribution of , as illustrated in Fig. 3.

We find that the choice of is robust to reverberation.

C. Zero-Pitch Hypothesis

When there is no pitch in one frame, i.e., , it implies

silence, unvoiced speech, noise, or a combination. Hence, we

define its pitch score as

if

else if

else

(12)

where and are minimum and variance of

over , respectively. In (12), the first case handles silence and

some unvoiced speech. As shown in Fig. 4(a) and (b), for si-

lence and high-frequency variations in unvoiced speech, their

weighted summary correlograms exhibit high values for all

pitch lags. When all values are greater than , a

high score is assigned to . The second case covers broadband

noise and the rest of unvoiced speech. When only this noise

is present, varies randomly and should have no prominent

peaks [Fig. 4(c)]. In contrast, a harmonic source should exhibit

a peaky distribution (high variance) in [Fig. 4(d)]. Therefore,

with the previously defined and by choosing , we

remove false pitch points from noise while still maintaining the

ability to detect harmonicity buried in noise. In the third case,

at least one pitch should exist, and hence the pitch score in (12)

is set to zero.

D. Parameters

In deriving pitch scores for different hypotheses, there are a

total of five parameters with their values given where they are

introduced. In general, the values of these parameters are chosen

by examining the statistics from a small set of sample mixtures

drawn in both anechoic and reverberant conditions. is intro-

duced in channel selection and it is determined so that a ma-

jority of the target-dominant channels are selected while min-

imizing the chance of including noise-dominant channels. The

Fig. 4. Weighted summary correlogram in a frame. (a) Silence. (b) Unvoiced
speech. (c) White noise. (d) Speech � white noise.

threshold is used to identify strong salience peaks for cor-

recting subharmonic errors and chosen to ensure that nearly all

values exceeding occur at true pitch periods. Note that

the same parameter is used in (12) to detect the existence of

pitch. The scaling factor is chosen to balance and , as

described in IV-B. By incorporating them into probability dis-

tributions, we find an optimal scaling factor when the marginal

distribution of the scaled is closest to the distribution of .

The parameters and in (12) differentiate silence, unvoiced

and wideband noise frames from pitched ones. Their values are

set by calculating the minimum of in all silence/un-

voiced frames and the maximum of in all wideband

noise frames. Note that these parameter values need not be par-

ticular as indicated by their roundedness, and generalize well to

the evaluation corpus used in Section VI even though they are

selected from a small training set of 30 sample mixtures in each

outside the corpus.

V. HMM TRACKING

A. Model Specification

A hidden Markov model is employed as a stochastic frame-

work to find the optimal sequence of hidden pitch states [32].

The HMM is described as follows.

1) Hidden states. Unlike many other practical applications,

there is no ambiguity in defining the state space in our

model. As discussed in the beginning of Section IV, the

state space contains three subspaces corresponding to

zero-, one-, and two-pitch hypotheses, respectively. We

note that the cardinality (number of states) of this space is

28, 562 1 169 169 168 , which is a huge number.

Later, we give ways to improve the computational effi-

ciency. We denote the state in time frame as .

2) Observations. In time frame , the observation is the

correlogram. It is a 128 200 matrix, with each element

taking values in [see (1)].
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TABLE I
TRANSITION SCORES BETWEEN PITCH STATE SUBSPACES

3) State transitions probability . We use a first-order HMM

in which the current state only depends on the previous

state. That is, . There are two aspects

in : The first is the score of jumping between

the three pitch subspaces. To reduce search space, we as-

sume that jumping can only take place between neigh-

boring pitch subspaces. For example, if is in

can be in or , but not . We assign jump scores in

Table I. These numbers do not need to be exact as long as

the diagonal probabilities are sufficiently high, and they are

taken directly from [32] after rounding to the nearest hun-

dredth. The second aspect is pitch continuity. As suggested

in [32], it can be modeled by a Laplacian distribution

(13)

where represents the change of pitch period from one

frame to the next. We limit to further reduce

search space. and are bias and spread, respectively.

Following [32], we let and . Note that

all these coefficients may vary in different corpora and dif-

ferent reverberant environments, but they are not sensitive

for pitch tracking results.

4) Observation probability distribution given a pitch state.

