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Abstract
Creaky voice, also referred to as vocal fry, is a voice quality fre-
quently produced in many languages, in both read and conver-
sational speech. To enhance the naturalness of speech synthesis,
these latter should be able to generate speech in all its expressive
diversity, including creaky voice. The present study looks to
exploit our recent developments, including creaky voice detec-
tion, prediction of creaky voice from context, and rendering of
creaky excitation, into a fully functioning and automatic HMM-
based synthesis system. HMM-based synthetic creaky voices
are built and evaluated in subjective listening tests, which show
that the best synthetic creaky voices are rated more natural and
more creaky compared to a conventional voice. A non-creaky
voice is also successfully transformed to use creak by modify-
ing the F0 contour and excitation of the predicted creaky parts.
The transformed voice is rated equal in terms of naturalness and
clearly more creaky compared to the original voice.
Index Terms: speech synthesis, creaky voice, contextual fac-
tors, F0 estimation, excitation modeling

1. Introduction
Creaky voice, also called vocal fry, is a voice quality brought
about by a distinctive phonation type involving low-frequency
vocal fold vibration. The temporal periodicity of creak is often
highly irregular and secondary laryngeal excitations are com-
mon and it can be perceived as “a rough quality with the sen-
sation of additional impulses” [1]. For a description of the
physiological and acoustic characteristics of creaky voice can
be found in [1]–[5]. Although creak is produced by speakers
involuntarily, various systematic usages of creaky voice have
been reported. For instance, creaky voice has been observed
as a phrase boundary marker in American English [6] and also
as a turn-yielding mechanism in Finnish [7]. The relevance of
creaky voice for hesitations has been examined [8] as well its
usage in portraying social status [9]. It is also known to be im-
portant for communicating attitude and affective states [10].

Some of our previous work on creaky voice involved devel-
oping methods for automatic detection of creak [11, 5]. Further
work by the present authors was concerned with developing an
excitation model of creaky production capable of providing a
natural rendering of the voice quality [12]. Also the predic-
tion of creaky voice from contextual factors was investigated in
[13], which enables automatic determination of the creaky us-
age from the input text. One obvious application of this line of
research is incorporating creaky voice in a statistical parametric
speech synthesis system [14]. There are several reasons why
this is desirable. Firstly, many speakers use creaky voice in the
read speech used for developing text-to-speech (TTS) systems.

For such speakers, providing the proper mechanisms for mod-
elling creaky voice will inevitably improve the naturalness of
the synthesis [15]. Furthermore, as creaky voice is frequently
adopted in lively story-telling and natural interactive conversa-
tion, incorporating creak will also contribute significantly to the
development of expressive speech synthesis.

Previous work [15] sought mainly to avoid voicing decision
errors, however in this paper we treat creaky voice as a special
case in a statistical parametric speech synthesis system in the
attempt of preserving its timbre. First, Sec. 2 describes speech
data used in the study and Sec. 3 describes methods required
for successful analysis of creaky voice: creaky voice detection
and fundamental frequency (F0) estimation. In Sec. 4, hidden
Markov model (HMM) based synthesis of creaky voice is ex-
perimented: synthetic creaky voices are built and evaluated in
subjective listening tests in terms of naturalness and creakiness.
Adding creaky voice to a non-creaky speaker is experimented
in Sec. 5, before a summary in Sec. 6.

2. Speech data
The speech data used in the present study consist of three
databases recorded for the purpose of developing TTS synthe-
sis. The first is 1131 sentences produced by an American En-
glish male (labelled BDL) recorded for the ARCTIC database
[16]. The second is 692 sentences read by a Finnish male (la-
belled MV) [17]. The first two speakers use creaky voice in
the recordings. The third corpus contains 1138 utterances spo-
ken by a Scottish English male (labelled AWB) who does not
generally exhibit creaky voice. This corpus is thus used in ex-
periments of adding a creaky voice for a non-creaky speaker.

Additionally, conversational speech data is used for assess-
ing the performance of F0 and voicing estimation algorithms
in creaky voice regions. This consists of conversational speech
data recorded from 7 speakers in a range of conditions, and cov-
ering a set of languages (English, Japanese and Swedish). A full
description of these conversational speech databases is given
in [5]. Also an additional TTS database of a female Finnish
speaker [15] was included to evaluate the F0 algorithms.

