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Abstract—This paper presents a recognition system based on
Hidden Markov Model (HMM) for isolated online handwritten
mathematical symbols. We design a continuous left to right
HMM for each symbol class and use four online local features,
including a new feature: normalized distance to stroke edge.
A variant of segmental K-means is used to get initialization of
the Gaussian Mixture Models’ parameters which represent the
observation probability distribution of the HMMs. The system
obtains top-1 recognition rate of 82.9% and top-5 recognition
rate of 97.8% on a dataset containing 20281 training samples
and 2202 testing samples of 93 classes of symbols. For multi-
stroke symbols, the top-1 recognition rate is 74.7% and the
top-5 recognition rate is 95.5%. For single-stroke symbols, the
top-1 recognition rate is 86.8% and the top-5 recognition rate
is 98.9%. (MacLean et al., 2010) applied dynamic time warping
algorithm on all the 70 classes of single-stroke symbols. Their
top-1 recognition rate is 85.8%, and top-5 recognition rate is
97.0%. Our system gets top-1 recognition rate of 85.5% and
top-5 recognition rate of 99.1% on the same 70 classes of single-
stroke symbols.

Keywords-Hidden Markov Model; mathematical symbol
recognition; segmental K-means

I. INTRODUCTION

Mathematical expressions are an indispensable component

of scientific and technical literatures [1]. So far the most

popular way to enter mathematical expressions is either in

a linear format (e.g., TEX), or by using a structured editor

(e.g., equation editor available with MS-Word) [2]. Produc-

ing large and complicated expressions in these two ways

requires a lot of time and mental effort. With the emergence

of pen-based electronic devices, such as PDAs and tablet

PCs, people can simply write mathematical expressions on

the electronic tablet to let the computer recognize them

automatically.

Recognition of mathematical expressions includes two

major steps: symbol recognition and structural analysis [1].

Symbol recognition is the basis of the structural analysis.

It consists of two phases: symbol segmentation and isolated

symbol recognition. The input data of online handwritten

mathematical expression is a set of strokes, and a mathe-

matical symbol may comprise more than one stroke. Symbol

segmentation aims to transform the sequence of strokes into

a set of symbols, which will be classified in the isolated

symbol recognition stage.

In this paper, we will focus on the recognition of isolated

online handwritten mathematical symbols based on Hidden

Markov Model (HMM). We establish a continuous left to

right HMM for each symbol class. A variant of segmental

K-means is used to get initialization of the Gaussian Mixture

Models’ parameters representing the observation probability

distribution of the HMMs. We modify pen-up/down informa-

tion into a new feature, normalized distance to stroke edge.

We use four online local features in total, which contain

more information about each point. Experiment results show

that the variant of segmental K-means can produce better

initialization of the Gaussian Mixture Models’ parameters

and normalized distance to stroke edge is a better feature

than the pen-up/down information.

II. RELATED WORK

A number of approaches have been proposed for online

handwritten mathematical symbol recognition. A group of

methods is based on nearest neighbor scheme. Smithies

et al. [3] proposed a fast user-trained algorithm based

on nearest neighbor classification in a feature space of

approximately 50 dimensions. Vuong et al. [4] proposed

an extended elastic matching algorithm. Elastic matching

is achieved through calculating the minimum distance be-

tween the template symbol and input symbol with dynamic

programming. During the matching process, every point of

the input symbol is matched against that in the template

symbol. Apart from Euclidean distance between points, the

extended elastic matching algorithm also considers slope and

curvature information during its matching process. MacLean

et al. [5] presented a greedy approximate solution to the

dynamic time warping algorithm for recognizing single-

stroke symbols and the time complexity of the algorithm

is linear.

There have also been many rule-based methods. Fitzgerald

et al. [6] used fuzzy logic to extract features, such as

Line, C-shape and O-shape, and classify symbols. In symbol

recognition phase, the system uses two types of fuzzy rules:



high-level rules and low-level rules. High-level rules define

the properties the input symbol must have if it belongs

to a particular class. Low-level rules assess the extent to

which these properties are present. Belaid et al. [7] proposed

an approach based on decision tree classifier. The non-leaf

nodes in the decision tree are the set of rules to classify the

input symbol. Curvature, direction and drawing length are

used as features.