As formulated in (6), (11), and (12), the pitch scores con-

stitute , where

(14)

Note that is not a probability in a strict sense. Here,

we assimilate the pitch score a probability form in order to

facilitate the discussion in the HMM context.

5) Initial state distribution . We assume that every sentence

starts with no pitch, i.e., with probability one.

Given the above HMM, , the task of pitch

tracking is essentially to solve the following problem: given the

observed correlogram sequence , and the

model , find the most likely pitch state sequence

. That is,

(15)

where is the total number of frames and is a sequence of

pitch states. is defined by and is by . The

Viterbi algorithm provides a dynamic programming solution to

the above problem and its time complexity is proportional to the

size of the trellis. For efficient implementation of Viterbi search

procedure, several considerations are suggested in [32].

• Remove from the trellis the least likely transition paths.

This was discussed earlier in the section.

• Use beam search to reduce the total number of pitch state

sequences maintained for comparison in a time frame.

• Trim the size of by only considering pitch candidates in

the vicinity of the local peaks in (11).

These treatments are implemented and dramatically reduce the

search time with almost identical results.

B. Pitch State Tracking

The above HMM framework makes reasonably balanced de-

cisions among different pitch hypotheses. However, biases can

occur in some situations. For example, when speech is mixed

with broadband noise, the level of spectral distortion breaks the

balance, causing the HMM search process to be biased towards

. To overcome this bias, we perform two independent Viterbi

searches within different state spaces, and .

Consequently, we obtain two pitch state sequences and

, which can be viewed as two output candidates, each ca-

pable of tracking at most one or two pitches, respectively. Their

corresponding log likelihoods are denoted by

(16)

and they are normalized by the respective sequence length.

Again, note that the likelihoods are calculated from pitch

scores, thus not in the strict probabilistic sense.

Basically, and can be indicative of choosing as the final

output between and . When broadband noise is

present, is expected to be relatively small due to reduced peak

heights in . On the other hand, when the interference has a

periodic nature, the difference should be large due to

the contribution of the second harmonic source in the likelihood

score. These two aspects suggest a linear combination of and

as a discriminant function which can be written as

(17)

To find the parameters and , we use linear discriminant

analysis (LDA) on the same set of sample mixtures as mentioned

in Section IV-D. The resulting parameter values are

and . Fig. 5 shows the scatter plot of . The two

kinds of mixtures are linearly separable. Note that the two pa-

rameters are not sensitive to different speech corpus and rever-

berant conditions, because of their derivation from likelihood

scores which are defined by pitch salience functions and the in-

clusion of reverberant mixtures in the training set.

Finally, we select the output sequence according to

if

else
(18)
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Fig. 5. Scatter plot of �� � � �. Crosses stand for mixtures with periodic inter-
ference and circles with broadband noise. The solid line is the discriminant plane
from LDA.

TABLE II
LIST OF TEN SELECTED TIMIT SENTENCES (M: MALE, F: FEMALE)

VI. EXPERIMENTAL RESULTS

A. Corpus and Reference Pitch

We construct an evaluation corpus by mixing ten randomly

selected TIMIT utterances [9] with 15 different types of inter-

ference. Table II lists the selected utterances from five male and

five female speakers. In Table III, the interferences are classified

into three categories with five in each category: 1) those with no

pitch; 2) those with some pitch qualities; and 3) other speech ut-

terances, so that pitch tracking is evaluated differently in these

categories (see Section VI-B for details). The interfering sig-

nals are compiled from NOISEX-92 [29], Cooke’s corpus [5],

and TIMIT.

To generate reverberant signals, we simulate room acoustics

by using a MATLAB implementation [16] of the image model

[1]. The model produces the room impulse response (RIR)

when fed with room dimensions, wall reflection coefficients,

and physical locations corresponding to sound sources and

the microphone. To simulate both convolutive and additive

distortions, we first specify in each configuration a random

location for the microphone and then choose two locations

TABLE III
CATEGORY OF INTERFERING SIGNALS

for two sources (target and interference) randomly but control

source-microphone distances to ensure that close-talking sce-

narios are eliminated and signal-to-reverberant energy ratios

are roughly constant in each simulated room. Randomization

is applied to length and width, with height fixed. Note that,

even in the same room, the RIRs from different sources to the

microphone differ significantly. Consequently, a reverberant

mixture is constructed by convolving each source with its

corresponding RIR and adding the two reverberant sources

together at 0-dB signal-to-noise ratio. The resulting mixture

has the sampling frequency of 16 kHz. More discussions can

be found in [14].

