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HMM-Based Speech Recognition Using
State-Dependent, Discriminatively Derived
Transforms on Mel-Warped DFT Features

Rathinavelu Chengalvarayan, Member, IEEE, and Li Deng,Senior Member, IEEE

Abstract—In the study reported in this paper, we investi-
gate interactions of front-end feature extraction and back-end
classification techniques in hidden Markov model-based (HMM-
based) speech recognition. The proposed model focuses on di-
mensionality reduction of the mel-warped discrete fourier trans-
form (DFT) feature space subject to maximal preservation of
speech classification information, and aims at finding an optimal
linear transformation on the mel-warped DFT according to
the minimum classification error (MCE) criterion. This linear
transformation, along with the HMM parameters, are automat-
ically trained using the gradient descent method to minimize a
measure of overall empirical error counts. A further general-
ization of the model allows integration of the discriminatively
derived state-dependent transformation with the construction
of dynamic feature parameters. Experimental results show that
state-dependent transformation on mel-warped DFT features is
superior in performance to the mel-frequency cepstral coefficients
(MFCC’s). An error rate reduction of 15% is obtained on a
standard 39-class TIMIT phone classification task, in comparison
with the conventional MCE-trained HMM using MFCC’s that
have not been subject to optimization during training.

I. INTRODUCTION

T HE STRUCTURE of many successful systems for speech
recognition typically consists of a feature analysis-

extraction procedure (i.e., signal preprocessing “front-end”)
followed by a “back-end” statistical pattern classifier. The
operation of the back-end classifier has been virtually
independent of the front-end feature extractor, although the
performance of the recognizer has been known to be clearly
affected by the information extracted from the input speech
data and accessed by the classifier [2]. Previous studies
showed that the signal processing and classification techniques
interact with each other to affect phonetic classification (e.g.,
[16]). The recent advent of discriminative feature extraction
showed that improved recognition results can be obtained by
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using an integrated optimization of both the preprocessing
and classification stages [15]. Various techniques including
use of filterbank, lifter, and dynamic feature design have
been proposed for examining the interactions between the
preprocessing stage and the classification stage [1], [7], [24].
In this paper, we report our recent comprehensive investigation
on the integration of front-end preprocessing and back-
end classification techniques in the context of model-based
discriminative feature extraction, which has generalized all
the previous techniques in a principled way. The techniques
we developed have been evaluated on a phonetic classification
task showing promising results.

Filterbank modeling of speech signals has been widely
used in speech recognition tasks, and psychoacoustic studies
have confirmed the importance of the critical band or mel-
frequency scale in auditory functions [28]. Mel-filter bank
(MFB) log channel energies are calculated directly from the
discrete fourier transform (DFT), and effectively compress the
linguistically relevant speech information contained within the
raw DFT’s. Because of the well-established psychoacoustic
evidence for the mel-frequency scale and its (first-stage) data
compression role, all the signal transformations developed in
this study will be on sequences of MFB log channel energies,
which we also call mel-warped DFT features because of the
directness of computing log channel energies from DFT’s.

The conventional, model-independent speech features,
called mel-frequency cepstral coefficients(MFCC’s), use
discrete cosine transform (DCT) as a linear operator to map
mel-warped DFT (in the form of MFB log channel energies)
into a lower dimensional feature space [6], [13]. Despite the
empirical superiority of MFCC’s over many other types of
signal processing techniques, there are no theoretical reasons
why the linear transformation associated with DCT, which is
fixed a priori and independent of HMM states and of speech
classes, on MFB log channel energies is an optimal one as
far as the speech recognition performance is concerned. To
construct theoretically optimal transformation, we have in this
study developed a new statistical model of speech, called
optimum-transformed HMM (THMM), with the optimality of
the transformation defined according to the MCE criterion.
The state-dependent transformation on the mel-warped DFT,
together with the HMM parameters, is automatically trained
using the gradient descent method, resulting in minimization
of a measure of an overall empirical error count.
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Two versions of the optimum transformed HMM have been
developed in this work. Version 1, which we call THMM-1,
performs state-dependent linear transformation on the static
mel-warped DFT, independently of the successive frames
(unless, of course, there occurs a state transition among the
successive frames). In contrast, Version 2 of the THMM, which
we call THMM-2, performs the transformation jointly on the
static and dynamic parameters based on mel-warped DFT’s.
To keep the generality of our approach, we constructed the
THMM-2 with generalized dynamic parameters; i.e., linear
filtering of static parameters with filter weights made as state
dependent and trainable [7], [23].

