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ABSTRACT 

Two approaches were explored which integrate neural net classifiers 

with Hidden Markov Model (HMM) speech recognizers. Both at

tempt to improve speech pattern discrimination while retaining the 

temporal processing advantages of HMMs. One approach used neu

ral nets to provide second-stage discrimination following an HMM 

recognizer. On a small vocabulary task, Radial Basis Function 

(RBF) and back-propagation neural nets reduced the error rate 

substantially (from 7.9% to 4.2% for the RBF classifier). In a larger 

vocabulary task, neural net classifiers did not reduce the error rate. 

They, however, outperformed Gaussian, Gaussian mixture, and k

nearest neighbor (KNN) classifiers. In another approach, neural 

nets functioned as low-level acoustic-phonetic feature extractors. 

When classifying phonemes based on single 10 msec. frames, dis

criminant RBF neural net classifiers outperformed Gaussian mix

ture classifiers. Performance, however, differed little when classi

fying phones by accumulating scores across all frames in phonetic 

segments using a single node HMM recognizer. 

-This work was sponsored by the Department of the Air Force and the Air Force Office of 

Scientific Research. 
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Figure 1: Second stage discrimination system. HMM recognition is based on the 

accumulated scores from each node. A second stage classifier can adjust the weights 

from each node to provide improved discrimination. 

1 Introduction 

This paper describes some of our current efforts to integrate discriminant neural net 

classifiers into HMM speech recognizers. The goal of this work is to combine the 

temporal processing capabilities of the HMM approach with the superior recogni

tion rates provided by discriminant classifiers. Although neural nets are well devel

oped for static pattern classification, neural nets for dynamic pattern recognition 

require further research. Current conventional HMM recognizers rely on likelihood 

scores provided by non-discriminant classifiers, such as Gaussian mixture [11] and 

histogram [5] classifiers. Non-discriminant classifiers are sensitive to assumptions 

concerning the shape of the probability density function and the robustness of the 

Maximum Likelihood (ML) estimators. Discriminant classifiers have a number of 

potential advantages over non-discriminant classifiers on real world problems. They 

make fewer assumptions concerning underlying class distributions, can be robust to 

outliers, and can lead to efficient parallel analog VLSI implementation [4, 6, 7, 8]. 

Recent efforts in applying discriminant training to HMM recognizers have led to 

promising techniques, including Maximum Mutual Information (MMI) training [2] 

and corrective training [5]. These techniques maintain the same structure as in a 

conventional HMM recognizer but use a different overall error criteria to estimate 

parameters. We believe that a significant improvement in recognition rate will result 

if discriminant classifiers are included directly in the HMM structure. 

This paper examines two integration strategies: second stage classification and 

discriminant pre-processing. In second stage classification, discussed in Sec. 2, 

classifiers are used to provide post-processing for an HMM isolated word recognizer. 

In discriminant pre-processing, discussed in Sec. 3, discriminant classifiers replace 

the maximum likelihood classifiers used in conventional HMM recognizers. 
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2 Second Stage Classification 

HMM isolated-word recognition requires one Markov model per word. Recognition 

involves accumUlating scores for an unknown input across the nodes in each word 

model, and selecting that word model which provides the maximum accumulated 

score. In the case of discriminating between minimal pairs, such as those in the 

E-set vocabulary (the letters {BCDEGPTVZ}), it is desired that recognition be 

focused on the nodes that correspond to the small portion of the utterance that are 

different between words. In the second stage classification approach, illustrated in 

Fig. 1, the HMMs at the first layer are the components of a fully-trained isolated

word HMM recognizer. The second stage classifier is provided with matching scores 

and duration from each HMM node. A simple second stage classifier which sums 

the matching scores of the nodes for each word would be equivalent to an HMM 

recognizer. It is hoped that discriminant classifiers can utilize the additional infor

mation provided by the node dependent scores and duration to deliver improved 

recognition rates. 

The second stage system of Fig. 1 was evaluated using the 9 letter E-set vocabulary 

and the {BDG} vocabulary. Words were taken from the TI-46 Word database, 

which contains 10 training and 16 testing tokens per word per talker and 16 talkers. 

