
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Hoare-Style Specifications as Correctness Conditions
for Non-linearizable Concurrent Objects

Ilya Sergey† Aleksandar Nanevski‡ Anindya Banerjee‡ Germán Andrés Delbianco‡
†University College London, UK ‡IMDEA Software Institute, Spain

i.sergey@ucl.ac.uk {aleks.nanevski, anindya.banerjee, german.delbianco}@imdea.org

Abstract
Designing efficient concurrent objects often requires aban-
doning the standard specification technique of linearizabil-
ity in favor of more relaxed correctness conditions. However,
the variety of alternatives makes it difficult to choose which
condition to employ, and how to compose them when using
objects specified by different conditions.

In this work, we propose a uniform alternative in the form
of Hoare logic, which can explicitly capture—in the aux-
iliary state—the interference of environment threads. We
demonstrate the expressiveness of our method by verify-
ing a number of concurrent objects and their clients, which
have so far been specified only by non-standard conditions of
concurrency-aware linearizability, quiescent, and quantita-
tive quiescent consistency. We report on the implementation
of the ideas in an existing Coq-based tool, providing the first
mechanized proofs for all the examples in the paper.
Categories and Subject Descriptors D.3.1 [Programming
Languages]: Formal Definitions and Theory; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and
Reasoning about Programs
General Terms Theory, Verification
Keywords Concurrency, Hoare logic, linearizability, quies-
cent consistency, counting networks, mechanized proofs.

1. Introduction
Linearizability [25] remains the most well-known correct-
ness condition for concurrent objects. It works by relating a
concurrent object to a sequential behavior. More precisely,
for each concurrent history of an object, linearizability re-
quires that there exists a mapping to a sequential history,
such that the ordering of matching call/return pairs is pre-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
OOPSLA’16, October 30–November 4, 2016, Amsterdam, Netherlands.
Copyright © 2016 ACM 978-1-4503-4444-9/16/10. . . $15.00.
http://dx.doi.org/10.1145/2983990.2983999

served either if they are performed by the same thread, or if
they do not overlap. As such, linearizability has been used
to establish the correctness of a variety of concurrent ob-
jects such as stacks, queues, sets, locks, and snapshots—all
of which have intuitive sequential specs.

However, as argued by Shavit [42], efficient paralleliza-
tion may require the development of concurrent objects that
are inherently non-linearizable: in the presence of interfer-
ence, such objects exhibit behavior that is not reducible to
any sequential behavior via linearizability. To reason about
such objects, a variety of novel conditions has been devel-
oped: concurrency-aware linearizability (CAL) [21], quies-
cent consistency (QC) [4, 10], quasi-linearizability (QL) [2],
quantitative relaxation [23], quantitative quiescent consis-
tency (QQC) [28], and local linearizability [20], to name a
few. These conditions, formulated as relations on execution
traces, specify a program’s behavior under concurrent inter-
ference. Some, such as QC, devote special treatment to the
sequential case, qualifying the behavior in the quiescent (i.e.,
interference-free) moments.

This proliferation of alternative conditions is problematic,
as it makes all of them non-canonical. For any specific exam-
ple, it is difficult to determine which condition to use, or if a
new one should be developed. Worse, each new condition re-
quires a development of its own dedicated program logic or
verification tool. Furthermore, it is unclear how to combine
the conditions/logics/tools, when different ones have been
used for different subprograms. Finally, having criteria de-
fined semantically, e.g., in terms of execution traces, makes
it challenging to employ them directly for reasoning about
clients of the corresponding data structures.

1.1 Concurrency Specification via Program Logics
In this paper, we propose an alternative, uniform, approach:
a Hoare logic equipped with special subjective kind of aux-
iliary state [32] that makes it possible to name the amount
of concurrent interference, and relate it to the program’s in-
puts and outputs directly, without reducing to sequential be-
havior. We use Fine-grained Concurrent Separation Logic
(FCSL) [35], designed to reason about higher-order concur-
rent programs, and has been recently implemented as a veri-
fication tool on top of Coq [40], but whose ability to address
non-linearizable programs has not been observed previously.

1

More specifically, subjective auxiliary state permits that
within a spec of a thread, one can refer to the private state
(real or auxiliary) of other interfering threads in a local man-
ner. This private state can have arbitrary user-specified struc-
ture, as long as it satisfies the properties of a partial com-
mutative monoid (PCM). A particularly important PCM is
that of time-stamped histories, which has previously been
applied to linearizable objects [41], where it replaced call/re-
turn histories. A (logically) time-stamped history consists of
entries of the form t 7→ a, signifying that an atomic behavior
a occurred at a time (or linearization point) t. A subjective
specification further distinguishes the histories of the thread
and its interfering environment, and usefully relates both to
the thread’s input and output.