All of the conversational data, as well as 100 sentences from
the TTS databases (which was used as test data), were hand-
labelled for creaky voice (the annotation procedure is outlined
in [5]). Note that it is not generally possible to obtain objective
reference annotation for creaky voice.

3. Analysis of creaky voice
During the production of creaky voice, the glottal behaviour is
dramatically modified. The physiological settings [18] bring
about acoustic characteristics which are quite distinct from
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modal voice. As a result, proper automatic analysis of creaky
voice then requires specific tools for i) the accurate detection of
creaky voice parts and ii) the accurate F0 estimation in difficult
creaky voice parts. In the following, these methods for creaky
voice analysis are described.

3.1. Creaky voice detection

In order to have proper treatment of the distinctive acoustic
characteristics of creaky voice in a speech synthesis system,
it is essential to have annotation of creaky voice regions in a
given corpus. Hand-annotation of large corpora is extremely
time-consuming, and in order to have a fully automatic and re-
producible synthesis development method, automatic detection
of creaky voice is required. In this study we utilise a recently
developed detection algorithm [5] (which built on initial work
in [11]). The algorithm involves the use of two features de-
rived from the linear prediction (LP) residual which have been
tailor-designed to characterise aspects of the creaky excitation.
These features are used as inputs to a binary decision tree clas-
sifier, which outputs a posterior probability of the occurrence of
creaky voice. This contour can be thresholded to obtain a binary
creaky decision. The detection method was trained on a range
of speech data including read speech recorded for TTS devel-
opment as well as a range of conversational speech databases
recorded under different conditions.

3.2. F0 estimation

To develop a synthesis system with effective rendering of creaky
voice, one must use an F0 tracker capable of outputting mean-
ingful values in these regions. However, due to the very low
F0 and often highly irregular periodicity of creaky voice, many
F0 trackers either output spurious values or incorrectly deter-
mine the region to be unvoiced. To decide on an appropriate F0
tracker for our synthesis approach, we first evaluated a range of
state-of-the-art F0 algorithms:

• GlottHMM [19]
• SWIPE [20]
• RAPT [21]
• SPTK 3.1 cepstrum based pitch function [22]
• STRAIGHT TEMPO [23, 24]

These methods are assessed in terms of the extent to which they
incorrectly determine creaky voice regions to be unvoiced. The
methods were mostly used with their default settings, except
that the frame length was set to 45 ms, whenever possible and
beneficial, to assist the F0 detection in low-pitch creaky sec-
tions. A range of speech data, previously hand-labelled for
creaky voice (see Section 2), including 3 databases of read
speech for TTS synthesis development as well as conversational
speech data from 7 other speakers was used. For the TTS data
(Figure 1, left panel) the GlottHMM method performs best in
terms of not incorrectly determining creaky voice regions to
be unvoiced, with SPTK also performing well. In general for
the conversational data (Figure 1, right panel) performance is
degraded somewhat. This is to a large extent due to lower
quality recording conditions. Here SPTK performs best with
GlottHMM the next best. Considering these findings we opted
to use the GlottHMM F0 and voicing decision algorithm for our
synthesis approach.

4. Synthesis of creaky voice
Synthesis of voice with creak requires i) the prediction of creaky
parts from context and ii) the ability to render creaky excitation.
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Figure 1: Percentage of hand-labelled creaky voice regions in-
correctly determined as unvoiced using 5 F0 tracking algo-
rithms for TTS (left panel) and conversational (right panel)
speech data. Data is displayed as means and standard errors.

In our previous work, we have developed methods for creaky
voice prediction from context [13] and rendering of creaky ex-
citation [12]. However, these methods have not been utilised in
a full TTS voice before. In the following, HMM-based synthetic
voices with the ability to exhibit creak are created.

4.1. Prediction of creaky voice from context

To render creaky voice in appropriate parts in a sentence, creak
must be predicted from input text. Although it is possible to
have an external control over a creaky voice in speech synthe-
sis, in a pure TTS application, creaky parts must be predicted
from the only available source of information, the context of the
input text. The process of the prediction begins with first detect-
ing the existing creaky parts in the training corpus by a creaky
voice detection algorithm (see Section 3.1). In this study, the
algorithm in [5] is used, which provides a frame-wise probabil-
ity of creak. This parameter is used as a feature in the HMM-
training for determining if a segment is creaky or not [13]. More
specifically, the parameter indicating the probability of creak is
trained as an additional 1-dimensional feature along with other
speech features, such as F0 and spectrum.