The remainder of the paper is organized as follows. Section
II describes the mathematical formulation of both versions of
the THMM, and shows the construction of input discriminative
feature sets closely tied to the speech model. In Section III, we
develop a discriminative training algorithm for both THMM-1
and THMM-2. In particular, the gradient calculation for the
newly introduced model parameters, which is a critical step in
the training algorithm, is presented in detail. In Section IV, we
present experimental results and report the comparative per-
formance of the THMM with benchmark systems in a standard
TIMIT 39-class phonetic classification task. We summarize our
findings in Section V, and in Figs. 6–9, we provide details of
phonetic confusion matrices obtained in our experiments.

II. A STATISTICAL MODEL OF SPEECH

EMBEDDING INPUT FEATURES

Let denote a set of mel-filter-
bank log-energy (mel-warped DFT)-dimensional vector-
valued sequences, and let denote the
th sequence having a length of frames.

A. Construction of State-Dependent Transforms
for Static Input Features

The THMM-1 described in this paper integrates the input
features (mel-warped DFT’s or MFB log channel energies)
into the modeling process using a set of state-dependent
transformation matrices as trainable parameters of the model.
The new, transformed static feature vector at time frame

( th token) is a state () dependent, mixture dependent,
linear combination of each row of transformation matrix with
each element of the MFB log channel energy vector at time

according to

(1)
In the matrix form, (1) can be written as

...
...

...
...

...
...

or

where is the th element of the transformation matrix
associated with the th mixture residing in the Markov

state is the number of MFB log channel energies for each
frame, and is the vector size of the transformed static feature.
Note that the transformed static features constructed above can
be interpreted as the output from a slowly time-varying (due
to state dependence of the transformation) linear filter with the
MFB log energy vector sequence as the input.

Given the transformed static features as described above,
the dynamic feature vectors (for frame of th token) are
constructed in a conventional way (i.e., independent of the
HMM state and not jointly with the transformation on the
MFB log channel energies) by taking the difference between
two frame forward and two frame backward of the related
static features according to [8]

(2)

This fixed window length of four (equivalent to 40 ms) appears
to have reasonably well captured the slope of the spectral
envelope. Note that in THMM-1, the dynamic features at frame

are extracted by taking the linear transformation of time
differenced MFB log channel energy vectors at time and
at time using the transformation matrix derived
from the static feature optimization only.

B. Construction of State-Dependent Joint Transforms
for Static and Dynamic Features

For THMM-2, state-dependent linear transforms for static
features and those for generalized dynamic features [7], [23]
are integrated in a single model to obtain the optimal combined
advantages of individual sets of features. (The generalized
dynamic parameter technique discussed here includes the
conventional use of the dynamic parameters developed in [11]
and [12] as special cases.) As described above, the static
features are obtained by a linear transformation of an-
dimensional input space for the MFB log channel energies,
represented by the vector , to a transformed -dimensional
feature space according to (1). Instead of taking the temporal
difference of the transformed static features fixeda priori in
THMM-1, the dynamic feature vector at frame in THMM-
2 is constructed as additional state-dependent, trainable linear
combinations of the static features stretching over the interval

frames forward and frames backward according to

(3)

where is the th scalar weighting coefficient associated
with the th mixture residing in the Markov state. (Note that
in this THMM-2, is trainable, in contrast to THMM-1
where weights are prefixed). In the matrix form, (3) can be
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Fig. 1. Block diagram of showing the integration of feature analysis and
recognizer design in Version 2 of the optimum-transformed HMM (THMM-2).

written as

...
...

...
...

...
...