Of course, Hoare-style reasoning about histories is a nat-
ural idea, exploited recently in several works [5, 16, 18, 22].
Here, however, we rely on the unifying power of PCMs, in
combination with subjective specifications, to show that by
generalizing histories in different ways—though all subject
to PCM laws—we can capture the essence of several dif-
ferent conditions, such as CAL, QC and QQC in one-and-
same off-the-shelf logical system and tool. More precisely,
our histories need not merely identify a point at which an
atomic behavior logically occurred, but can also include in-
formation about interference, or lack thereof. Moreover, we
will use generic FCSL constructs for delimiting the scope of
auxiliary state, to reason about quiescent moments.

1.2 Contributions and Outline

The ability to use FCSL for specifying and verifying lin-
earizable objects (e.g., fine-grained stacks and atomic snap-
shots) has been recognized before [41]. In contrast, the main
conceptual contribution of this work is an observation that
the very same abstractions provided by FCSL are sufficient
to ascribe non-trivial non-linearizable objects with specs
that can hide object implementation details, but are suffi-
ciently strong to be used in proofs of concurrent client pro-
grams, as we demonstrate in Section 2. Specifically, we rec-
ognize that auxiliary histories can be subject of user-defined
invariants beyond mere adherence to sequential executions
(e.g., be concurrency-aware [21]), and can be used to cap-
ture intermediate interference, allowing for quantitative rea-
soning about outcomes of concurrent executions (e.g., in the
spirit of QQC [28]). These observations, surprisingly, en-
abled reasoning about non-linearizable data structures and
their clients, which were never previously approached from
the perspective of program logics or mechanically verified.

In this unified approach based on program logic, it seems
inherently impossible (and contrary to the whole idea) to
classify Hoare triples as corresponding to this or that cor-
rectness condition. Thus, instead of providing theorems that
relate Hoare triples to existing conditions, we justify the ad-
equacy of our approach by proof-of-concept verifications of
concurrent objects and their clients.

Hence, as key technical contributions, we present subjec-
tive specs and the first mechanized proofs (in Coq) of (1)
an elimination-based exchanger [39] (Section 3), previously
specified using CAL, and (2) a simple counting network [4]
(Section 6) that inspired definitions of QC and QQC. We
then employ these specs to verify client programs (Sec-
tions 5 and 7). We discuss alternative design choices for
specs and further applications of our verification approach
in Section 8, and summarize our mechanization experience
in Section 9. Section 10 compares to related work and Sec-
tion 11 concludes.

2. Main Ideas and Overview
We begin by outlining the high-level intuition of our spec-
ification approach, and summarize the main formalization
steps. As the first motivating example, we consider the con-
current exchanger structure from java.util.concurrent
[14, 39]. The main purpose of the exchanger is to allow
two threads to efficiently swap values in a non-blocking way
via a globally shared channel. The exchange might fail, if a
thread trying to swap a value does not encounter a peer to do
that in a predefined period of time.

For instance, the result of the two-thread program

T1 T2

r1 := exchange 1 || r2 := exchange 2
(1)

can be described by the following assertion:1

r1 = r2 = None ∨ r1 = Some 2 ∧ r2 = Some 1 (2)

That is, r1 and r2 store the results of the execution of sub-
threads T1 and T2 correspondingly, and both threads either
succeed, exchanging the values, or fail. The ascribed out-
come is only correct under the assumption that no other
threads besides T1 and T2 attempt to use the very same ex-
change channel concurrently.

Why is the exchanger not a linearizable data structure?
To see that, recall that linearizability reduces the concurrent
behavior to a sequential one [25]. If the exchanger were lin-
earizable, all possible outcomes of the program (1) would
be captured by the following two sequential programs, mod-
elling selected interleavings of the threads T1 and T2:

r1 := exchange 1; r2 := exchange 2;

and
r2 := exchange 2; r1 := exchange 1;

(3)

However, both programs (3) will always result in r1 =
r2 = None, as, in order to succeed, a call to the exchanger
needs another thread, running concurrently, with which to

1 We use ML-style option data type with two constructors, Some and None
to indicate success and failure of an operation, correspondingly.