The contextual features according to which the creaky prob-
ability parameter is trained, are defined by the list of phonetic
and linguistic information that is used for training a HMM-
based synthetic voice. For BDL voice, the standard list of 53
contextual factors in the HTS implementation [25, 26] is used.
For the Finnish speaker, MV, a total of 66 contextual factors are
used, described in [27]. According to the study in [13], only
a few of the contextual factors are useful in predicting creaky
voice, and the useful factors are closely related with creaky use
at the end of a sentence or a word group.

After the training, a statistical model (i.e. HMM system)
is created that links the creaky probability with the contextual
factors. In synthesis, the input text is fed into a front-end that
extracts the contextual information according to the list of con-
textual features. This information is then used to generate a
creaky probability trajectory from the trained statistical model.
Investigations on this procedure in [13] indicate that the accu-
racy of the prediction of creaky voice from context is compara-
ble to the accuracy of the creaky detection algorithm on which
the HMM system was trained.

4.2. Rendering of creaky voice

There are three crucial points to ensure correct perceptual
creaky rendering. First, voicing decision method should be ro-
bust enough to deal with the acoustic characteristics of creaky
voice. If this is not the case, the use of an unvoiced excitation
in creaky segments will dramatically affect the quality of the
produced voice. Secondly, the F0 estimation technique should
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provide tangible F0 trajectories even in creaky voice. The third
criterion is a proper modeling of the creaky excitation which
importantly differs from the excitation in modal speech.

As described in Section 1, creaky excitation is dramatically
different from the excitation of modal speech arising from cer-
tain distinctive physiological factors [18]. More precisely, the
creaky excitation signal not only exhibits discontinuities at the
glottal closure instants (as in modal speech [28]), but also dis-
plays secondary (and sometimes even tertiary) excitation peaks.
In [12], we have proposed an extension of the deterministic plus
stochastic model (DSM) [29] which integrates a proper model-
ing of these secondary excitation peaks. The resulting paramet-
ric vocoder was shown to provide a better perceptual rendering
of the creaky voice quality [12]. In the following, this vocoder
will be used to enhance the synthesis of creaky voice.

4.3. Voice building

Creaky voices were built using the standard HTS method
[25, 26] with the addition of 1-dimensional stream of creaky
probability [13]. First, F0 was estimated with two methods:
GlottHMM [19], which performed best with TTS data and
STRAIGHT TEMPO [24], which is a common tool in HMM-
based speech synthesis and is also previously used in creaky
voice synthesis [15]. SPTK 3.6 [20] was used to extract the
spectrum of speech by 30th order mel-generalised cepstral anal-
ysis with α = 0.42 and γ = −1/3 [31]. Generalised mel-
cepstrum was then converted to line spectral frequencies (LSF)
[32] for better parameter representation for HMM training. In
synthesis, parameters were generated considering global vari-
ance [33] except for the spectrum. Creaky parts were deter-
mined according to the generated creaky voice probability. Ex-
citation was generated using the DSM vocoder [29] with the
extension that creaky parts were rendered with the creaky exci-
tation waveform [12]. Finally, the excitation was filtered with
the mel-generalised log spectral approximation (MGLSA) filter
[34]. The following voices were built both for MV and BDL
speakers using the previous methods:

1. Conventional (STRAIGHT F0)
2. Proposed (GlottHMM F0)
3. Proposed (GlottHMM F0 and creaky excitation)

4.4. Evaluation

To evaluate the three synthesis systems, a subjective online two-
part listening test was carried out. Randomly selected 20 sen-
tences from the 100 held-out test sentences of BDL and MV
were used as stimuli. Natural utterances were also included as a
check, but as listeners rated these almost unanimously as com-
pletely natural, they are not considered in the results.