Another group of methods combine different classifiers.

Garain et al. [2] presented a symbol recognition system to

combine two different kinds of classifier. The first classifier

employs a nearest neighbor classification and the second one

uses a left to right HMM. Both the classifiers make use

of direction change and trajectory length as features. The

system combines the two classifiers through three ways:

highest rank method, Borda count and logistic regression,

and logistic regression gets the best performance.

There are several mathematical symbol recognition sys-

tems based on statistical approach. Matsakis [8] presented

a symbol recognition method based on a quadratic dis-

criminant classifier. Winkler et al. [9] proposed a symbol

recognition system based on HMM. Their system extracts

both on-line features and off-line features. They builds three

semi-continuous left to right HMMs for each symbol to

combine the classification results. Two HMMs use the off-

line features while one HMM uses the on-line features. The

online features they used are the local position, the sine and

cosine value of the angle between the horizontal axis and the

vector connecting the previous and the current point, and the

information whether the current point belongs to a stroke or

to an interpolated hidden stroke.

III. METHODOLOGY

A. preprocessing

Our preprocessing method is similar to the one in [10], but

has fewer steps. Our preprocessing procedure just consists

of four steps: duplicate point filtering, size normalization,

smoothing and resampling. These steps reduce noise and

unuseful information for classification.

Duplicate point filtering: duplicate point is the point that

has the same (x, y) coordinates as the previous point and

cannot give any useful information for classification.

Size normalization: the class of a symbol is independent

of its size, therefore size normalization is needed to eliminate

the variation of size. It is achieved by transforming the y

coordinate’s range to be [0, 1] while preserving the width-

height aspect ratio.

Smoothing: smoothing is used to reduce the noise infor-

mation caused by the digital pen’s jitter. Except the first point

and the last of every stroke, the other points’ coordinates are

replaced by the average of the coordinates of current point,

the previous point and the following point.

Resampling: the original points are recorded equidistantly

in time but not in space. In order to remove the influence

of writing velocity, we resample each symbol to 30 points

along the original trajectory with equal distance between the

consecutive points by the method in [11].

B. feature extraction

Liwicki et al. [12] applied a sequential forward search on a

feature set in order to discover which features are significant

for handwriting recognition. A Hidden Markov Model and

a bidirectional long short-term memory network (BLSTM)

based recognizer were used as recognition engines. They

applied many operations to reduce noise and normalize the

skew, slant, width and height before feature extraction.

There are 25 features in the feature set: (1) pen-up/down,

(2) hat-feature, (3) speed, (4) normalized x-coordinate, (5)

normalized y-coordinate, (6,7) cosine and sine of writing

direction, (8,9) cosine and sine of curvature, (10-18) con-

text map, (19) vicinity aspect, (20) vicinity curliness, (21)

vicinity linearity, (22,23) cosine and sine of vicinity slope,

(24) ascenders, and (25) descenders.

The experiment results [12] show that the recognition

rate with only five features approaches the recognition rate

using all the 25 features. The experiment results [12] also

show that the first five iterations of the sequential forward

search algorithm with HMM based classifier and BLSTM

based classifier have selected the same best five features.

In addition, in the first five iterations of the sequential

forward search algorithm with HMM based classifier, the

ranking of the first five features does not change. It can

be concluded that the five features are very stable and

contain more important information than other features for

the classification. The best five features are the cosine of the

slope, the normalized y-coordinate, the density in the center

of the context maps, the pen-up/down information, and the

sine of the curvature.

We use all four online features among the best five fea-

tures: the cosine of the slope, the normalized y-coordinate,

the pen-up/down information, and the sine of the curvature.

A 4-dimensional feature vector is computed for each point of

the sample. Because the number of the features is small, we

can get a more efficient classifier, in terms of computation

and storage.

Pen-up/down: a binary feature denoting whether the

digital pen has contact with the electronic tablet or not at

time t.