Evaluation was performed in the speaker dependent mode; thus, there were a total 

of 30 training and 48 testing tokens per talker for the {BDG }-set task and 90 

training and 144 testing tokens per talker for the E-set task. Spectral pre-processing 

consisted of extracting the first 12 mel-scaled cepstral coefficients [10], ignoring the 

oth cepstral coefficient (energy), for each 10 ms frame. An HMM isolated word 

recognizer was first trained using the forward-backward algorithm. Each word was 

modeled using 8 HMM nodes with 2 additional noise nodes at each end. During 

classification, each test word was segmented using the Viterbi decoding algorithm 

on all word models. The average matching score and duration of all non-noise nodes 

were used as a static pattern for the second stage classifier. 

2.1 Classifiers 

Four second stage classifiers were used: (1) Multi-layer perceptron (MLP) classifiers 

trained with back-propagation, (2) Gaussian mixture classifiers trained with the 

Expectation Maximization (EM) algorithm [9], (3) RBF classifiers [8] with weights 

trained using the pseudoinverse method computed via Singular Value Decomposi

tion (SVD), and (4) KNN classifiers. Covariance matrices in the Gaussian mixture 

classifiers were constrained to be diagonal and tied to be the same between mixture 

components in all classes. The RBF classifiers were of the form 

Decide Class i = Argmax ~ w .. EXP (_IIX - ,1; 112 ) 
L..J " 2hu~ 

i ;=1 , 
(1) 
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acoustic vector input, 

class label, 

number of centers, 
weight from jth center to ith class output, 

_ jth center and variance, and 

spread factor. 

The center locations (Pi'S) were obtained from either k-means or Gaussian mixture 

clustering. The variances (Uj 's) were either the variances of the individual k-means 

clusters or those of the individual Gaussian mixture components, depending on 

which clustering algorithm was used. Results for k = 1 are reported for the KNN 

classifier because this provided best performance. 

The Gaussian mixture classifier was selected as a reference conventional non-discri

minant classifier. A Gaussian mixture classifier can provide good models for multi

modal and non-Gaussian distributions by using many mixture components. It can 

also generalize to the more common, well-known unimodal Gaussian classifier which 

provides poor performance when the input distribution is not Gaussian. Very few 

benchmarking studies have been performed to evaluate the relative performance of 

Gaussian mixture and neural net classifiers, although mixture models have been 

used successfully in HMM recognizers [11]. RBF classifiers were used because they 

train rapidly, and recent benchmarking studies show that they perform as well as 

MLP classifiers on speech problems [8]. 

GAUSSIAN 
ixtures per 

Class 

Centers (rom Gaussian mixture clustering, h=150. 

Centers (rom k-means clustering. h=lS0. 

Table 1: Percentage errors from the second stage classifier, averaged over all 16 

talkers. 

2.2 Results of Second Stage Classification 

Table 1 shows the error rates for the second stage system of Fig. 1, averaged 

over all talkers. The second stage system improved performance over the baseline 

HMM system when the vocabulary was small (B, D and G). Error rates decreased 

from 7.9% for the baseline HMM recognizer to 4.2% for the RBF second stage 

classifier. There was no improvement for the E-set vocabulary task. The best RBF 

second stage classifier degraded the error rate from 11.3% with the baseline HMM 

to 12.8%. In the E-set results, MLP and RBF classifiers, with error rates of 13.4% 
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and 12.8%, performed considerably better than the Gaussian (21.2%), Gaussian 

mixture (20.6%) and KNN classifiers (36.0%). 

The second stage approach is effective for a very small vocabulary but not for a larger 

vocabulary task. This may be due to a combination of limited training data and the 

increased complexity of decision regions as vocabulary size and dimensionality gets 

large. When the vocabulary size increased from 3 to 9, the input dimensionality 

of the classifiers scaled up by a factor of 3 (from 48 to 144) but the number of 

training tokens increased only by the same factor (from 30 to 90). It is, in general, 

possible for the amount of training tokens required for good performance to scale 

up exponentially with the input dimensionality. MLP and RBF classifiers appear 

to be affected by this problem but not as strongly as Gaussian, Gaussian mixture, 

and KNN classifiers. 

3 Discriminant Pre-Processing 

Second stage classifiers will not work well if the nodal matching scores do not lead to 

good discrimination. Current conventional HMM recognizers use non-discriminant 

classifiers based on ML estimators to generate these scores. In the discriminant 

pre-processing approach, the ML classifiers in an HMM recognizer are replaced by 

discriminant classifiers. 