2

exchange values. This observation demonstrates that lin-
earizability with respect to a sequential specification is too
weak a correctness criterion to capture the exchanger’s be-
havior observed in a truly concurrent context [21]: an ade-
quate notion of correctness for exchange must mention the
effect of interference.

Consider another structure, whose concurrent behavior
cannot be related to sequential executions via linearizability:

flip2 (x : ptr nat) : nat = {
a := flip x;

b := flip x;

return a+ b }

(4)

The procedure flip2 takes a pointer x, whose value is ei-
ther 0 or 1 and changes its value to the opposite, twice, via
the atomic operation flip, returning the sum of the previous
values. Assuming that x is being modified only by the calls
to flip2, what is the outcome r of the following program?

r := flip2 x; (5)

The answer depends on the presence or absence of inter-
fering threads that invoke flip2 concurrently with the pro-
gram (5). Indeed, in the absence of interference, flip2 will
flip the value of x twice, returning the sum of 0 and 1, i.e., 1.
However, in the presence of other threads calling flip2 in
parallel, the value of r may vary from 0 to 2.

What are the intrinsic properties of flip2 to be specified?
Since the effect of flip2 is distributed between two internal
calls to flip, both subject to interference, the specification
should capture that the variation in flip2’s result is subject
to interference. Furthermore, the specification should be ex-
pressive enough to allow reasoning under bounded interfer-
ence. For example, in the absence of interference from any
other threads besides T1 and T2 that invoke flip2 concur-
rently, the program below will always result in r = 2:

T1 T2

r1 := flip2 x || r2 := flip2 x;

r := r1 + r2

(6)

2.1 Abstract Histories of Non-linearizable Objects
Execution histories capture the traces of a concurrent ob-
ject’s interaction with various threads, and are a central no-
tion for specifying concurrent data structures. For example,
linearizability specifies the behavior of an object by mapping
the object’s global history of method invocations and returns
to a sequence of operations that can be observed when the
object is used sequentially [25]. However, as we have shown,
neither exchange nor flip2 can be understood in terms of
sequential executions.

We propose to specify the behavior and outcome of such
objects in terms of abstract concurrent histories, as follows.

Instead of tracking method invocations and returns, our his-
tories track the “interesting” changes to the object’s state.
What is “interesting” is determined by the user, depending
on the intended clients of the concurrent object. Moreover,
our specifications are subjective (i.e., thread-relative) in the
following sense. Our histories do not identify threads by
their thread IDs. Instead, each method is specified by relating
two different history variables: the history of the invoking
thread (aka. self -history), and the history of its concurrent
environment (aka. other-history). In each thread, these two
variables have different values.

For example, in the case of the exchanger, the interesting
changes to the object’s state are the exchanges themselves.
Thus, the global history χE tracks the successful exchanges
in the form of pairs of values, as shown in below:

T1 T2 T2 T3 T2 T1

χE = [..., (1, 2), (2, 1) , (4, 5) , (5, 4) , (9, 8) , (8, 9), ...]

exchange ok exchange ok exchange ok

The diagram presents the history from the viewpoint of
thread T1. The exchanges made by T1 are colored white,
determining the self -history of T1. The gray parts are the
exchanges made by the other threads (e.g., T2, T3, etc.), and
determine the other-history for T1.

The subjective division between self and other histories
emphasizes that a successful exchange is actually repre-
sented by two pairs of numbers (x, y) and (y, x), that appear
consecutively in χE , and encode the two ends of an exchange
from the viewpoint of the exchanging threads. We call such
pairs twins. As an illustration, the white entry (2, 1) from
the self-history of T1, is matched by a twin gray entry (1, 2)
from the other-history of T1, encoding that T1 exchanging 2
for 1 corresponds to T1’s environment exchanging 1 for 2.

The subjective division is important, because it will en-
able us to specify threads locally, i.e., without referring to
the code of other threads. For example, in the case of pro-
gram (1), we will specify that T1, in the case of a successful
exchange, adds a pair (1, r1) to its self history, where Some r1
is T1’s return value. Similarly, T2 adds a pair (2, r2) to its self
history, where Some r2 is T2’s return value.

On the other hand, it is an important invariant of the ex-
changer object—but not of any individual thread—that twin
entries are symmetric pairs encoding different viewpoints of
the one-and-the-same exchange. This object invariant will
allow us to reason about clients containing combinations
of exchanging threads. Taking program (1) as an example
again, the object invariant will imply of the individual spec-
ifications of T1 and T2, that r1 must equal 2, and r2 must
equal 1, if no threads interfered with T1 and T2.

