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HMM-Based Speech Recognition Using
State-Dependent, Discriminatively Derived
Transforms on Mel-Warped DFT Features
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Abstract—In the study reported in this paper, we investi- using an integrated optimization of both the preprocessing
gate interactions of front-end feature extraction and back-end gnd classification stages [15]. Various techniques including

classification techniques in hidden Markov model-based (HMM- use of filterbank, lifter, and dynamic feature design have
based) speech recognition. The proposed model focuses on diy ! '

mensionality reduction of the mel-warped discrete fourier trans- been proposed for examining the interactions between the

form (DFT) feature space subject to maximal preservation of Preprocessing stage and the classification stage [1], [7], [24].
speech classification information, and aims at finding an optimal In this paper, we report our recent comprehensive investigation

linear transformation on the mel-warped DFT according to on the integration of front-end preprocessing and back-
the minimum classification error (MCE) criterion. This linear o+ 5ssification techniques in the context of model-based

transformation, along with the HMM parameters, are automat- L . . .
ically trained using the gradient descent method to minimize a discriminative feature extraction, which has generalized all

measure of overall empirical error counts. A further general- the previous techniques in a principled way. The techniques
ization of the model allows integration of the discriminatively ~we developed have been evaluated on a phonetic classification
of cynamic featune parameters, Expermental results show that ok, S1oWing promising results
0 . . . . .
statg-dependent traﬁsformation on ?nel-warped DFT features is Flltgrbank modeling .O.f speech signals has been' Wldely
superior in performance to the mel-frequency cepstral coefficients US€d in speech recognition tasks, and psychoacoustic studies
(MFCC's). An error rate reduction of 15% is obtained on a have confirmed the importance of the critical band or mel-
standard 39-class TIMIT phone classification task, in comparison frequency scale in auditory functions [28]. Mel-filter bank
with the conventional MCE-trained HMM using MFCC's that  (MFB) log channel energies are calculated directly from the
have not been subject to optimization during training. discrete fourier transform (DFT), and effectively compress the
linguistically relevant speech information contained within the
. INTRODUCTION raw DFT’s. Because of the well-established psychoacoustic
HE STRUCTURE of many successful systems for speeévidence for the mel-frequency scale and its (first-stage) data
recognition typically consists of a feature analysisgsompression role, all the signal transformations developed in
extraction procedure (i.e., signal preprocessing “front-endthis study will be on sequences of MFB log channel energies,
followed by a “back-end” statistical pattern classifier. Thevhich we also call mel-warped DFT features because of the
operation of the back-end classifier has been virtualtlirectness of computing log channel energies from DFT's.
independent of the front-end feature extractor, although theThe conventional, model-independent speech features,
performance of the recognizer has been known to be cleagglled mel-frequency cepstral coefficienf@MFCC’s), use
affected by the information extracted from the input speechscrete cosine transform (DCT) as a linear operator to map
data and accessed by the classifier [2]. Previous studiesl-warped DFT (in the form of MFB log channel energies)
showed that the signal processing and classification techniqués a lower dimensional feature space [6], [13]. Despite the
interact with each other to affect phonetic classification (e.gempirical superiority of MFCC’s over many other types of
[16]). The recent advent of discriminative feature extractiogsignal processing techniques, there are no theoretical reasons
showed that improved recognition results can be obtained Wy the linear transformation associated with DCT, which is
fixed a priori and independent of HMM states and of speech
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Two versions of the optimum transformed HMM have beeor
developed in this work. Version 1, which we call THMM-1,
performs state-dependent linear transformation on the static X! =B mF}
mel-warped DFT, independently of the successive frames
(unless, of course, there occurs a state transition among wieres3, , ;. is thepqgth element of the transformation matrix
successive frames). In contrast, Version 2 of the THMM, whid;,.. associated with the:th mixture residing in the Markov
we call THMM-2, performs the transformation jointly on thestate:, n is the number of MFB log channel energies for each
static and dynamic parameters based on mel-warped DFTf@me, and! is the vector size of the transformed static feature.
To keep the generality of our approach, we constructed thiote that the transformed static features constructed above can
THMM-2 with generalized dynamic parameters; i.e., linedve interpreted as the output from a slowly time-varying (due
filtering of static parameters with filter weights made as state State dependence of the transformation) linear filter with the
dependent and trainable [7], [23]. MFB log energy vector sequence as the input.

The remainder of the paper is organized as follows. SectionGiven the transformed static features as described above,
Il describes the mathematical formulation of both versions 8fe dynamic feature vectogs! (for framet of ith token) are
the THMM, and shows the construction of input discriminativeonstructed in a conventional way (i.e., independent of the
feature sets closely tied to the speech model. In Section IIl, WM state and not jointly with the transformation on the
develop a discriminative training algorithm for both THMM-1MFB log channel energies) by taking the difference between
and THMM-2. In particular, the gradient calculation for théwo frame forward and two frame backward of the related
newly introduced model parameters, which is a critical step #tatic features according to [8]
the training algorithm, is presented in detail. In Section IV, we
present experimental results and report the comparative per- Vi = X0 — Xy = BimFiyo — BimFi_y
formance of the THMM with benchmark systems in a standard = Bim[Flys — Fis). (2)
TIMIT 39-class phonetic classification task. We summarize our
findings in Section V, and in Figs. 6-9, we provide details ofhis fixed window length of four (equivalent to 40 ms) appears
phonetic confusion matrices obtained in our experiments. to have reasonably well captured the slope of the spectral
envelope. Note that in THMM-1, the dynamic features at frame
t are extracted by taking the linear transformation of time
differenced MFB log channel energy vectors at titne2 and
at time ¢ — 2 using the transformation matri®; ,,, derived
from the static feature optimization only.