...

where subscript denotes the individual element in
the feature vector. The static feature matrix above has the
dimensionality , with being the dimension of
the feature vectors. Using (1), we rewrite (3) as

(4)

According to the definition of (3), the dynamic features
can be interpreted as the output from a slowly and step-
wise time-varying linear filter with the (optimally transformed)
static feature vector sequence serving as the input to the
filter. The time-varying filter coefficients are evolving slowly
according to the Markov chain in the underlying HMM. In this
THMM-2, the jointly transformed static and dynamic features
are provided as data input into the modeling stage of the
speech recognizer constructed as a mixture continuous density
HMM. The THMM-2’s integration of the feature analysis, as
exemplified by the top two blocks, and the modeling process,
as exemplified by the bottom two blocks (overlapping in the
feature transformation block), is depicted in Fig. 1, where both
static and dynamic features are subject to joint optimization
which shares between feature analysis and model construction.

C. Output Distributions of THMM and Full
Set of Model Parameters

A mixture Gaussian density associated with each state(a
total of states) is used in the model, which assumes the form

(5)

where is the augmented feature vector (including both
static and dynamic features) of theth token at frame is
the total number of Gaussian mixtures in the HMM’s output
distribution, and is the mixture weight for the th mixture
in state . In (5), , and are -dimensional
unimodal Gaussian densities for static and dynamic features,
respectively, as

where variables and indicate the static and the dynamic
features, respectively. Superscripts and denote vector
transposition and matrix inversion. The mixture weights
in (5) satisfy the stochastic constraint

The classic or conventional HMM [17], THMM-1, and
the HMM incorporating the generalized dynamic parameters
described in [7] and [23], can all be considered as special
cases of the THMM-2 presented here. The THMM-2 can be
reduced to

• THMM-1, by removing state-dependent optimization of
the dynamic features;

• the model of [7], by removing state-dependent optimiza-
tion of the static features;

• the classic HMM, by removing state-dependent optimiza-
tion on both static and dynamic features.

The full set of the parameters associated with the most
general model THMM-2 are summarized as follows:

• transition probabilities of the
-state Markov chain;

• The state-dependent mixture Gaussian mean vectors
;

• State and mixture dependent Covariance matrices
;
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• Transformation matrices defining static features for each
state and for each mixture

;
• Weighting coefficients defining dynamic feature parame-

ters for each stateand for each mixture
.

The subscripts and stand for the static and dynamic
features, respectively.

III. D ISCRIMINATIVE PARAMETER ESTIMATION

Discriminative training or parameter estimation by the mini-
mum classification error (MCE) criterion has been successfully
used by several researchers in speech and speaker recognition
tasks to improve upon the maximum likelihood (ML) criterion
(e.g., [14], [18], [4], [19]). In-class information is used in the
ML training and out-of-class information is used in the MCE-
based training. In this section, we describe the application of
the MCE-based training for the new model, THMM, developed
in this study and detailed in Section II. The ML trained model
[17] is used as the initial model for the ensuing MCE training
step. In the supervised training mode, each training token
is known to belong to one of speech classes . The
speech recognition process is based on the classifier parameter
set, , derived from the training process. The
goal of the training is to reduce the number of misclassifi-
cations occurring over the training set through minimization
of the overall loss function , closely related to the
classification error. In the THMM, the classifier parameter
set consists of all the state-dependent, mixture-dependent
transformation matrices (both THMM-1 and THMM-
2), weighting functions (only THMM-2), together with
the conventional HMM parameters including mixture weights

, mixture Gaussian mean vectors , and
mixture Gaussian covariance matrices , for all
the models each representing a distinctive
class of the speech sounds to be classified.

A. The MCE Training Procedure

The overall loss function is constructed and minimized
through the following steps.

1) Discriminant function: The log-likelihood score of the
input utterance along the optimal state sequence

for the model associated with
the th class can be written as

where is the probability of generating the fea-
ture vector at time in state by the model for

th class. The implied decision rule for classification is
defined as

if

2) Misclassification measure:Given a discriminant func-
tion, the misclassification measure for an input training

utterance from class becomes

where is the most confusable class. Clearly,
implies misclassification and

means correct classification.
3) Loss function:The loss function is defined as a sigmoid,

nondecreasing function of

which approximates the classification error count.
4) Overall loss function:The overall loss function for the

entire classifier is defined for each class as

(6)

where is the Kronecker indicator function of a logic
expression that gives value 1 if the value of is
true and value 0, otherwise. The average loss (or error
probability) for the entire training data set is defined as

(7)

where is the total number of training tokens.
5) Minimization:The loss function is minimized,

each time a training token is presented, by adaptively
adjusting the parameter set according to

(8)

where is the parameter set at theth iteration,
is the gradient of the loss function for

training sample , and is a small positive learning
constant.