We can similarly employ abstract histories to specify
flip2. One way to do it is to notice that the value of the
shared counter x will be changing as 0, 1, 0, 1, . . ., and ex-
actly two of these values will be contributed by each call to

3

flip2 made by some thread. We can depict a particular total
history χF of the flip2 structure as follows:

T1 T2 T1 T2 T3 T3

χF = [..., 1, 0 , 1, 0 , 1 , 0 , . . .]

T1.flip2

The two “white” contributions are made by thread T1’s call
to flip2, while the rest (gray) are contributions by T1’s en-
vironment. Since the atomic flip operation returns the com-
plementary (i.e., previous) value of the counter, the overall
result of T1’s call in this case is 1̄ + 1̄ = 0 + 0 = 0.

The invariant for the flip2 structure postulates the inter-
leaving 0/1-shape of the history and also ensures that the last
history entry is x’s current value. This will allow us to reason
about clients of flip2, such as (6). In the absence of interfer-
ence, we can deduce that the two parallel calls to flip2 have
contributed four consecutive entries to the history χF , with
each thread contributing precisely two of them. For each of
the two calls, the result equals the sum of the two comple-
mentary values for what the corresponding thread has con-
tributed to the history, hence, the overall sum r1 + r2 is 2.

2.2 Hoare-style Specifications for exchange and flip2

The above examples illustrate that subjectivity and object
invariants are two sides of the same coin. In tandem, they al-
low us to specify threads individually, but also reason about
thread combinations. We emphasize that in our approach, the
invariants are object-specific and provided by the user. For
example, we can associate the invariant about twin entries
with the exchanger structure, but our method will not man-
date the same invariant for other structures for which it is
not relevant. This is in contrast to using a fixed correctness
condition, such as linearizability, QC, or CAL, which cannot
be parametrized by user-defined properties.2

Subjective histories can be encoded in our approach as
auxiliary state [36, 41]. Our Hoare triples will specify how
programs modify their histories, while the invariants are de-
clared as properties of a chunk of shared state (e.g., resource
invariants of [36]). With the two components, we will be able
to describe the effects and results of programs declaratively,
i.e., without exposing program implementations.

A semi-formal and partial spec of exchange looks as fol-
lows, with the white/gray parts denoting self /other contribu-
tions to history, from the point of view of the thread being

2 For example, linearizability does not allow users to declare history invari-
ants on a per-object basis. The exchanger example motivated the introduc-
tion of the correctness condition CAL [21], which relaxes linearizability,
and makes it somewhat more general in this respect, but still falls short of
admitting user-defined invariants. flip2 can be specified using a variation
of QC [28], but we show that a similar property can be expressed via sub-
jectivity and a user-defined invariant.

specified (we postpone the full presentation until Section 3):

{χE = [. . .]}
exchange v{

if res is Some w then

χE = [. . . , (v, w), . . .] else χE = [. . .]

} (7)

The ellipsis (. . .) stands for an existentially-quantified chunk
of the history. The spec (7) says that a successful exchange
adds an entry (v, w) to the self -history (hence, the entry is
white). In the case of failed exchange, no entry is added.
In the complete and formal specification in Section 3, we
will have to add a timing aspect, and say that the new entry
appears after all the history entries from the precondition.
We will also have to say that no entries are removed from the
other history (i.e., the exchanger cannot erase the behavior
of other threads), but we elide those details here.

The spec of flip2 is defined with respect to history χF :

{χF = [. . .]}
flip2 x{

∃a b, χF = [. . . , a, . . . , b, . . .], res = ā+ b̄
} (8)

It says that the return value res is equal to the sum of bi-
nary complements ā + b̄ for the thread’s two separate self -
contributions to the history. Due to the effects of the inter-
ference, the history entries a and b may be separated in the
overall history by the contributions of the environment, as
indicated by . . . between them.

2.3 Using Subjective Specifications in the Client Code
The immediate benefit of using Hoare logic is that one can
easily reason about programs whose components use differ-
ent object invariants, whereas there is not much one can say
about programs whose components require different correct-
ness conditions. For example, Figure 1 shows a proof sketch
for a toy program that uses both exchange and flip2. As
each of these methods requires its own auxiliary history vari-
able (χE for the exchanger, and χF for flip2), the combined
program uses both, but the proof simply ignores those histo-
ries that are not relevant for any specific method (i.e., we can
“frame” the specs (7) and (8) wrt. the histories of the objects
that they do not depend upon).