Normalized distance to stroke edge (NDTSE): in order

to add the location information to the pen-up/down feature,

we take the distances to the beginning and the end of the

stroke into account and replace the pen-up/down feature with

NDTSE. The new feature can be computed as :

NDTSE(s, t) =

{

1− |de−db|
ls

, for actual stroke

−(1− |de−db|
ls

), for interpolated stroke,

(1)



where ls represents the length of the stroke s which the

current point x(t), y(t) belongs to; de represents the distance

between the current point and the last point of s; db
represents the distance between the current point and the

first point of s. Actual stroke is the visible stroke, while

interpolated stroke is the hidden parts of the trajectory,

where the digital pen does not contact with the electronic

tablet. For the point belongs to actual stroke, NDTSE is

nonnegative; for the point belongs to interpolated stroke,

NDTSE is nonpositive. Fig. 1 visualizes the new feature.

Figure 1. New feature: normalized distance to stroke edge, containing the
pen-up/down information and the location information of the current point

Normalized y-coordinate: the vertical position after size

normalization.

Vicinity slope α: the vicinity slope of the current point

(x(t), y(t)) is represented by the cosine and sine of the angle

between the straight line connecting the point (x(t−2), y(t−
2)) and the point (x(t+2), y(t+2)) and the horizontal across

the point (x(t−2), y(t−2)). α in Fig. 2 represents the slope.

Curvature β: the curvature of the current point

(x(t), y(t)) is represented by cosine and sine of the angle

between the straight line joining point (x(t − 2), y(t − 2))
and point (x(t), y(t)) and the straight line joining point

(x(t), y(t)) and point (x(t + 2), y(t + 2)). β in Fig. 2

represents the curvature.

Figure 2. Slope(α) and curvature(β)

C. HMM classifier

An HMM process is a doubly stochastic process [13].

The underlying process is hidden from observation and is

represented by a state transition probability matrix, where

the current state just depends on the previous state. The

observable process is determined by the underlying process

and is represented by an observation probability distribution

function, where the current observation just depends on the

current state. So an HMM is specified by the parameter set

(A,B, π). A denotes the state transition probability matrix;

B denotes the observation probability distribution; π is the

initial state distribution.

Each written symbol can be represented by a sequence of

feature vectors O, defined as

O = O1, O2, · · · , OT , (2)

where Ot is the feature vector observed at time t. The

goal of the HMM classifier is to find the probability that

a specific class is the most likely to occur given a sequence

of observations. Therefore the symbol recognition problem

is to compute

argmax
i

P (λi | O), (3)

where λi is the i’th symbol class. Bayes’ Rule gives

P (λi | O) =
P (O | λi)P (λi)

P (O)
. (4)

P (O) is the same for all classes. If all classes have the same

priori probability P (λi), then the symbol recognition can be

regarded as that of computing

i∗ = argmax
1≤i≤N

P (O | λi). (5)

1) Model Selection: There is no theoretically optimal

method to choose the type of model (ergodic or left to

right), the model size (number of states) and observation

probability distribution (discrete or continuous, single or

multi-mixture) [13] for an HMM. The type of model, the

model size and the observation probability distribution are

determined empirically.

In our HMMs, we use the linear topology. For each state,

only the transition to itself or the next state is permitted.

The observation probability for a given feature vector is

determined by Gaussian Mixture Models and the covariance

matrix of the mixture component is diagonal.

To choose the model size and the number of Gaussian

components per state, we did experiments on the ten dig-

its extracted from the corpus of handwritten mathematical

expressions [14] to find the effect of number of states and

number of Gaussians on the recognition rate. The experiment

results are shown in Table I. The recognition rate is the

average of ten trials.