B. Gradient Calculation

The THMM model parameters are adaptively adjusted to
reduce the overall loss function along a gradient descent
direction. The gradient is obtained by computing the partial
derivatives of with respect to each THMM parameter
for a given training token belonging to class. For the sake
of keeping our presentation simple, we describe the gradient
calculation only for the newly introduced model parameters.
Let denote a feature extraction parameter associated with
model , then in the case of token-by-token1 training, we can
write the gradient as

(9)

1This type of sequential optimization in general is referred to asstochastic
descent[10].
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The first factor in the right-hand-side of (9) can be simplified to

(10)

The second factor of the right-hand-side of (9) can be sim-
plified as follows:

if
if

(11)

The third factor of the right-hand-side of (9) can be modified to

(12)

where the set includes all the time indices such that the
state index of the state sequence at timebelongs to state
in the Markov chain, i.e.,

Define thea posteriori probability as

Then, using (10)–(12), (9) can be rewritten as

(13)

with the adaptive step size defined as

if
if

In the remainder of this section, class indexwill be omitted
for clarity of presentation.

1) Gradient Computation of for THMM-1: By substi-
tuting (1) and (2) into (13), the gradient calculation of
becomes

(14)

To reduce the computational complexity as well as the
model complexity, we tied all the mixtures for feature trans-
formation matrices to a single state parameter in our
experiments. For this special case, the gradient is given by

2) Gradient Computation of Both and for
THMM-2: Substitution of (1) and (4) in (13) yields

(15)

(16)
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The gradient computation for the remaining model parame-
ters is similar to those for the conventional HMM. For keeping
this paper self contained, we list these formulas below without
derivation:

(17)

(18)

(19)

(20)

(21)

where the quantities and are defined as

and are the log-transformed covariance matrices for
implementation simplicity [5].

IV. EXPERIMENTS AND MODEL EVALUATION RESULTS

The proposed new model, THMM, and the associated
discriminative training described in Sections II and III have
been evaluated on the phonetically rich, speaker-independent
TIMIT database. Several phonetic classification experiments
were conducted to study the characteristics of the MCE-based
training for the new model and for demonstration of the
superiority of the new model over the traditional HMM.

The TIMIT database with a total of 462 different speakers
is divided into a training set and a test set with no overlap-
ping speakers. Out of the ten sentences per speaker, twosa
sentences are common to all speakers and were removed from
both training and test sets in order to avoid possible biasness.
The training set consists of 442 speakers with a total 3536
sentences, and the test set consists of 160 sentences spoken
by 20 disjoint speakers. These speech materials contain a
total of 129 743 phone tokens in the training set and 5775
phone tokens in the test set. The experiments described in
this section are aiming at classifying the 61 TIMIT labels
defined in the TIMIT database. In keeping with the convention
adopted by many speech recognition researchers, we folded
22 phone labels into the remaining 39 classes in determining
classification accuracy.

For the computation of MFB log channel energies that serve
as data input to feature transformation, 21 triangular filters
are used in our experiments, which are spaced linearly from
0 to 500 Hz, and exponentially from 500 Hz to 8500 Hz.

Fig. 2. Spacing of the 21 triangular filters used in the experiments for
generating the mel-filterbank log channel energies.

The adjacent filters are overlapped by 50% in the frequency
axis, shown in Fig. 2. The frequency components below 70 Hz
are treated as noise and are removed in the filtering process.
The raw speech waveforms in TIMIT are sampled at 16 kHz,
and are blocked into 512 samples to form 10-ms frames. An
overlap of 352 samples between two adjacent data blocks
is used in the analysis. Each frame is then passed through
a 512-point Hamming window, and a 512-point fast fourier
transform (FFT) is applied to the frame to produce a 256-point
power spectrum. The FFT power spectra are combined using
a weighted sum, shaped by the triangular filter, to obtain the
filter output. Logarithms of the 21 outputs are then calculated,
arriving at 21 MFB log channel energies for each speech
frame. For the THMM, only these MFB log channel energy
vectors are used as the raw data to the recognizer. All the
feature parameters are automatically constructed within the
recognizer.