Il. A STATISTICAL MODEL OF SPEECH
EMBEDDING INPUT FEATURES

Let F = {F', F2,..., FE} denote a set of. mel-filter-
bank log-energy (mel-warped DFT)-dimensional vector-
valued sequences, and &t = {#{, 7, .-, 7L} denote the
Ith sequence having a length & frames.

B. Construction of State-Dependent Joint Transforms
for Static and Dynamic Features

For THMM-2, state-dependent linear transforms for static
features and those for generalized dynamic features [7], [23]
A. Construction of State-Dependent Transforms are integrated in a single model to obtain the optimal combined
for Static Input Features advantages of individual sets of features. (The generalized
The THMM-1 described in this paper integrates the inp@tynamic parameter technique discussed here includes the
features (mel-warped DFT’s or MFB log channel energiespnventional use of the dynamic parameters developed in [11]
into the modeling process using a set of state-dependend [12] as special cases.) As described above, the static
transformation matrices as trainable parameters of the modehtures are obtained by a linear transformation of ran
The new, transformed static feature vectt at time frame dimensional input space for the MFB log channel energies,
¢ (Ith token) is a statei dependent, mixturém) dependent, represented by the vectdt, to a transformed-dimensional
linear combination of each row of transformation matrix witfieature space according to (1). Instead of taking the temporal
each element of the MFB log channel energy vector at tingéfference of the transformed static features fixegriori in
t according to THMM-1, the dynamic feature vectQs! at framet in THMM-
2 is constructed as additional state-dependent, trainable linear
n combinations of the static features stretching over the interval
X]ﬁ,t = ZBp,q,i,rnF(it p=12,-.d, t=12--- T f frames forward and frames backward according to

q=1
(1) s
In the matrix form, (1) can be written as V= Z WiimXip, 1<I<L,1<t<TH (3)
k=—b
Xll,t Bl,l,i,rn Bl,?,i,rn e Bl,n,i,rn F{,t A A A . A
]:é . wherewy, ; .., is thekth scalar weighting coefficient associated

X217t BQ,l,i,rn BQ,Q,i,rn e BQ,n,i,rn . . L . X
) . . . with themth mixture residing in the Markov staie(Note that
in this THMM-2, wy ; , is trainable, in contrast to THMM-1

Ry Bagim Bazim - Bamim/ \Fh, where weights are prefixed). In the matrix form, (3) can be
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Speech Waveform C. Output Distributions of THMM and Full
Set of Model Parameters

A mixture Gaussian density associated with each stéte
total of V states) is used in the model, which assumes the form

Mel-filter-bank bi(Oi) = bi(‘xf’ ytl)
: Log-energies : M
5 : _ ! l
Feature - Z ci,mbi,m (Xt ) bi,m (yt) ’
—_— : m=1
Analysis R R 1<4i<N (5)
b HE |
o Feature : where O} is the augmented feature vector (including both
1 | Transformation : static and dynamic features) of tih token at frame, M is
Do ' the total number of Gaussian mixtures in the HMM’s output
1 1

Modeling S I DU distribution, and:; ,,, is the mixture weight for theath mixture

| Static Dynamic | in stated. In (5), b, ,,(X,), and b, ,,,()}) are d-dimensional

\ ! unimodal Gaussian densities for static and dynamic features,
\ Mixture Version ] respectively, as

! Hidden Markov !

! Model I bi.m (X)

1 |

1

d 1
Fig. 1. Block diagram of showing the integration of feature analysis and (27r)2 |El‘:i:m| ?
recognizer design in Version 2 of the optimum-transformed HMM (THMM-2). < -1 TrE—l
X exp

7 [th - Nm,i,rn] x,i,m [th - Nm,iml])

written as bi,m (ytl)
y{,t Xll,t—b T Xll,t T Xf,t-i—f = ;
l l l l (2 )% |2, |§
Var Aoy o Aoy 2,t4f 4 yim
= : : -1 Tre—
:l l: : :l : l: X exp <7 [ytl — Hy.im) Ey}’m [ytl — uy,z‘,m]>
yd,t Xd,t—b T Xd,t T Xd,t—l—f . Lo . .
Wepim where variablest and ) indicate the static and the dynamic
WepgLim features, respectively. Superscrififs and —1 denote vector
X . transposition and matrix inversion. The mixture weights,
in (5) satisfy the stochastic constraint
Wrim
M
where subscript, 2,---,d denotes the individual element in ¢im=1 1ZLi<N
the feature vector. The static feature matrix above has the m=1
dimensionalityd x (f +b+ 1), with d being the dimension of Cim 20, 1<i<N, 1<m<M.

the feature vectors. Using (1), we rewrite (3) as The classic or conventional HMM [17], THMM-1, and

! ! the HMM incorporating the generalized dynamic parameters

Vi= Z Wi, mBimFrvre = Bim Z Wi mFipn- (4) described in [7] and [23], can all be considered as special

k=—b k=—b cases of the THMM-2 presented here. The THMM-2 can be
reduced to

According to the definition of (3), the dynamic features ) o
can be interpreted as the output from a slowly and step-* 'HMM-1, by removing state-dependent optimization of
the dynamic features;

wise time-varying linear filter with the (optimally transformed) ) o
static feature vector sequence serving as the input to the the model of [7], by removing state-dependent optimiza-
tion of the static features;

filter. The time-varying filter coefficients are evolving slowly ) . o
according to the Markov chain in the underlying HMM. In this * the classic HMM, by removing state-dependent optimiza-
THMM-2, the jointly transformed static and dynamic features 0N on both static and dynamic features.