All the experiments in this section are based on the phonemes /b,d,43/ from the 

speaker dependent TI-46 Word database. Spectral pre-processing consisted of ex

tracting the first 12 mel-scaled cepstral coefficients and ignoring the oth cepstral 

coefficient (energy), for each 10 ms frame. For multi-frame inputs, adjacent frames 

were 20 msec. apart (skipping every other frame). The database was segmented 

with a conventional high-performance continuous-observation HMM recognizer us

ing forced Viterbi decoding on the correct word. The phonemes fbi, /d/ and /dJ/ 
from the letters "B", "D" and "G" (/#_i/ context) were then extracted. This 

resulted in an average of 95 training and 158 testing frames per talker per word 

using the 10 training and 16 testing words per talker in the 16 talker database. 

Talker dependent results, averaged over all 16 talkers, are reported here. 

Preliminary experiments using MLP, RBF, KNN, Gaussian, and Gaussian mixture 

classifiers indicated that RBF classifiers with Gaussian basis functions and a spread 

factor of 50 consistently yielded close to best performance. RBF classifiers also 

provided much shorter training times than MLP classifiers. RBF classifiers (as in 

Eq. 1) with h = 50 were thus used in all experiments presented in this section. The 

parameters of the RBF classifiers were determined as described in Sec. 2.1 above. 

Gaussian mixture classifiers were used as reference conventional non-discriminant 

classifiers. In the preliminary experiments, they also provided close to best per

formance, and outperformed KNN and unimodal Gaussian classifiers. Covariance 

matrices were constrained, as described in Sec. 2.1. Although full and indepen

dent covariance matrices were advantageous for the unimodal Gaussian classifier 

and Gaussian mixture classifiers with few mixture components, best performance 

was provided using many mixture components and constrained covariance matri-
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Figure 2: Frame-level error rates for Gaussian tied-mixture and RBF classifiers as 

a function of the total number of unique centers. Multi-frame results had context 

frames adjoined together at the input. Centers for both classifiers were determined. 

using k-means clustering. 

ces. A Gaussian "tied-mixture" classifier was also used. This is a Gaussian mixture 

classifier where all classes share the same mixture components but have different 

mixture weights. It is trained in two stages. In the first stage, class independent 

mixture centers are computed by k-means clustering, and mixture variances are 

the variances of the individual k-means clusters. In the second stage, the ML esti

mates of the class dependent mixture weights are computed while holding mixture 

components fixed. 

3.1 Frame Level Results 

Error rates for classifying phonemes based on single frames are shown in Fig. 2 for 

the Gaussian tied-mixture classifier (left) and RBF classifier (right). These results 

were obtained using k-means centers. Superior frame-level error rates were consis

tently provided by the RBF classifier in all experimental variations of this study. 

This is expected since RBF classifiers use an objective function which is directly 

related to classification error, whereas the objective of non-discriminant classifiers, 

modeling the class dependent probability density functions, is only indirectly related 

to classification error. 

3.2 Phone Level Results 

In a single node HMM, classifier scores for the frames in a phone segment are accu

mulated to obtain phone-level results. For conventional HMM recognizers that use 

non-discriminant classifiers, this score accumulation is done by assuming indepen

dent frames, which allows the frame-level scores to be multiplied together: 

Prob(phone) Prob(Zl' Z2, ... ZN) 
Prob(zl)Prob(z2)' .. Prob(zN) 

(2) 

where z ... ZN are input frames in an N-frame phone. Eq. 2 does not apply to non

discriminant classifiers. RBF classifier outputs are not constrained to lie between 

o and 1. They do not necessarily behave like probabilities and do not perform 
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Figure 3: Phone-level error rates using (a) Gauasian tied-mixture, (b) RBF and 
(c) 5% widened RBF classifiers, as a function of the total number of unique centers. 