In our experiments, each phone defined in TIMIT is repre-
sented by a simple left-right (i.e., with only self and forward
transition) three-state HMM with mixture Gaussian densities.
The covariance matrices in all the states of all the models are
diagonal and are not tied. To avoid singularities caused by
an underestimation of the variance, we assigned the minimum
variance (typically a value of 0.1) in covariance matrices. All
transition probabilities are uniformly set to 0.5 (all transitions
from a state are considered equally likely) and are not trained,
since they are found to play a minor role in the forward-
backward probability scoring.

For the MCE approach, the initial model is trained using
the ML criterion [17], [8]. The state dependent transformation
matrix is initialized by the DCT matrix

where denotes the DCT matrix, and is the
dimensionality of the static feature vector. Similarly, the state-
dependent dynamic weighting coefficients are fixed to a first
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Fig. 3. Convergence characteristics of the MCE training procedure. Top
graph: phonetic classification rates on the test set for three types of classifiers
as a function of the MCE training epoch number. Bottom graph: average loss
computed from training set for three types of classifiers as a function of the
MCE training epoch number.

difference condition: 1.0 and
1.0. Note that the above initialization of the transformation

matrix by DCT matrix without further training gives rise to
the traditional MFCC feature parameters.

During the model training phase, we call one complete pass
through the training data set as an epoch. For the case of token-
by-token training, model parameters are updated several times
over an epoch. Additionally, in each epoch we also decrease
the step size monotonically , where is the
epoch number, is the limit for the number of epochs and
0.01 is a small positive learning constant. The classification
performance often peaked after about four or five epochs
and then again varied randomly within about one percent.
In training, we perform a total of five epochs and only the
best-incorrect-class2 is used in the misclassification measure.
Phonetic classification is performed directly from the standard
Viterbi score calculation.

Context-independent (CI) phone models assume that speech
is produced as a sequence of concatenated phones which are
unaffected by context. For the CI experiments, a total of 39
models (with 39 3 117 states) were constructed, one for
each of the 39 classes intended for the classification task. A
context-dependent (CD) phone model is one that is dependent
on the left and right neighboring phone. With 39 phone classes,
there are potentially 39 39 39 59 319 phone models
constituting 177 957 states, which are impractical to train given
the limited amount of training data. As an alternative, the
procedure outlined in [24] has been adopted to create CD
models, resulting in approximately a total of 1209 states.

Before we present the full set of phonetic classification
results, we first present the convergence characteristics of the
MCE training. Fig. 3 shows the classification rate of the test
set (top plot) and the average loss (bottom plot), defined by

2This is a computationally efficient way of pruning the search in the
discriminative training.

Fig. 4. Results of a fast experiment intented to find the optimal dimension
of the feature transformation matrix. Phonetic classification rates for three
types of classifiers are plotted as a function of the number of rows in the
transformation matrix.

(7), of the training set for three different classifiers3 as a
function of the training epoch number. In Fig. 3, the solid
lines are associated with MCE-trained conventional HMM,
dotted lines with THMM-1, and dashed lines with THMM-
2. The classification rates and the average loss are evaluated
at the end of every epoch. As shown in Fig. 3, the classi-
fication rates are monotonically increased and the average
loss is monotonically decreased as the training progresses.
The average loss decreases faster for THMM-1 and THMM-2
than the conventional HMM, indicating the effectiveness of
the new THMM models. Similar trends in the classification
performance are also observed. This suggests that the original
objective of minimizing the misclassification error using the
MCE training is indeed achieved and that the MCE training
may be more effective for the THMM than the conventional
HMM.