are provided as data input into the modeling stage of theThe full set of the parameters associated with the most
speech recognizer constructed as a mixture continuous denggjperal model THMM-2 are summarized as follows:

HMM. The THMM-2's integration of the feature analysis, as e transition probabilitiesa; ;: 4, j = 1,2,---, N of the
exemplified by the top two blocks, and the modeling process, N-state Markov chain;

as exemplified by the bottom two blocks (overlapping in the « The state-dependent mixture Gaussian mean vectors
feature transformation block), is depicted in Fig. 1, where both {11z i e, f4y.i.m }3

static and dynamic features are subject to joint optimizations State and mixture dependent Covariance matrices
which shares between feature analysis and model construction. {X,; ., Xy m};
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¢ Transformation matrices defining static features for each
state; and for each mixturen B; ,,,, 1 <i < N, 1 <
m < M,
* Weighting coefficients defining dynamic feature parame-
ters for each stateand for each mixturen wy ; ,, 1 <
The subscriptsz and y stand for the static and dynamic
features, respectively. 3)

Discriminative training or parameter estimation by the mini-
mum classification error (MCE) criterion has been successfully
used by several researchers in speech and speaker recognitigﬁu
tasks to improve upon the maximum likelihood (ML) criterion
(e.g., [14], [18], [4], [19])). In-class information is used in the
ML training and out-of-class information is used in the MCE-
based training. In this section, we describe the application of
the MCE-based training for the new model, THMM, developed
in this study and detailed in Section Il. The ML trained model
[17] is used as the initial model for the ensuing MCE training
step. In the supervised training mode, each training taRén
is known to belong to one of speech classegC7}i.,. The
speech recognition process is based on the classifier parameter
set,® = {®/ le, derived from the training process. The
goal of the training is to reduce the number of misclassifi-
cations occurring over the training set through minimization
of the overall loss functiorif (O, @), closely related to the
classification error. In the THMM, the classifier parameter
set consists of all the state-dependent, mixture-dependent
transformation matriced3; ,,, (both THMM-1 and THMM-

2), weighting functionsuy, ; », (only THMM-2), together with
the conventional HMM parameters including mixture weights
Ci,m,» Mixture Gaussian mean VeCcto(Biy i, m, fty,i,m ), and
mixture Gaussian covariance matri¢es, ; ., Xy i ), for all

the models(; = 1,2,---K) each representing a distinctive
class of the speech sounds to be classified.

D ISCRIMINATIVE PARAMETER ESTIMATION

5)
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utterance®! from classk becomes
dN(Olv (I)) = _gﬂ(olv (I)) + H.l;?x g; (Olv (I))
JFER

= _gﬂ(olv (I)) + gX(Olv (I))

where CX is the most confusable class. Clearly,
d.(O%, @) > 0 implies misclassification and,.(O¢, ®)

< 0 means correct classification.

Loss functionThe loss function is defined as a sigmoid,
nondecreasing function af,

_ 1

14 e (0h9)

which approximates the classification error count.
Overall loss function:The overall loss function for the
entire classifier is defined for each class as

T.(0', )

K
(0L 2) =) T (0, 2)8[0" € C] (6)
k=1

whereé[€] is the Kronecker indicator function of a logic
expression¢ that gives value 1 if the value of is
true and value 0, otherwise. The average loss (or error
probability) for the entire training data set is defined as

L
1 l
L(®) =7 12_; (0, ®) (7)
where L is the total number of training tokens.
Minimization: The loss functioril (O, ®) is minimized,
each time a training toke®' is presented, by adaptively
adjusting the parameter sétaccording to

D1 =P — VY (0L, ®)) (8)

where ®; is the parameter set at thiéh iteration,
VY(O! ;) is the gradient of the loss function for
training sample®!, and ¢ is a small positive learning
constant.

B. Gradient Calculation

A. The MCE Training Procedure

The THMM model parameters are adaptively adjusted to

The overall loss function is constructed and minimizetfduce the overall loss function along a gradient descent

through the following steps.

1) Discriminant function The log-likelihood score of the
input utterance®' along the optimal state sequenc
er = {6,605 -.-,6%,} for the model associated with
the xth class®* can be written as

Tl
9x(O', @) =" log by (0})
t=1

direction. The gradient is obtained by computing the partial
derivatives off (O!, ®) with respect to each THMM parameter
éor a given training tokei®! belonging to class. For the sake

of keeping our presentation simple, we describe the gradient
calculation only for the newly introduced model parameters.
Let ¢; ,,, denote a feature extraction parameter associated with
modelj, then in the case of token-by-toKetnaining, we can
write the gradient as

1 K
whereb,:(O}) is the probability of generating the fea- 8Ta((? ) _ 5 (? <Z Y. (O, ®)5[0 e C” ])
ture vector©! at time ¢ in statedy by the model for bm Vi \ 1
xth class. The implied decision rule for classification is _ 8 Y. (O, d)
defined as P!, ’
O(O) = C*, if go(O',®) = max g;(O",®). _ 0101, 9) 9d, (O, 2) 8g;(O',2) g
J dd. (O, @) Jg,;(OL, @) .