To evaluate different reverberant conditions, we simulate

two acoustic rooms with their reverberation time at 0.3

and 0.6 s, respectively. Within each room, we choose three

configurations randomly and construct one reverberant mixture

according to each of these configurations. More details are

provided in Appendix A. Consequently, we generate a total of

1050 mixtures, with the original 150 mixtures in anechoic and

2 3 150 mixtures in reverberant conditions.

To obtain reference pitch contours, we run an interactive PDA

[17] on reverberant speech signals before mixing, as described

in Section II. This technique is not error free. However, as stated

in Hess [10, p. 500], it is harmless to have some errors in the

reference pitch contour if the PDA under evaluation will have

a performance inferior to the reference PDA. This condition is

met in our experiments because: 1) a pitch contour extracted

from the premixed speech is expected to be more accurate than

the one from the same speech mixed with interference; and 2)

the manual labeling step in the reference PDA further reduces

the chance of errors.

B. PDA Performance Measure

To formulate a quantitative measure of PDA performance, we

follow the metric used in [32] and extend it to reverberant cases.

Generally, we use to denote the transition error rate of

frames, where pitch points are detected as pitch points. The

gross error is the percent of frames where the detected pitch

differs with the true pitch by more than 20%. The fine error

is defined as the average deviation from the reference pitch for

those frames without gross errors.

Due to different scenarios of pitch detection in the three cat-

egories of interference, we consider each category individually:

• In Category 1, the total gross error

.

• In Category 2, .

In this category, the reference pitch of interference is not

well defined for the following reasons. First, multiple har-

monic sources recorded together may result in more than
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Fig. 6. Weighted summary correlogram normalized to value 1 at the true pitch
period � � ���. (a) Anechoic speech. (b) Reverberant speech.

one pitch point in a frame (e.g., cocktail party noise and

rock music). Second, interference pitch may lie outside

the range of voiced speech, forcing the algorithm to de-

tect subharmonics instead (e.g., tone, siren and trill tele-

phone). Due to these considerations, Wu et al. [32] only

count missing pitch points for transition errors. To provide

a broader indicator, we detect pitched frames in premixed

interference and use them to give a measure of other transi-

tion errors. Note that and are reported but not

included in the total error because it is possible that there is

no error in detecting the pitch of speech in such transitions.

Also, is measured only in the frames that contain a

speech pitch point.

• In Category 3, since it is a two-talker case, all possible tran-

sition errors together with gross errors are considered. For

the single reference pitch case, it is evaluated as described

earlier. When two reference pitches exist in one frame, a

gross error happens when the detection of either one ex-

ceeds 20% and the fine error is the sum of the two when

applicable.

The above definition of fine error may not reflect well the ac-

curacy of pitch determination in reverberant speech. Because

multiple reflections are added to the original sound in a delayed

and attenuated form, a single frame may fuse harmonic informa-

tion from several preceding frames, resulting in a broader peak

near the reference pitch in the correlogram. Fig. 6 illustrates the

case, where the weighted summary correlograms are calculated

for an anechoic speech signal and a reverberant speech signal in

the same frame. The true pitch period . Let the detected

pitch be 115. As shown in Fig. 6, in both of the conditions,

the fine error is equal to 3 lag steps which does not manifest the

different situations in the figure. A fine error may be more tol-

erable in reverberant space than the same error in the anechoic

condition. Therefore, in addition to measuring the horizontal lag

difference, we measure the percentage of vertical decrease in the

summary correlogram. That is,

% (19)

where is a weighted summary correlogram of all channels

[cf., (5)]. Note that even though might have a comparable

or even higher value in than (e.g., when is a subhar-

monic of ), it rarely happens within ’s 20% range. In case

it happens, we treat it as correct and do not penalize it in the

measure. Also note that is calculated from premixed speech

(i.e., without noise). It is worth pointing out that a vertical mea-

sure is usually used in pitch-based labeling in CASA [31, Ch. 3].