The first part was a standard mean-opinion score (MOS)
style test, where participants rated the naturalness of synthe-
sised stimuli on a scale of 1 to 5. 29 participants (22 of whom
are engaged in speech research) carried out the first test. Par-
ticipants were presented with 48 stimuli (i.e. 2 speakers with
6 sentences by the 4 systems). Note that the 6 sentences were
randomly selected from the set of 20 for each participant, and
stimuli were presented in a randomised order each time.

The second part was a pairwise preference test, where par-
ticipants were presented with two synthesised stimuli and were
required to indicate their preference of the two in terms of
synthesising creaky voice effectively. Participants could also
choose “no preference”. Note that 3 of the 29 participants did
not complete the preference test part. As some participants may
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Figure 2: Results from (a) MOS and (b) preference test. Data
for (a) is displayed as means and 95% confidence intervals.

not be familiar with the term creaky voice, we included a range
of natural utterances as references with which to familiarise
themselves with the voice quality. Participants were presented
with 30 pairs of stimuli, 5 sentences for the 2 speakers and the
3 possible pairwise comparisons (i.e. 1 vs 2, 2 vs 3 and 1 vs 3).
Note again that the 5 sentences were randomly selected from
the set of 20 for each participant and pairs of stimuli presented
were presented in a randomised order.

The results of the subjective evaluation are illustrated in
Figure 2a. For the MOS test, a one-way ANOVA indicates a sig-
nificant effect of system type on participant ratings [F(2,1041) =
12.52, p< 0.001]. Pairwise comparison using Tukey’s honestly
significant difference (HSD) test reveals both system 2 and 3 to
have higher (p< 0.001) participant ratings than system 1. These
findings indicate a clear improvement in naturalness when using
the GlottHMM F0 tracker compared with STRAIGHT. How-
ever, participants did not notice any clear difference in overall
naturalness if the creaky excitation was included or not.

For the preference test (illustrated in Figure 2b) participants
clearly signalled a preference for system 2 compared to system
1 (60 % preference) and system 3 compared to system 1 (67
% preference). Around twice as many ratings favoured system
2 (42 % preference) to system 1 (22 % preference), however
a large proportion of the ratings (36 %) indicated no preference
for either. The findings here clearly show a lower preference for
the synthesis system using STRAIGHT F0 in terms synthesis-
ing creaky voice. They also indicate a preference for the synthe-
sis system using the creaky excitation (i.e. system 3) compared
to the one without (i.e. system 2).

5. Adding creak for non-creaky speaker
The following four systems were assessed in terms of trans-
forming a non-creaky voice (AWB) to a creaky one:

1. Baseline AWB
2. AWB with BDL creaky excitation
3. AWB with BDL F0 and BDL creaky excitation
4. AWB with F0 transformation and BDL creaky excitation

For system 1, a normal baseline voice was trained according to
the description in Section 4.3, without creaky voice prediction
and rendering. For system 2, creaky voice regions are predicted
and a creaky excitation pulse from another speaker (i.e. BDL) is
used to render the excitation. This, however, may impose prob-
lems since the combination of the original F0 curve and artifi-
cially added creaky excitation may not sound natural. System 3
uses F0 stream substitution and creaky excitation from another
creaky speaker (BDL). Note that a similar approach of feature
stream substitution has previously been shown to be effective
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for reconstruction of the timbre of individuals with degenera-
tive diseases using HMM-based synthesis with an average voice
model [35]. The F0 curve is, hence, in line with creak, but
with the cost that the prosody of the original speaker is affected
by the substitution of another speaker’s F0. Finally, system 4
tries to overcome this problem by transforming the original F0
curves so that they decline appropriately in the creaky regions.
This is achieved by applying a data-driven transformation to the
original F0 curve in the region preceding, around 500 ms (ap-
prox. 2 syllables), and including the creaky segment. This trans-
formation is learnt from the analysis of F0 trajectories from a
creaky speaker. More precisely, a set of F0 curves preceding a
creaky segments are collected, converted to a logarithmic scale,
normalised so that they start with a zero value, and then simply
averaged. The original F0 trajectory of the non-creaky speaker
is then transformed such that it matches the trends extracted
from the creaky speaker, in the 500ms region preceding the pre-
dicted creaky region.