2) Misclassification measureGiven a discriminant func-

1This type of sequential optimization in general is referred tstashastic

tion, the misclassification measure for an input trainingescen{10].
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The first factor in the right-hand-side of (9) can be simplified to 1) Gradient Computation d8; ,,, for THMM-1: By substi-

IY (O, D) 9 1 tuting (1) and (2) into (13), the gradient calculation l@)zfm
= ~ becomes
9d (0L @) 0d (OL P)\ 1+ ¢~ d:(O19) :
4, (0,) 910, 2) _ =1 ny g ([B Fl—n ]Tr
c ;= G_d’“(ol’(b)’ri(ol, (I)) aBi,m l 7,m 8BZ N 2 2, m T,8,1m
(14 e—ds(0"2)) teT!
1
{ ; 1}T2(Ol ?) <Zaim[Bin? - bt
= ~ Ml HY K ’ Tr
TK(Olv (I)) + [Bz m (Ftl+2 - f‘tl_Q) - Ny,i,rn]
! !
TN(O 7(1)) [1 - TK(O 7(1))] . (10) X Ey 1771 [Bi,rn (Ftl+2 - tl 2) - Ny,i,rn])
The second factor of the right-hand-side of (9) can be sim- == > YimO (555 0 (X = praiom] [Fq™
plified as follows: teT!
l ) ot 1T 14
gd’?(gz’? ~ 9 (aoz g1 (~9x(0, ) + g,(0" @) Zpan D = tuin]Fise = Fia] 7). (44
9;(0", @) 9x( ! ). To reduce the computational complexity as well as the
- {—17 if J=h (11) model complexity, we tied all the mixtures for feature trans-
1, ifj=x formation matrices; ,, to a single state paramet8; in our
The third factor of the right-hand-side of (9) can be modified 3XPeriments. For this spemal case, the gradient is given by
agj(ol (I)) M = -1 Z Z Vi, m ac Jim [Xl Nm,i,m]
ad)z m tETl m=1
l Tr
o 7] i logb ) (Ol) I:Ftl] + Ey 1"1 [ytl - Ny,i,m] I:Ftl+2 - f‘tI—Q] )
= — i (O
3¢f,m =1 i 2) Gradient Computation of Bothwy, ; »,, and B, ,,, for
1 5 M THMM-2: Substitution of (1) and (4) in (13) yields
== CJ /bj ’ ’
tg;l bi (Ol) ad)z . mZ:I i,m/ Vi,m ( ) i,m (yt) 8T(Ol —y Z N [B F .y ]T‘r
a . l ) rn 8BZ m 2 7,1 .8,
Z znlbinl(‘/‘vl)binz(yt) a _1 tET
= 1
teT! bi (Oi) ad)z ,m x Ew i, [BZ mf‘ — Mz m] N
L J . T l_
<4, SMO)R gx,z,m] B 3wl - u]
+ [yt - u;;,z rn] Y, rn( ) [yt u;;,i,rn]) (12) k==b
where the seff? includes all the time indices such that the N ow izlm o Z Wi i F, t+k, — by im
state index of the state sequence at tifrigelongs to stateé . b ——b v
in the Markov chain, i.e., o
— _ ) [ ) l
—{t|6, =i}, 1<i<N, 1<t<Th = thTIZ %m(t)< et (X0 = Haim] [F]
cT?

Define thea posteriori probability as Tr

ci,mbi,m (th) bi,m (ytl) + E;%,m [ = Hyim [ Z Wy i,m H—k’] )

b (O] k' =—b

Vi m(t) =

(15)
Then, using (10)—(12), (9) can be rewritten as
IX(OL, ®) oT0Le) _, > Yim(t) -
-1 j Tr Q. = i,m —_—
9 z/l Z ’71 rn 2 ([X /Ji i rn] awk,i,rn et awk,i,rn 2
d)z ,m tETl z ,m -
X Ex 1 m(J) [th - N;v,i,m] + [ytl - N;;,i,m] <[ Z Wk im H—k’ it Ny,i,m]
X XDV =1 m]) (13) =
with the adaptive step size defined as X Eyj,m Z wk’,i,thl-i—k’ - uy,i,mD
YO )T @) 1], fj=n v -
z/}] B {T“(Ol7¢)[1_’rﬂ(017¢)]7 if J=x :—1/12% m Nyzm]
teT}

In the remainder of this section, class indewill be omitted 1 .
for clarity of presentation. XX [BimFign] (16)
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The gradient computation for the remaining model parame- 1 . . T . r .

ters is similar to those for the conventional HMM. For keeping 4! i
this paper self contained, we list these formulas below without, o5l |
derivation: 5
=204 E
aT(OL @ _
% =1 3 YO} e (1) @ e —
m,l,nl 1 1 1 1 1 il
tETil 00 0.2 04 O.GF 0.8_ y 1 1.2 14 1.6
8T Ol P B requency in kHz
O] 3 5 i) aw
uy,z,rn tETil T T T
0.8}
aT(OL @ _
X é ‘, ) — 055 > Aim AL OS5 s — 1] gost
ZT,1,M tETil g 04
(19) 02
AT (O, @) T 1 o . A s . .
aiy iam = 0.57 tz;l i m(t) [Ay,ri,rnzy,i,rnAy,iﬂn — I] 137 2 3 4 Frequencsy e © 7 8 85
i, er!
(20) Fig. 2. Spacing of the 21 triangular filters used in the experiments for
generating the mel-filterbank log channel energies.
IY (O, @) ) .
e . (4 Z Yi;m,t(J) = Cim(J) (21) ) _ )
Ci,m teT!(5) The adjacent filters are overlapped by 50% in the frequency

axis, shown in Fig. 2. The frequency components below 70 Hz

where the quantitied, ; »(¢) and A, ; () are defined as  are treated as noise and are removed in the filtering process.
Aoimn(®) = BimFl = jimim The raw speech waveforms in TIMIT are sampled at 16 kHz,