Gauasian classifier phone-level results were obtained by accumulating frame-level 

scores via multiplication. RBF classifier frame-level scores were accumulated via 

addition. Symbols are as in Fig. 2. 

well when their frame scores are multiplied together. The RBF classifier's frame

level scores were thus accumulated, instead, by addition. Phone-level error rates 

obtained by accumulating frame-level scores from the Gaussian tied-mixture and 

RBF classifiers are shown in Fig. 's 3( a) and (b). Best performance was provided by 

the Gaussian tied-mixture classifier with 50 k-means centers and no context frames 

(2.6% error rate, versus 3.9% for the RBF classifier with 75 centers and 1 context 

frame). 

The good phone-level performance provided by the Gaussian tied-mixture classifier 

in Fig. 3(a) is partly due to the near correctness of the Gaussian mixture distri

bution assumption and the independent frames assumption (Eq. 2). To address 

the poor phone-level performance of the RBF classifier, we examine solutions that 

use smoothing to directly extend good frame-level results to acceptable phone

level performance. Smoothing was performed both by passing the classifier outputs 

through a sigmoid function l and by increasing the spread (h in Eq. 1) after RBF 

weights were trained. Increasing h was more effective. 

Increasing h has the effect of "widening" the basis functions. This smoothes the 

discriminant functions produced by the RBF classifier to compensate for limited 

training data. If basis function widening occurs before weights are trained, then 

weights training will effectively compensate for the increase. This was verified in 

preliminary experiments, which showed that if h was increased before weights were 

trained, little difference in performance was observed as h varies from 50 to 200. 

Increasing h by 5% after weights were trained resulted in a slightly different frame

level performance (sometimes better, sometimes worse), but a significant improve

ment in phone-level results for all experimental variations of this study. In Fig. 

3(c), a 5% widening of the basis function improved the performance of the baseline 

1 The sigmoid function is of the fonn 31 = 1/ (1 + e-(Z-.5)2) where :r is the input (an output 

from the RBF classifier) and 31 is the output used for classification. 
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Figure 4: Phone-level error rates, as a function of the number of frames, for 

Gaussian mixture with 9 mixtures per class, and RBF classifiers with centers from 

the Gaussian mixture classifier (27 total centers for this 3 class task). 

RBF classifier. It did not, however, improve performance over that provided by the 

Gaussian tied-mixture classifier without context frames at the input. The lowest 

error rate provided by the smoothed RBF is now 3.4% using 75 k-means centers 

and 2 context frames (compared with 2.6% for the Gaussian tied-mixture classifier 

with 50 centers and no context). 

Error rates for the Gaussian mixture classifier with 9 mixtures per class is plotted 

versus the number of frames in Fig. 4, along with the results for RBF classifiers with 

centers taken from the Gaussian mixture classifier. Similar behavior was observed 

in all experimental variations of this study. There are three main observations: (1) 

The Gaussian mixture classifier without context frames provided best performance 

but degraded as the number of input frames increased, (2) RBF classifiers can out

perform Gaussian mixture classifiers with many input frames, and (3) widening 

the basis functions after weights were trained improved the RBF classifier's perfor

mance. 

4 Summary 

Two techniques were explored that integrated discriminant classifiers into HMM 

speech recognizers. In second-stage discrimination, an RBF second-stage classifier 

halved the error rates in a {BDG} vocabulary task but provided no performance 

improvement in an E-set vocabulary task. For integrating at the pre-processing 

level, RBF classifiers provided superior frame-level performance over conventional 

Gaussian mixture classifiers. At the phone-level, best performance was provided by 

a Gaussian mixture classifier with a single frame input; however, the RBF classifier 

outperformed the Gaussian mixture classifier when the input contained multiple 

context frames. Both sets of experiments indicated an ability for the RBF clas

sifier to integrate the large amount of information provided by inputs with high 

dimensionality. They suggest that an HMM recognizer integrated with RBF and 

other discriminant classifiers may provide improved recognition by providing bet

ter frame-level discrimination and by utilizing features that are ignored by current 

"state-of-the-art" HMM speech recognizers. This is consistent with the results of 
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Franzini [3] and Bourlard [1], who used many context frames in their implementa

tion of discriminant pre-processing which embedded MLPs' into HMM recognizers. 

Current efforts focus on studying techniques to improve the performance of dis

criminant classifier for phones, words, and continuous speech. Approaches include 

accumulating scores from lower level speech units and using objective functions that 

depend on higher level speech units, such as phones and words. Work is also being 

performed to integrate discriminant classification algorithms into HMM recognizers 

using Viterbi training. 
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