5.1. Evaluation

To assess the effectiveness of the creaky transformation as well
as the overall naturalness of the synthetic utterances we carried
out a further online subjective evaluation of the 4 systems de-
scribed in previous section. 14 participants carried out the lis-
tening test where they were presented with 28 synthesised stim-
uli (i.e. 7 sentences for each of the 4 methods) and were required
to rate the stimuli on two scales. The stimuli we used were again
randomly selected 20 test sentences and the corresponding syn-
thetic signals produced using the 4 systems. Participants were
presented with 28 stimuli (the 4 system versions of 7 test sen-
tences randomly selected from the 20 for each participant) in a
randomised order. The first scale was a standard MOS scale,
with naturalness rated on a score of 1 to 5. The second scale
was also from 1 to 5, with 1 being “does not sound like creaky
voice” and 5 being “sounds exactly like creaky voice”. Again
reference samples of natural utterances containing creaky voice
were given at the beginning of the test to allow participants
to familiarise themselves with the voice quality. Note that in
this test, these reference utterances were randomly selected (for
each participant) from a set of utterances taken from the con-
versational data. This was done to avoid biasing participants to
one particular form of creaky voice.

The results for the subjective evaluation of creaky transfor-
mation are presented in Figure 3. For the MOS, (panel a), a one-
way ANOVA (with participant rating as the dependent variable)
indicates significant effect of system type on the MOS natu-
ralness score [F(3,388) = 2.93, p < 0.05]. Pairwise comparison
using Tukey’s HSD test reveals that system 3 was rated lower (p
< 0.05) than system 1. However, there were no other significant
pairwise differences. For the creaky scale, a one-way ANOVA
again indicates (but in this case a more pronounced) significant
effect of system type on participant ratings [F(3,388) = 33.43, p
< 0.01]. Tukey’s HSD post-hoc test reveals a significant dif-
ference (p < 0.001) between system 2, 3 and 4 compared with
system 1, with no other pairwise significant differences.

These findings demonstrate that systems 2–4 clearly
achieve incorporation of creaky voice into the utterance of a
non-creaky speaker. For system 3, which utilises F0 stream
substitution, the altered prosody of the speaker brings about a
degradation in naturalness, and is hence somewhat less effec-
tive. A further possibility for the degradation may be due to
the higher spectral coefficients from the non-creaky speaker be-
ing unsuitable and, hence, the need for further feature substi-
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Figure 3: Subjective evaluation results of creaky transformation
for (a) MOS and (b) creaky preference test. Data displayed as
means and 95 % confidence intervals.

tution of these coefficients (as is done in [35]). Interestingly,
the method with the highest mean creaky rating, which does
not degrade the naturalness, is a relatively straightforward post-
processing of the F0 contour (i.e. system 4).

6. Conclusion
The goal of this paper was two-fold. First, we investigated
methods for the HMM-based synthesis of creaky voice. Com-
pared to the synthesis of modal voice, this purpose requires
the development of specific and necessary modules: at analysis
time, i) method for detecting creaky voice and ii) a robust pitch
tracker which copes with the inherent less regular periodicity
should be used, iii) at generation time, the intended segments of
creaky voice have to be predicted from contextual factors, iv) at
synthesis time, a dedicated vocoder integrating the presence of
secondary peaks in the creaky excitation should be used to al-
low a proper rendering of creaky voice. The inclusion of these
modules into a HMM-based speech synthesiser was shown to
provide a substantial improvement over the standard approach.
Our subjective evaluation revealed a significant improvement in
terms of naturalness, as well as a clear preference towards the
proposed system. These experiments also highlighted the need
to use appropriate creaky voice analysis tools.

The second goal of the paper was to investigate the possi-
bility of applying voice transformation techniques so as to pro-
duce creaky voice by a speaker who initially only used modal
speech. Three techniques were proposed for this purpose. Com-
pared to the standard HMM-based speech synthesiser for such
a speaker, two of the methods were shown to maintain the level
naturalness (i.e. they did not introduce any artifacts) while all
methods clearly induced a proper creaky rendering perceived
by listeners. Interestingly, the best method for this purpose did
not involve any statistical manipulation and could be used as a
post-process in any speech synthesis method, provided that the
creaky regions are known. There is of course the risk that differ-
ent languages or possibly different dialects may have different
systematic usage of creaky voice. Nevertheless, using a model
of predicting creaky voice from an American English speaker
applied to a Scottish English speaker was effective.
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