” ’ i and are blocked into 512 samples to form 10-ms frames. An

overlap of 352 samples between two adjacent data blocks

is used in the analysis. Each frame is then passed through
a 512-point Hamming window, and a 512-point fast fourier
and ¥, ;. are the log-transformed covariance matrices fdransform (FFT) is applied to the frame to produce a 256-point

implementation simplicity [5]. power spectrum. The FFT power spectra are combined using
a weighted sum, shaped by the triangular filter, to obtain the
filter output. Logarithms of the 21 outputs are then calculated,
. arriving at 21 MFB log channel energies for each speech
~The proposed new model, THMM, and the associatgflme "For the THMM, only these MFB log channel energy
discriminative training described in Sections Il and Il havga.iors are used as the raw data to the recognizer. All the

been evaluated on the phonetically rich, speaker-independgilre parameters are automatically constructed within the
TIMIT database. Several phonetic classification eXpe“mer}?'cognizer.

were conducted to study the characteristics of the MCE-basecfn our experiments, each phone defined in TIMIT is repre-

training for the new model and for demonstration of thggnieq by a simple left-right (i.e., with only self and forward
superiority of the new model over the traditional HMM.  yanition) three-state HMM with mixture Gaussian densities.
~ The TIMIT database with a total of 462 different speakerpne covariance matrices in all the states of all the models are
is divided into a training set and a test set with no overlaﬂ'lagonal and are not tied. To avoid singularities caused by
ping speakers. Out of the ten sentences per speakersawo,, nderestimation of the variance, we assigned the minimum
sentences are common to all speakers and were removed {ipffance (typically a value of 0.1) in covariance matrices. All
both training and test sets in order to avoid possible biasneggsition probabilities are uniformly set to 0.5 (all transitions
The training set consists of 442 speakers with a total 3588, 5 state are considered equally likely) and are not trained,

sentences, and the test set consists of 160 sentences spgkgi, they are found to play a minor role in the forward-
by 20 disjoint speakers. These speech materials contaiy, &y ward probability scoring.

total of 129743 phone tokens in the training set and 5775r,, the MCE approach, the initial model is trained using

phone tokens in the test set. The experiments describedy{g p criterion [17], [8]. The state dependent transformation
this section are aiming at classifying the 61 TIMIT label§,4irix is initialized by the DCT matrix

defined in the TIMIT database. In keeping with the convention "

L o

adopted by many speech recognition researchers, we folded Apy = Zcos {p(q —0.5) }
q=1

f
l
Ay,i,rn(t) = Bi,rn Z wk,i,rnf‘t_pk — Hy,im
k=—b

IV. EXPERIMENTS AND MODEL EVALUATION RESULTS

22 phone labels into the remaining 39 classes in determining n
classification accuracy.

For the computation of MFB log channel energies that serve
as data input to feature transformation, 21 triangular filtevghere A denotes thed x n DCT matrix, andd is the
are used in our experiments, which are spaced linearly fratfimensionality of the static feature vector. Similarly, the state-
0 to 500 Hz, and exponentially from 500 Hz to 8500 Hzdependent dynamic weighting coefficients are fixed to a first

p:1727"'7d7 t:1727"'7Tl
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Fig. 3. Convergence characteristics of the MCE training procedure. Tﬁ)

raph: phonetic classification rates on the test set for three types of classifi % 4. Results of a fast experiment intented to find the optimal dimension
graph. p yP $he feature transformation matrix. Phonetic classification rates for three

as a function of the_ MCE training epoch number. Bottom graph: average Igs es of classifiers are plotted as a function of the number of rows in the
computed from training set for three types of classifiers as a function of t nsformation matrix

MCE training epoch number.

(7), of the training set for three different classifierss a
function of the training epoch number. In Fig. 3, the solid
Hnes are associated with MCE-trained conventional HMM,

difference condition;f =6 =2, w2 ;. = 1.0 andw_s ; , =
—1.0. Note that the above initialization of the transformatio

matrix by DCT matrix without further training gives rise todotted lines with THMM-1, and dashed lines with THMM-

the traditional MFCC feature parameters. e
During the model training phase, we call one complete pazs' The classification rates and the average loss are evaluated
' P;he end of every epoch. As shown in Fig. 3, the classi-

through the training data set as an epoch. For the case of tok?en . . .
o . fication rates are monotonically increased and the average
by-token training, model parameters are updated several times

over an epoch. Additionally, in each epoch we also decrea{ics)és is monotonically decreased as the training progresses.

; . o . e average loss decreases faster for THMM-1 and THMM-2
the step size monotonicallys, = (1 — <), wherek is the . o ;
: . ™ than the conventional HMM, indicating the effectiveness of
epoch numbersz is the limit for the number of epochs amd-=

: g . .. _.the new THMM models. Similar trends in the classification
0.01 is a small positive learning constant. The classification

performance often peaked after about four or five epocHen‘ormance are also observed. This suggests that the original

and then again varied randomly within about one percertﬂ)}rjectwe of minimizing the misclassification error using the

In training, we perform a total of five epochs and only the CE training is indeed achieved and that the MCE training

. . ) . e may be more effective for the THMM than the conventional
best-incorrect-cladss used in the misclassification measurq;| M

Phonetic classification is performed directly from the standar . e .
In our phonetic classification experiments, we use feature

Viterbi score calculation. tr(aﬂqsformation to reduce the dimensionality of the raw data.