C. Results and Comparison

We compare the proposed system with two multipitch

tracking algorithms proposed by Wu et al. [32] and Klapuri

[15]. Wu et al.’s framework is similar to ours, and it detects

multiple pitches in three stages: auditory front-end processing,

pitch statistical modeling, and HMM tracking. However, there

are significant differences. Their algorithm uses a different

channel selection strategy and pitch scores for different hy-

potheses are explicitly modeled from the statistical relationship

between true pitch and selected peak locations. Due to the

involvement of supervised training, the resulting pitch models

are expected to degrade in mismatched conditions (e.g., room

reverberation).

Klapuri’s algorithm also starts with an auditory model. To

analyze periodicity, it replaces the autocorrelation analysis

with a DFT transform which is claimed to be more robust in

multisource signals and have a wider pitch detection range.

A so-called “summary spectrum” is computed and the pitch

frequencies are iteratively detected by an estimation-and-can-

celation procedure. Since it cannot detect the number of pitches

in each frame reliably, the algorithm is provided with this

number as prior knowledge.

Table IV gives the multipitch detection results of Wu et al.’s

and our algorithm in different reverberant conditions. In Cate-

gory 1, the proposed algorithm has lower fine errors than Wu

et al.’s algorithm according to both and measures. By

performing a one-way ANOVA based significance test on both

measures, we have verified that the above improvement is statis-

tically significant (with ). However, our algorithm

has higher total gross errors when s and 0.3 s, mainly

because the peak selection/modeling strategy in Wu et al.’s al-

gorithm is particularly effective for wideband noise. Notice that

the gross errors have a decreasing trend as the level of reverber-

ation increases, which does not happen in the other categories.

The reason for this peculiar trend is, we believe, that, although

reverberation distorts spectral shapes to make pitch determina-

tion generally more difficult, it can also strengthen some speech

portions previously masked by noise, particularly when noise is

wideband and stationary. In Category 2, the proposed algorithm

produces lower total gross errors in reverberant conditions but

not in anechoic conditions. For fine errors, our algorithm gives

lower rates , particularly according to the

measure . In Category 3, the proposed algorithm

yields significantly lower . Looking at indi-

vidual transition errors, the main improvement comes from the

sum of and , which shows that our algorithm does a

better job in balancing between one- and two-pitch hypotheses.

At the same time, both and indicate that our algorithm

has smaller fine errors in all three ’s .

In Fig. 7, we illustrate the pitch contours detected by Wu et

al.’s and the proposed algorithm. Gross errors and transition

errors are clearly seen in these plots. In the anechoic conditions,

both systems can track pitch contours reliably. However, when

reverberation is added, Wu et al.’s system loses its accuracy and
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TABLE IV
ERROR RATES (IN %) FOR THREE INTERFERENCE CATEGORIES

Fig. 7. Pitch tracking results for a mixture of one male and one female utterance. (a)–(c) plot detected pitch contours from Wu et al.’s algorithm, and (d)–(f) are
from the proposed algorithm. Each column from left to right corresponds to � � ���, 0.3 and 0.6 s, respectively. The solid lines indicate the reference pitch
tracks. The “�” tracks represent the estimated pitch contours.

starts to make many transition and gross errors. Our algorithm

performs well even in the presence of strong reverberation.

As mentioned earlier, Klapuri’s algorithm requires prior in-

formation of the number of pitches in each frame. In this case,



1100 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 5, JULY 2011

TABLE V
ERROR RATES (IN %) WITH PRIOR PITCH NUMBER

FOR TWO INTERFERENCE CATEGORIES

there will be no transition errors and only gross and fine errors.

For a fair comparison, we provide this prior knowledge to both

Wu et al.’s and the proposed algorithms by disabling unrelated

pitch states in the search space and ensure no transition errors

are made in the results. Table V lists the error rates from all

three systems. Note that only the first and the third categories

of noise are evaluated because the pitch numbers are hard to

determine for Category 2 interference for the reasons given in

Section VI-B. For gross errors, the proposed algorithm shows

a clear advantage over the other two algorithms in Category 3

, which reflects the effectiveness of the pro-

posed salience functions and in one- and two-pitch hy-

potheses. In Category 1, Wu et al.’s algorithm has the lowest

gross errors when s and 0.3 s, but it is outperformed

by our algorithm when s. Klapuri’s algorithm almost

always performs the worst and lacks robustness to handle rever-

beration, which indicates that the summary spectrum method

has limitations for wideband noise and is more susceptible to

reverberation. In terms of fine errors, the proposed algorithm

yields the best results in both categories and all reverberant con-

ditions . Klapuri’s system ranks second and

Wu et al.’s almost always has the largest fine errors. It is worth

noting that the above comparison of fine errors should not be

taken independently as a lower rate of gross errors may make it

harder to avoid fine errors. Taking this into account, we have also

evaluated for each algorithm fine errors only for the same set of

frames in which fine errors occur in all three algorithms. With

this measure, all the algorithms yield lower fine errors while our

algorithm reduces fine errors the most.