We assigned the same weight to the top-1 and top-5

recognition rate. It can be found with 4 Gaussians per state,

model with 6 states acquires the best performance. When the

number of states is fixed to be 6, model with 5 Gaussians



Table I
AVERAGE TEST RECOGNITION RATE OF TEN TRIALS ON TEN DIGITS

EXTRACTED FROM THE CORPUS [14] OF DIFFERENT COMBINATIONS OF

STATES AND GAUSSIANS

Model Size top-1 top-5

3 states 4 Gaussians 0.960 0.997

4 states 4 Gaussians 0.965 0.998

5 states 4 Gaussians 0.966 0.998

6 states 4 Gaussians 0.968 0.999

7 states 4 Gaussians 0.969 0.994

6 states 2 Gaussians 0.960 0.997

6 states 3 Gaussians 0.963 0.995

6 states 5 Gaussians 0.974 0.999

6 states 6 Gaussians 0.968 0.994

per state gets the best performance. Therefore, each model

has six states and each state contains five Gaussians in our

system.

2) Initialization: Theoretically speaking, the re-

estimation process of Baum-Welch algorithm can assign

values to the HMM’s parameters which can make the

likelihood function to get a local maximum [13]. But there

is no straightforward way to choose good initial estimates of

the HMM parameters to guarantee that the local maximum

is the global maximum or a strong local maximum of the

likelihood function.

In most cases, either random or uniform initial estimates

of the initial state distribution π and state transition proba-

bility matrix A is enough with Baum-Welch algorithm for

producing useful reestimates of these parameters. But the

reestimates of the Gaussian parameters are very sensitive to

the initial estimates [15]. Therefore good initial estimates of

Gaussian parameters are necessary. In this paper, we set the

initial state distribution to be π = 1, 0, 0, 0, 0, 0 and keep it

fixed during the training process. That means the first feature

vector out of a sequence is fixed to the first state. But we

don’t fix the last feature vector out of a sequence to the last

state. Discrete uniform distribution is used to give the initial

state transition probability matrix A.

We use a variant of segmental K-means algorithm [15]

to get the initial parameters of observation probability dis-

tribution B. We first assign random values to the Gaussian

parameters. Then over five iterations, we use the Viterbi al-

gorithm [16][17] to get the optimal path, having to terminate

at the final state, of all observation sequences and segment

the feature vector of each point according to the optimal

path into the six states. After each state gets the set of the

feature vectors that are assigned to it in the current and

all previous iterations, K-means algorithm is used to cluster

the observations into five clusters and update the Gaussian

parameters of each state. But segmental K-means segments

all training sequence according to the optimal path given by

the Viterbi algorithm. Each state just can get the observations

that occur within it in the current iteration.

Table II
93 SYMBOL CLASSES CAN BE RECOGNIZED BY OUR SYSTEM

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j

k l m n o p q r s t

u v w x y z A B C D

E F G H I J K L M N

O P Q R S T U V W X

Y Z α β δ ∆ ǫ = γ Γ

≥ > - ∞
∫

[ ( µ φ π

Π + ψ ] ρ ) σ Σ
√

τ

θ ξ ζ

3) Training: There are a number of methods for the

HMM training, such as Baum-Welch algorithm [18], Genetic

Algorithm [19], maximum margin learning [20] and maxi-

mum mutual information estimation [21]. In our system, we

use the Baum-Welch algorithm. The Baum-Welch algorithm

is a type of EM(expectation-maximization) method based

on the maximum likelihood criterion. After each iteration of

the Baum-Welch algorithm, P (O | λ̄)>P (O | λ) and λ̄ will

replace λ, where λ̄ = (Ā, B̄, π̄) represents the re-estimated

model and λ = (A,B, π) denotes the previous one. The

algorithm will run until it is convergent or the maximum

iteration is finished.

4) Recognition: In the recognition phase, all HMMs

are used with the Forward algorithm [13] to calculate the

probability of the observation sequence, O = O1O2 · · ·OT ,

given the model λ, P (O | λ). The symbol with the maximal

class conditional probability will be selected as the class

label.

IV. DATASET AND EXPERIMENT RESULTS

We extract all symbols from a new publicly available,

ground-truthed corpus of handwritten mathematical expres-

sions [14], getting 100 different symbol classes. These

symbols were written by 20 writers. We discard six symbol

classes whose samples are less than 50 and the symbol ’dot’,

because they are not adequate or not suitable for training the

corresponding HMMs. Table II shows all the 93 classes of

symbols which can be recognized in our system. The dataset

is unbalanced, and different symbol have different numbers

of samples. For each class of symbol, we use 90% samples

as the training set and the other 10% as the testing set. There

are 20281 samples in the training set and 2202 samples in

the testing set.