Context-independent (Cl) phone models assume that speg . )
. . converts the partially preprocessed speech data to a suitable
is produced as a sequence of concatenated phones which_ are

. rm (feature vectors) for use as the input to the HMM
unaffected by context. For the CI experiments, a total of or modeling and classification. Obviously, the transformed
models (with 39x 3 = 117 states) were constructed, one fo 9 ' Y,

. X .
each of the 39 classes intended for the classification task.e,@ture vectort; must have a smaller dimension than that of

} . . the MFB log channel energies (i.€.< n = 21). To determine
context-dependent (CD) phone model is one that is dependﬁ:]rﬁ best dimensiony, for use in phonetic classification tasks,

on the left and right neighboring phone. With 39 phone Class%18’:~3eries of fast experiments are conducted using a subset
there are potentially 3% 39x 39 = 59319 phone models b 9

constituting 177 957 states, which are impractical to train giveor]; training-set, consists of 320 sentences from each of 40

o D . speakers, and test set with unimodal Gaussian Cl phone
the limited amount of training data. As an alternative, th . e

. . dels. The results expressed as phonetic classification rate
procedure outlined in [24] has been adopted to create

L . as a function of dimension/ are plotted in Fig. 4, with
models, resulting in approximately a total of 1209 states. . : : . @
Before we present the full set of phonetic classificatiotrrl1e ML-trained conventional HMM (i.e., using MFCC)s
lotted as the dashed-dashed line, MCE-trained conventional

e ot LA s e dashekdte e, and NCE-taned THM
' ' S the dotted-dotted line. (The ML-trained HMM with state-

set (top plot) and the average loss (bottom plot), defined %pendent DCT matrices, or MFCC's, is provided as the initial

3The results are obtained with use of fivey-mixtures CD phone models.

2This is a computationally efficient way of pruning the search in the 4The feature ordering for MFCC's was performed by selecting lowest order
discriminative training. MFCC's first.
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Fig. 5. TIMIT 39-phone context-independent (left) and context-dependent (right) classification rates as a function of the classifier types aachibérthe
of Gaussian mixtures in the model state. Four types of classifiers are evaluated and compared: two benchmarks based on ML-trained and MCE-trained
conventional HMM's using MFCC's, and two versions of the THMM’s, both trained by MCE.

model for the MCE training of THMM, and in these fasffirst classifier, denoted by HMM (ML) in Fig. 5, is designed
experiments, all states of all models use an identical numhweith conventional HMM's as a benchmark using MFCC and
of features.) From the results shown in Fig. 3, we obserdelta-MFCC features and being trained with five iterations of
that the classifier performance remains fairly constant afl8aum—Welch (ML) algorithm. This HMM (ML) is comparable
d reaches twelve. Therefore, in our following formal, morén performance with other similar classifiers (e.g., [25]), and
comprehensive experiments, we choase- 12, making the gives 65.7% phone classification rate using five-mixture CI
dimensions of the linear transformation matrix to bexd21. models (about the same as 66.2% reported in [25] with
This gives the total feature vector consisting of 26 elemen82 mixtures). The second classifier, denoted by HMiM
one normalized log energy, 12 transformed MFB log channklg. 5, is designed also with conventional HMM's as another
energies, one delta log energy, and 12 delta transformed MB&nchmark using identical MFCC and delta-MFCC features,
log channel energies. but being trained with the MCE algorithm (five epochs). The
A series of comparative experiments have been carried ogst classification results obtained are 65.66% and 80.51%
using full sets of training and test data, to examine the effel@r HMM with five-mixtures Cl and CD models, respectively.
tiveness of the MCE training on the proposed THMM-1 ands can be seen from Fig. 5, the performance in terms of
THMM-2 as described in Sections Il and IIl. The experiment&lassification accuracy was significantly improved by the MCE
results are summarized in Fig. 5. For performance comparigéaining over the ML counterpart.
with benchmarks, conventional HMM's with use of static The third and the fourth classifiers, denoted by THMM-
and dynamic MFCC features are first implemented. The staficand THMM-2, respectively, in Fig. 5, are designed with
MFCC features are obtained by taking DCT of the MFB |0§1e two versions of the THMM described in Section Il and
channel energies and the dynamic features are calculated’@ed using the MCE algorithm presented in detail in Section
the difference between the static feature vectors for two-frale Our goal is to test the effectiveness of incorporating
ahead and two-frame behind each current time. The left afit¢ optimal state-dependent transforms on raw features in
right plots of Fig. 5 give the performance comparison (amort§e classifigation performance. Since good initialization of
four types of classifiers) for Cl and CD phones, reSpe(:ti\,e|gy_<';1ns,formatlon matrices is important to avoid local optimum
For both Cl and CD cases, we evaluate unimodal Gaussigt would necessarily occur due to the use of gradient descent,

HMM'’s (M = 1) and mixture Gau_s.5|an HMMM = 5) 5All remaining three classifiers use MCE training rather than ML training,
separately. The four types of classifiers are as follows. Thethe label MCE will not be attached in Fig. 5.
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Fig. 6. Confusion matrix for the standard TIMIT 39-phone classification task with use of conventional HMM’s (MFCC features not optimized) trdieed by t
ML criterion. The top matrix shows results with context-independent models and the bottom matrix shows results with context-dependent models.The
models have five Gaussian mixtures in each state.