We have also implemented a version using a 64-channel gam-

matone filterbank that covers the same frequency range as the

original 128-channel filterbank. By doing so, the computation

time is reduced roughly by half. Only one parameter needs to be

adjusted to accommodate this change: , due to the less

overlapping between adjacent channels. The 64-channel version

of our algorithm yields comparable performance, with about one

to two percentage points more total errors in all categories. The

differences in fine error are negligible.

VII. DISCUSSION

The impact of noise and reverberation on speech signals

poses a major problem for pitch determination. The noise

aspect has been studied before, but reverberation has been little

investigated together with interference. A PDA that performs

robustly in everyday listening environments has many appli-

cations. This paper has proposed a multipitch tracking system

for reverberant conditions.

A number of novel considerations are given to the robust-

ness of our algorithm to reverberation. First, in the front-end

processing, we avoid using the temporal envelopes of filter re-

sponses to compute the correlogram in high-frequency channels

(as in [32]) because they are expected to be very sensitive to re-

verberation. A new mechanism of channel selection is utilized

to ensure the effectiveness of noise removal in reverberant con-

ditions. Second, our formulation of pitch salience functions un-

derlies robust derivation of pitch scores. This is worth elabo-

rating. The use of the summary correlogram from only selected

channels improves local signal-to-noise ratio and limits the in-

fluence from broadband noise. In addition, the pitch salience

function for two-pitch hypothesis is defined in a robust way.

The idea of assigning two disjoint groups of channels to two

corresponding pitch periods is closely related to speech sepa-

ration and offers an effective framework to predict how well

these two pitch candidates explain the observed correlogram.

As mentioned in Section IV-B, a prominent peak almost always

appears near the true pitch period in different reverberant condi-

tions. This feature affords our algorithm a considerable benefit

for two-talker mixtures.

Third, one subtle but important aspect of our HMM tracking

is that it not only smooths pitch contours but also plays a key role

in choosing between one- and two-pitch hypotheses. From (5)

and (10), we find that the maximum peak of is always

greater than that of without the penalty term. Therefore,

before Viterbi tracking takes place, our algorithm detects two

pitches in all time frames. During the tracking process, the fea-

ture of pitch continuity can force the algorithm to switch to a

single-pitch hypothesis if the detected pitch periods in neigh-

boring frames are far apart. It is worth pointing out that, when

there exists only one true pitch, the second pitch period is usu-

ally detected at a random location, unlikely near the second pitch

period in the previous frame. This does not occur in the case of

two true pitches. Therefore, our formulation of pitch scores al-

lows the HMM to choose correct pitch hypotheses, which hap-

pens naturally in our formulation. This is, however, not the case

for Wu et al.’s system where the pitch hypotheses are largely

decided before HMM tracking by assigning explicit weights.

These weights are obtained through training and become sen-

sitive to different reverberant conditions.
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TABLE A.I
SETTINGS OF TWO ACOUSTIC ROOMS (L: LENGTH, W: WIDTH, H: HEIGHT)

TABLE A.II
MICROPHONE AND SOURCE LOCATIONS ��� �� �� (IN METERS)

Table A.III
SIGNAL-TO-REVERBERANT ENERGY RATIOS (IN dB)

Like many other PDAs, the proposed algorithm can be readily

extended to detect more than two pitches simultaneously. The

pitch state space needs to be expanded and pitch scores could

be formulated using the same principle as for the two-pitch hy-

pothesis. However, for the application of speech separation, two

dominant pitches are usually enough for segregating foreground

and background streams.

APPENDIX A

ROOM CONFIGURATION SPECIFICATIONS

Tables A.I–A.III provide specifications on the acoustic

rooms, microphone/source locations, and signal-to-reverberant

energy ratios (SRR), respectively, used in our evaluations.
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