In our phonetic classification experiments, we use feature
transformation to reduce the dimensionality of the raw data.
It converts the partially preprocessed speech data to a suitable
form (feature vectors) for use as the input to the HMM
for modeling and classification. Obviously, the transformed
feature vector must have a smaller dimension than that of
the MFB log channel energies (i.e., 21). To determine
the best dimension,, for use in phonetic classification tasks,
a series of fast experiments are conducted using a subset
of training-set, consists of 320 sentences from each of 40
speakers, and test set with unimodal Gaussian CI phone
models. The results expressed as phonetic classification rate
as a function of dimension are plotted in Fig. 4, with
the ML-trained conventional HMM (i.e., using MFCC’s4)
plotted as the dashed-dashed line, MCE-trained conventional
HMM as the dashed-dotted line, and MCE-trained THMM-1
as the dotted-dotted line. (The ML-trained HMM with state-
dependent DCT matrices, or MFCC’s, is provided as the initial

3The results are obtained with use of fivey-mixtures CD phone models.
4The feature ordering for MFCC’s was performed by selecting lowest order

MFCC’s first.
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Fig. 5. TIMIT 39-phone context-independent (left) and context-dependent (right) classification rates as a function of the classifier types and of thenumber
of Gaussian mixtures in the model state. Four types of classifiers are evaluated and compared: two benchmarks based on ML-trained and MCE-trained
conventional HMM’s using MFCC’s, and two versions of the THMM’s, both trained by MCE.

model for the MCE training of THMM, and in these fast
experiments, all states of all models use an identical number
of features.) From the results shown in Fig. 3, we observe
that the classifier performance remains fairly constant after

reaches twelve. Therefore, in our following formal, more
comprehensive experiments, we choose 12, making the
dimensions of the linear transformation matrix to be 1221.
This gives the total feature vector consisting of 26 elements:
one normalized log energy, 12 transformed MFB log channel
energies, one delta log energy, and 12 delta transformed MFB
log channel energies.

A series of comparative experiments have been carried out,
using full sets of training and test data, to examine the effec-
tiveness of the MCE training on the proposed THMM-1 and
THMM-2 as described in Sections II and III. The experimental
results are summarized in Fig. 5. For performance comparison
with benchmarks, conventional HMM’s with use of static
and dynamic MFCC features are first implemented. The static
MFCC features are obtained by taking DCT of the MFB log
channel energies and the dynamic features are calculated as
the difference between the static feature vectors for two-frame
ahead and two-frame behind each current time. The left and
right plots of Fig. 5 give the performance comparison (among
four types of classifiers) for CI and CD phones, respectively.
For both CI and CD cases, we evaluate unimodal Gaussian
HMM’s ( 1) and mixture Gaussian HMM ( 5)
separately. The four types of classifiers are as follows. The

first classifier, denoted by HMM (ML) in Fig. 5, is designed
with conventional HMM’s as a benchmark using MFCC and
delta-MFCC features and being trained with five iterations of
Baum–Welch (ML) algorithm. This HMM (ML) is comparable
in performance with other similar classifiers (e.g., [25]), and
gives 65.7% phone classification rate using five-mixture CI
models (about the same as 66.2% reported in [25] with
32 mixtures). The second classifier, denoted by HMM5 in
Fig. 5, is designed also with conventional HMM’s as another
benchmark using identical MFCC and delta-MFCC features,
but being trained with the MCE algorithm (five epochs). The
best classification results obtained are 65.66% and 80.51%
for HMM with five-mixtures CI and CD models, respectively.
As can be seen from Fig. 5, the performance in terms of
classification accuracy was significantly improved by the MCE
training over the ML counterpart.

The third and the fourth classifiers, denoted by THMM-
1 and THMM-2, respectively, in Fig. 5, are designed with
the two versions of the THMM described in Section II and
trained using the MCE algorithm presented in detail in Section
III. Our goal is to test the effectiveness of incorporating
the optimal state-dependent transforms on raw features in
the classification performance. Since good initialization of
transformation matrices is important to avoid local optimum
that would necessarily occur due to the use of gradient descent,

5All remaining three classifiers use MCE training rather than ML training,
so the label MCE will not be attached in Fig. 5.
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Fig. 6. Confusion matrix for the standard TIMIT 39-phone classification task with use of conventional HMM’s (MFCC features not optimized) trained by the
ML criterion. The top matrix shows results with context-independent models and the bottom matrix shows results with context-dependent models.The
models have five Gaussian mixtures in each state.