we use the first benchmark classifier (HMM (ML)), modifiedive-mixtures conventional HMM have comparable numbers
by introducing a state-specific DCT matrix, to initialize thef classifier parameters: The number of classifier parameters
THMM'’s for the MCE training. In the discriminative training, for one-mixture THMM-1 is 21x 12 + 26 + 26 = 304,

the initial DCT matrices are progressively improved accordirgimilar to that of the five-mixtures HMM, which is 5

to (14) in a state-dependent manner. For the THMM-1 bas&b + 26 + 1) = 265. Comparison of the performance
classifier, the best classification results are 68.6% (Cl) amdprovement with other systems, unfortunately, is somewhat
82.2% (CD) with five mixtures (see the results labeled witdifficult because of the completely different model structure
THMM-1 in Fig. 5). The CD result of 82.19% is translated t@and entirely different training criterion. For example, a closest
reduction in error rate of 9% compared with the benchmadomparison can be made with the study reported in [27] where
HMM (MCE) classifier's performance. For all other cases, therror rate reduction of 3.8% was obtained using HMM’s with
THMM-1 outperforms the conventional HMM by at least 7%state-specific linear discriminant analysis on the input features
in error rate reduction. We also from the results in Fig. 5 théivhich is state independent, different from our state-dependent
the unimodal Gaussian (1-mixture) THMM-1 performs bettdransformation).

than the five-mixtures MCE-based HMM for both Cl and CD From the final classifier based on THMM-2, which in-
cases. In either case, the unimodal Gaussian THMM-1 aadrporates generalized dynamic weighting functions, the best
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Fig. 7. Same as Fig. 6, except the HMM'’s are trained by the MCE criterion.

classification results have been obtained, shown as the THM8tbstantially improves the classification performance, the im-
2 label in Fig. 5. In training the THMM-2 classifier, (15) andorovement relative to the corresponding ML case decreases
(16) are used to simultaneously adjust the static linear transfas the model complexity increases. For example, an error rate
mation matrices and dynamic weighting parameters. This joirgduction of 25% for the single mixture case is reduced to an
training of both static-feature- and dynamic-feature-relatesiror rate reduction of 18% (five-mixture CD models) when
classifier parameters produces performance improvement ovempared with respect to the ML-trained HMM benchmark.
the THMM-1 (where no optimization on dynamic-featurdhis suggests that if a larger amount of training data were
related parameters) more significantly for CD (right ploavailable, the performance improvement achievable using the
of Fig. 5) than for ClI models (left plot of Fig.5). The MCE-trained THMM-2 would be even more significant than
classification rates with the THMM-2 classifier improve fromreported here.

80.51% (benchmark MCE-trained HMM) 83.4% with use of In analyzing the comparative performances of the various
five-mixture CD models. This translates to 15% error ratgassifiers shwon in Fig. 5, we have noted the issue of fairness
reduction. For single-mixture CD models, the correspondir@j comparison with respect to the varying nhumbers of model
error rate reduction from benchmark to THMM-2 is 17%parameters. Admittedly, with use of the same number of
with classification rate improvement from 79.41% to 82.84%nixtures, the THMM’'s have one additional trainable full
On the other hand, we observe that while the MCE trainingatrix each state compared with the conventional HMM.



CHENGALVARAYAN AND DENG: HMM-BASED SPEECH RECOGNITION 253

uh ah a2 ae eh ith ey Iy y ay ow aw oy e ng & v th dh hh 2z s sh f jhech b d ¢g p t kbl
. .18 . 5 . . 4 . 3 1

. RE
£

~
=
2

ksl

C oy

o
o
~
w oo

7 15 ot o1 DD LD U T U1l 10 ah 10 of 251 = 5.
1. . . . . . . . . . . . . aa 1380of 127N

.7
.10
2
2

e N
Gk

PN TYWIN

«
3

w
<
w
=
>
o
~
o
~
w
(SR
—
-
ML
[

PO
[
~

[Ty
L
-
-
ES
e
=
w
<
"
2

2760 3 . 2 . . 2

[NEN}
~
-
“
.~
S
-
[
—
<
-
o
=
o
=S
3
£
¥
~
S

¢ 6 4 2 1 . . 60 . .
« 1 . . . . . .31
4
1

[

[ N Y O T, LW~ PR
-
“

PRSP

—
PR

6 . .
. 139 16 .
FELIE #1 TP |
2 . 157 18 . 2
11 59

-
- [
e e
-
PR AL R o =
[
F

.N.HN_M....
Ce e
D e o
~
-
LT V)
¥y
5
bedvd
w0 -
B
B ] N OO O
-
e
N

-
G B et e e s

Lo
-
-
_ e e
G ke
[V TUR
-
ek
(SRR
-

e al
LN RN o s
-

-
~
TS
-
o
Y
-
T T R
B

B N
»

-
ek e
[
-
-
~
-
~
-
Do SR Gwnwe
-
-
e
=
-
aw.
AT ATTTrmIYya N
wn
2
o
153
s
R
"
w
g

»

Brva aslEnon ESF<«RBuwae~nRIFUICKISBRELEEE

P =
EBS<88owen
-
=
o
2
S
2
"
o
LENANSSARNARRASENS.
Lahohanaoamwanubobenubhaabobuuhoanlnsbs