The program first forks two instances of flip2, storing
the results in r1 and r2 (line 4). Next, two new threads are
forked, trying to exchange r1 and r2 (line 8). The conditional
(line 12) checks if the exchange was successful, and if so,
assigns the sum of exchanged values to t (line 14); otherwise
t gets assigned 2. We want to prove via the specs (7) and (8),
that in the absence of external interference on the flip2’s
pointer x and the exchanger, the outcome is always t = 2.
Explaining the verification In addition to the absence of
external interference, we assume that the initial value of x is
0, and the initial self -histories for both flip2 and exchange

are empty (line 1). Once the flip2 threads are forked, we
employ spec (8) for each of them, simply ignoring (i.e.,

4

1 {χF = ∅, χE = ∅}
2 {χF = [. . .]} {χF = [. . .]}
3 r1 := flip2 x r2 := flip2 x

4
{
∃a b, χF = [. . . , a, . . . , b, . . .], r1 := ā+ b̄

} {
∃c d, χF = [. . . , c, . . . , d, . . .], r2 := c̄+ d̄

}
5

{
χF = perm(a, b, c, d) = [1, 0, 1, 0], r1 = ā+ b̄, r2 = c̄+ d̄

}
6 {r1 + r2 = 2}

7 {χE = [. . .]} {χE = [. . .]}
8 s1 := exchange r1 s2 := exchange r2

9

{
if s1 is Some v1 then

χE = [. . . , (r1, v1), . . .] else χE = [. . .]

} {
if s2 is Some v2 then

χE = [. . . , (r2, v2), . . .] else χE = [. . .]

}
10 {s1 = Some v2 ∧ s2 = Some v2 =⇒ χE = perm((r1, v1), (r2, v2)) = perm((v1, r1), (v2, r2))}
11 {s1 = Some v2 ∧ s2 = Some v2 =⇒ v1 = r2 ∧ v2 = r1}
12 if s1 is Some v1 and s2 is Some v2 then
13 {v1 = r2, v2 = r1, r1 + r2 = 2}
14 t := v1 + v2 {t = 2} else t := 2 {t = 2}

Figure 1. Verification of a concurrent client program using exchange and flip2 in the absence of external interference.

framing out) χE , as this history variable does not apply to
them flip2. Upon finishing, the postconditions of flip2 in
line 4 capture the relationship between the contributions to
the history χF and the results r1 and r2 of the two calls.

Both postconditions in line 4 talk about the very same his-
tory χF , just using different colors to express that the contri-
butions of the two threads are disjoint: a and b being white in
the left thread, implies that a and b are history entries added
by the left thread. Thus, they must be gray in the right thread,
as they cannot overlap with the entries contributed by the
right thread. The right thread cannot explicitly specify in its
postcondition that a and b are gray, since the right thread is
unaware of the specific contributions of the left thread.

Dually, c and d being white in the right thread in line 4,
implies that they must be gray on the left. Thus, overall, in
line 5, we know that χF contains all four entries in some
permutation, and in the absence of intereference, it contains
no other entries but these four. From the object invariant on
χF it then follows that the entries are some permutation of
[1, 0, 1, 0], which makes their sum total r1 + r2 = 2.

Similarly, we ignore χF while reasoning about calls to
exchange via spec (7) (lines 7 and 9). As before, we know
that the entry (r1, v1), which is white in the left postcon-
dition in line 9, must be gray on the right, and dually for
(r2, v2). In total, the history χE must contain both of the en-
tries, but, by the invariant, it must also contain their twins.
In the absence of any other interference, it therefore must be
that (r1, v1) is a twin for (r2, v2), i.e., r1 = v2 and r2 = v1,
as line 11 expresses for the case of a succesful exchange.
The rest of the proof is then trivial.

The sketch relied on several important aspects of program
verification in FCSL: (i) the invariants constraining χF and
χE were preserved by the methods, (ii) upon joining the

threads, we can rely on the disjointness of history contribu-
tions of the two threads, in order to combine the thread-local
views into a specification of the parent thread, and, (iii) we
could guarantee the absence of the external interference.

The aspect (i) is a significant component of what it means
to specify and verify a concurrent object. As we will show
in Sections 3 and 6, defining a sufficiently strong object
invariant, and then proving that it is indeed an invariant, i.e.,
that it is preserved by the implementation of the program,
is a major part of the verification challenge. We will explain
FCSL rules for parallel composition and hiding in Section 4,
justifying the reasoning principles (ii) and (iii).