we use the first benchmark classifier (HMM (ML)), modified
by introducing a state-specific DCT matrix, to initialize the
THMM’s for the MCE training. In the discriminative training,
the initial DCT matrices are progressively improved according
to (14) in a state-dependent manner. For the THMM-1 based
classifier, the best classification results are 68.6% (CI) and
82.2% (CD) with five mixtures (see the results labeled with
THMM-1 in Fig. 5). The CD result of 82.19% is translated to
reduction in error rate of 9% compared with the benchmark
HMM (MCE) classifier’s performance. For all other cases, the
THMM-1 outperforms the conventional HMM by at least 7%
in error rate reduction. We also from the results in Fig. 5 that
the unimodal Gaussian (1-mixture) THMM-1 performs better
than the five-mixtures MCE-based HMM for both CI and CD
cases. In either case, the unimodal Gaussian THMM-1 and

five-mixtures conventional HMM have comparable numbers
of classifier parameters: The number of classifier parameters
for one-mixture THMM-1 is 21 12 26 26 304,
similar to that of the five-mixtures HMM, which is 5
(26 26 1) 265. Comparison of the performance
improvement with other systems, unfortunately, is somewhat
difficult because of the completely different model structure
and entirely different training criterion. For example, a closest
comparison can be made with the study reported in [27] where
error rate reduction of 3.8% was obtained using HMM’s with
state-specific linear discriminant analysis on the input features
(which is state independent, different from our state-dependent
transformation).

From the final classifier based on THMM-2, which in-
corporates generalized dynamic weighting functions, the best
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Fig. 7. Same as Fig. 6, except the HMM’s are trained by the MCE criterion.

classification results have been obtained, shown as the THMM-
2 label in Fig. 5. In training the THMM-2 classifier, (15) and
(16) are used to simultaneously adjust the static linear transfor-
mation matrices and dynamic weighting parameters. This joint
training of both static-feature- and dynamic-feature-related
classifier parameters produces performance improvement over
the THMM-1 (where no optimization on dynamic-feature
related parameters) more significantly for CD (right plot
of Fig. 5) than for CI models (left plot of Fig. 5). The
classification rates with the THMM-2 classifier improve from
80.51% (benchmark MCE-trained HMM) 83.4% with use of
five-mixture CD models. This translates to 15% error rate
reduction. For single-mixture CD models, the corresponding
error rate reduction from benchmark to THMM-2 is 17%,
with classification rate improvement from 79.41% to 82.84%.
On the other hand, we observe that while the MCE training

substantially improves the classification performance, the im-
provement relative to the corresponding ML case decreases
as the model complexity increases. For example, an error rate
reduction of 25% for the single mixture case is reduced to an
error rate reduction of 18% (five-mixture CD models) when
compared with respect to the ML-trained HMM benchmark.
This suggests that if a larger amount of training data were
available, the performance improvement achievable using the
MCE-trained THMM-2 would be even more significant than
reported here.

In analyzing the comparative performances of the various
classifiers shwon in Fig. 5, we have noted the issue of fairness
of comparison with respect to the varying numbers of model
parameters. Admittedly, with use of the same number of
mixtures, the THMM’s have one additional trainable full
matrix each state compared with the conventional HMM.
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Fig. 8. Same as Fig. 6, except the classifier is based on the THMM-1 trained with the MCE criterion.

However, in comparing the THMM’s with only one mix-
ture with the conventional HMM with five mixtures, we
still observe consistently better performance of the THMM’s
in both the CI and CD cases (Fig. 5). This suggests that
the performance improvement of THMM’s is not simply
due to the greater number of model parameters. Rather,
the state-dependent feature transformation incorporated into
the structure of the THMM’s accounts for much of the
performance gain.

To provide further details of the phonetic classification
results, we include in the Appendix several confusion matrices
associated with various summarized results shown in Fig. 5.

V. SUMMARY AND DISCUSSIONS

In this study, we have developed a novel technique for
discriminative feature extraction from the mel-warped log

channel energies computed directly from short-time DFT’s
of the speech waveform; this feature-extraction technique has
been integrated with the design of an HMM-based speech
recognizer. The preprocessing (or feature extraction) compo-
nent and the modeling (or classification) component of the
recognizer are jointly trained with a discrimination-motivated
MCE algorithm. A significant aspect of our research is that it
represents the effort toward the automatic definition of speech-
dependent acoustic parameters, which are subject to statistical
optimization rather than relying on heuristic construction.
Along this line, we note an earlier work as a represen-
tative of the nonparametric (speech-frame based) approach
to this problem [3]. Our own earlier parametric (HMM-
state based) approach [7], [24] has been extended in this
study from the previous level of MFCC to the present level
of log-channel energy computed from DFT’s, a step closer
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Fig. 9. Same as Fig. 6, except the classifier is based on the THMM-2 trained with the MCE criterion.