. 10 906 be

-
-
~
e e
-
-

6 . 45 . 4 3 ¢ . 1 2
uw uh aa ae eh ih ey Iy y ay ow
overall 3962 of 5775 are correct, rate = 68.606061 ¢

2

N R Rk s s
L N e L L. "]
TR o RB e s .
ARmSNoDw, -
e e e e
Bualuo
o
~
-~ o

B s manae o
o

T~

Rao- v o

< -

» nn‘g

uw uh ah aa ae eh ih ey iy y ay
- 11 . .

o
&n
[y
-
—
=

1 o416 13 1
L8183 3
. 67

[
I
4
-
&
o
]
2
-
@
<
"

e
[
(™
~
e
v ok
~
-~
B
I3
~
o
<
Q
I8
-
=3
E=4
"
o

103 0 2 Do Do DL DD DL L Ll L dy T1of 2.8
2 . . .. . -162 5 - [N e e e e e e e e e e e er 162 of 176 = 0§,
- . . . .1 . 12181 ..

2 3 . -

[
-
[
Pk ks s
[
I~y Y
[
Chee e

-
-
-
-
ke M B
-
>
-
R
»
13
132
Dew
-

C kb Rk
~
-
-
=

-
e St e
-
-
BT v

ST W .
[N
-
Cokekes e e s
-

w
e W o R
©

-
. e

I TP

PR

I

-
e e
-
~
“ =
vaar3ESanESE 88 ng g~
I~
2
o
g
=
2
)
3

117 of 137 =

135 of 177 = 7
154 of 167 = 9.
1010 of 1062 = 9

T . . L . . T &1 .n

-
<
ARBRLNR u

1
1
1
8
1
g

—r o

be

BormonodEalonEFERR 5y e~ BT RICKAISBIRBER

4
1
7
4
3
1
P

B o
[
-
~
-
-
e
<
e R

-

- e 2
S | .101
sh f jh ch b 4 bel

-...
PR
|- 3o

~

»

N B S N T
aa ae eh ih ay OWw aw oy er

. 2
uw uh ah ey iy y r
overall 4747 of 5775 are correct, rate = 82.199134

8 . 3 1
l1 w ® n ng d&x v th

Fig. 8. Same as Fig. 6, except the classifier is based on the THMM-1 trained with the MCE criterion.

However, in comparing the THMM’s with only one mix-channel energies computed directly from short-time DFT's
ture with the conventional HMM with five mixtures, weof the speech waveform; this feature-extraction technique has
still observe consistently better performance of the THMM’Been integrated with the design of an HMM-based speech
in both the CI and CD cases (Fig. 5). This suggests thaicognizer. The preprocessing (or feature extraction) compo-
the performance improvement of THMM's is not simplyhent and the modeling (or classification) component of the
due to the greater number of model parameters. Rathgleognizer are jointly trained with a discrimination-motivated
the state-dependent feature transformation incorporated igjg:g algorithm. A significant aspect of our research is that it
the structure of the THMM's accounts for much of thgy, esents the effort toward the automatic definition of speech-

performanf:e gamn. . . ... .. dependent acoustic parameters, which are subject to statistical
To provide further details of the phonetic classification .. . . . - )
: : : . ._optimization rather than relying on heuristic construction.
results, we include in the Appendix several confusion matric $

associated with various summarized results shown in Fig. yong this line, we note.an earlier work as a represen-
tative of the nonparametric (speech-frame based) approach

to this problem [3]. Our own earlier parametric (HMM-
V. SUMMARY AND DISCUSSIONS state based) approach [7], [24] has been extended in this

In this study, we have developed a novel technique fstudy from the previous level of MFCC to the present level
discriminative feature extraction from the mel-warped logf log-channel energy computed from DFT'’s, a step closer
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Fig. 9. Same as Fig. 6, except the classifier is based on the THMM-2 trained with the MCE criterion.

toward the most primitive form of the data as speech wavdependent on each speech class and on each HMM state.
form$ Moreover, our method reported in this paper goes further
At the writing of this article, a few studies appeared in thesward the raw information contained in the speech waveform
literature that are also aimed at the same goal of integratifg applying the transformation on acoustic measurements
the design of the preprocessing and modeling componentsinspeech at the filterbank output level rather than at the
speech recognizers. In particular, the work of [9] usesasimil@épstra| level. Another set of studies [20]-[22] intended to
type of MCE algorithm for a global linear transformation,se more general, neural-net-like nonlinear transforms on the
on linear predictive coefficient-based (LPC-based) cepstighnitive acoustic measurements of speech. However, due to

coefficients. This is a sp.eciar: case of thef method we hag,ﬁe implementation complexity, only the linear version of the
presented in this paper in that our transformation is mage ¢~ oo reported.

6An earlier attempt to design a statistical speech recognizer using rawln this study, we have developed and evaluated two versions

speech waveforms directly as the input features [26] encountered two mé‘f‘the optimum-transformed HMM: THMM-1 and THMM-2.
difficulties: i) prohibitively high computation burden for implementing a large . .
system, and ii) less accurate modeling assumptions made in the statisttllMM-1 performs state-dependent linear transformation on

model (hidden filter model) characterizing the statistical properties of thge mel-warped log channel energies (static) in a way that is

speech waveform, in comparison with the models which characterize the . . LT
statistical properties of the relatively slowly changing frame-based spect pependent of the successive frames (i.e., no optimization of

features. dynamic feature parameters). THMM-2 generalizes THMM-1
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