We did experiments to find out whether segmental K-

means can get better initialization of the Gaussian parame-

ters. The control group use K-means to get the parameters

for the 30 Gaussian components and assign them to six

states randomly. Fig. 3 shows the comparison of the average

recognition rate of 20 trials and the standard deviation

between using K-means and segmental K-means. With seg-

mental K-means, the average recognition rates are higher,

and the standard deviations are much lower. Two-tailed,



unequal variance t-test (n=20) shows the increase of top-

5 recognition rate for all symbols is statistically significant,

when α = 0.05. It can be concluded that segmental K-means

can give better initialization of the Gaussian parameters.

With segmental K-means, we did experiments to compare

the performance using NDTSE with using pen-up/down. Fig.

4 shows the comparison of the average recognition rate of

20 trials and the standard deviation between using pen-

up/down and NDTSE. The recognition rates with NDTSE

are higher. Two-tailed, unequal variance t-test (n=20) shows

the increases of top-1 and top-5 recognition rates for all

symbols are both statistically significant, when α = 0.05.

It can be concluded that NDTSE is a better feature than

pen-up/down.

With segmental K-means and NDTSE, we did exper-

iments to compare the performance using different prior

probability represented by the symbol’s sample ratio with

using the same prior probability. With different prior prob-

ability, the system has slightly higher recognition rates,

but the improvements are not statistically significant. This

shows our system is robust and does not rely on the prior

knowledge of the specific data set.

Using segmental K-means, NDTSE and different prior

probability, our system obtains best top-1 recognition rate of

82.9% among 20 trials for all symbols. In the trial producing

the best top-1 accuracy for all symbols, top-5 recognition

rate for all symbols is 97.8%; for multi-stroke symbols, the

top-1 recognition rate is 74.7% and the top-5 recognition rate

is 95.5%; for single-stroke symbols, the top-1 recognition

rate is 86.8% and the top-5 recognition rate is 98.9%.

MacLean et al. [5] applied their method on all the single-

stroke symbols of the same corpus, 70 classes in total,

including 0-4, 6-9, a-e, g-h, k-s, u-w, y-z, B-D, G, L-O,

Q-S, U-W, Z, α, β, δ, ∆, ǫ, γ, >, -, ∞,
∫

, [, (, <, µ, Ω, Π,

], ρ, ), σ, Σ,
√

, θ, ξ and ζ. The best top-1 recognition rate

is 85.8%, and the best top-5 recognition rate is 97.0%. We

also applied our system to the 70 kinds of symbols, getting

best top-1 recognition rate of 85.5%. In the trial producing

the best top-1 accuracy, the top-5 recognition rate is 99.1%.

Through analyzing the confusion matrix, we find many

classification errors are caused by symbols are classified to

the classes with the similar shape, such as the number ’0’,

the capital letter ’O’ and the small letter ’o’. This explains

the differences between the top-1 recognition rates and the

top-5 recognition rates. Therefore the recognition rate can be

improved by building discriminatory classifiers aiming for

these confused classes or collapsing these confused classes

to a single class.

V. CONCLUSION

This paper presents a system for recognition of isolated

online handwritten mathematical symbols. The classifier is

based on HMM and we use 4-dimensional online local

features. A new feature, normalized distance to stroke edge,

is defined based on pen-up/down information. A variant

of segmental K-means is used to get initialization of the

Gaussian Mixture Models’ parameters which represent the

observation probability distribution of the HMMs. The initial

experiment results are encouraging in light of we just use

four features.

For future work, more extensive experiments should

be conducted for performance comparison with different

preprocessing methods and different feature sets. In

addition, we will optimize the topology of the HMMs and

extend the research on recognition of isolated mathematical

symbols to the recognition of mathematical expressions.
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