toward the most primitive form of the data as speech wave-
form.6

At the writing of this article, a few studies appeared in the
literature that are also aimed at the same goal of integrating
the design of the preprocessing and modeling components in
speech recognizers. In particular, the work of [9] uses a similar
type of MCE algorithm for a global linear transformation
on linear predictive coefficient-based (LPC-based) cepstral
coefficients. This is a special case of the method we have
presented in this paper in that our transformation is made

6An earlier attempt to design a statistical speech recognizer using raw
speech waveforms directly as the input features [26] encountered two main
difficulties: i) prohibitively high computation burden for implementing a large
system, and ii) less accurate modeling assumptions made in the statistical
model (hidden filter model) characterizing the statistical properties of the
speech waveform, in comparison with the models which characterize the
statistical properties of the relatively slowly changing frame-based spectral
features.

dependent on each speech class and on each HMM state.
Moreover, our method reported in this paper goes further
toward the raw information contained in the speech waveform
by applying the transformation on acoustic measurements
of speech at the filterbank output level rather than at the
cepstral level. Another set of studies [20]–[22] intended to
use more general, neural-net-like nonlinear transforms on the
primitive acoustic measurements of speech. However, due to
the implementation complexity, only the linear version of the
transform has been reported.

In this study, we have developed and evaluated two versions
of the optimum-transformed HMM: THMM-1 and THMM-2.
THMM-1 performs state-dependent linear transformation on
the mel-warped log channel energies (static) in a way that is
independent of the successive frames (i.e., no optimization of
dynamic feature parameters). THMM-2 generalizes THMM-1
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and includes a jointly optimal transformation so as to arrive at
the static and dynamic parameters together. We found in our
experiments that the empirical average loss computed from
the training samples decreases faster for both versions of the
THMM than for conventional HMM. This leads us to believe
that the objective of minimizing the misclassification error
intented with the MCE criterion is achieved more effectively
for the new THMM’s than for the conventional HMM.

We have conducted a series of phone classification ex-
periments using TIMIT to evaluate the performance of the
THMM’s. To make the experimental results interpretable, all
of our experiments have used a fixed number of features. An
attempt has been made to use a best static feature dimension
of 12, which has been determined by an early fast experiment.
Experimental results show that use of the state-dependent
transformation on mel-warped log-channel energies is superior
in performance to the conventional use of the MFCC’s,
which are not subject to optimization together with the model
parameters in training. Overall, an error-rate reduction of 15%
is achieved on a standard 39-class phone classification task in
comparison with the conventional MCE-trained HMM using
MFCC’s.

For THMM-1, the best classification rate of 82.2% is
obtained using five-mixtures context-dependent models, com-
pared with 80.5% with the conventional MCE-trained HMM.
Further improvement of about 8% error-rate reduction is
achieved moving from THMM-1 to THMM-2 by incorporating
the state-dependent generalized dynamic feature parameters.
Compared across four classifiers (two versions of THMM’s
and two benchmark HMM’s), THMM-2 consistently produces
the lowest error rate due to its new, efficient way of organizing
and utilizing the input data in the form of mel-warped log-
channel energies.

We believe that the results reported in this paper are the
first to demonstrate that the mel-warped DFT features, subject
to appropriate transformation in a state-dependent manner, are
more effective than the MFCC’s that have dominated current
speech recognition technology. To the best of our knowledge,
our performance results based on joint optimization of DFT-
derived features and of HMM parameters are the best reported
in the literature on speaker-independent TIMIT phonetic clas-
sification task using comparably sized training data. Although
the experiments reported in this paper are limited to only the
phonetic classification task, the model is well suited for use
in continuous speech recognition tasks. Demonstration of the
effectiveness of the THMM proposed in this paper in large
scale continuous speech recognition tasks will be our future
effort.

Eight sample confusion matrices that supplement the pho-
netic classification results shown in Fig. 5 are shown in
Figs. 6–9.
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