2.4 Specifying Non-linearizable Objects in Three Steps
As shown by Sections 2.1–2.3, our method for specifying
and verifying non-linearizable concurrent objects and their
clients boils down to the following three systematic steps.
Step 1 (§2.1): Define object-specific auxiliary state and its
invariants. The auxiliary state will typically include a spe-
cific notion of abstract histories, recording whatever behav-
ior is perceived as essential by the implementor of the object.
To account for the variety of object-specific correctness con-
ditions, we do not fix a specific shape for the histories. We do
not restrict them to always record pairs of numbers (as in the
exchanger), or record single numbers (as in flip2). The only
requirement that we impose on auxiliary state in general, and
on histories in particular, is that the chosen type of auxiliary
state is an instance of the PCM algebraic structure [41], thus
providing an abstract, and user-defined, notion of disjoint-
ness between self /other contributions.
Step 2 (§2.2): Formulate Hoare-style specifications, para-
metrized by interference, and verify them. This step pro-
vides a suitable “interface” for the methods of the concur-

5

rent object, which the clients use to reason, without know-
ing the details of the object and method implementations.
Naturally, the interface can refer to the auxiliary state and
histories defined in the previous step. When dealing with
non-linearizable objects in FCSL, it is customary to formu-
late the spec in a subjective way (i.e., using self /other, du-
ally white/gray division between history entries) so that the
specification has a way to refer to the effects of the interfer-
ing calls to the same object. The amount of interference can
be later instantiated with more specific information, once we
know more about the context of concurrent threads in which
the specified program is being run.

Step 3 (§2.3): Restrict the interference when using object
specs for verification of clients. Eventually, thread-local
knowledge about effects of individual clients of one and
the same object, should be combined into a cumulative
knowledge about the effect of the composition. To measure
this effect, one usually considers the object in a quiescent
(interference-free) moment [38]. To model quiescent situa-
tions, FCSL provides a program-level constructor for hiding.
In particular, hide e executes e, but statically prevents other
threads from interfering with e, by making e’s auxiliary his-
tory invisible. Program e’s other contribution is fixed to be
empty, thus modeling quiescence.

3. Verifying the Exchanger Implementation
We now proceed with more rigorous development of the
invariants and specification for the exchanger data struc-
ture, necessary to verify its real-world implementation [14],
which was so far elided from the overview of the approach.

The exchanger implementation is presented in ML-style
pseudo-code in Figure 2. It takes a value v :A and creates
an offer from it (line 2). An offer is a pointer p to two
consecutive locations in the heap.3 The first location stores v,
and the second is a “hole” which the interfering thread tries
to fill with a matching value. The hole is drawn from the
type hole=U |R |M w. Constructor U signals that the offer
is unmatched; R that the exchanger retired (i.e., withdrew)
the offer, and does not expect any matches on it; and M w
that the offer has been matched with a value w.

The global pointer g stores the latest offer proposed for
matching. The exchanger proposes p for matching by mak-
ing g point to p via the atomic compare-and-set instruction
CAS (line 3). We assume that CAS returns the value read,
which can be used to determine if it failed or succeeded. If
CAS succeeds, exchanger waits a bit, then checks if the offer
has been matched by some w (lines 6, 7). If so, Some w is
returned (line 7). Otherwise, the offer is retired by storing R
into its hole (line 6). Retired offers remain allocated (thus,
exchanger has a memory leak) in order to avoid the ABA
problem, as usual in many concurrent structures [24, 46]. If
the exchanger fails to link p into g in line 3, it deallocates

3 In our mechanization, we simplify a bit by making p point to a pair instead.

1 exchange (v : A) : option A = {
2 p← alloc (v,U);
3 b← CAS (g, null, p);
4 if b == null then
5 sleep (50);
6 x← CAS (p+1,U,R);
7 if x is M w then return (Some w)
8 else return None

9 else
10 dealloc p;
11 cur ← read g;
12 if cur == null then return None

13 else
14 x← CAS (cur+1,U,M v);
15 CAS (g, cur, null);
16 if x is U then w ← read cur; return (Some w)
17 else return None}

Figure 2. Elimination-based exchanger procedure.

the offer p (line 10), and instead tries to match the offer cur
that is current in g. If no offer is current, perhaps because an-
other thread already matched the offer that made the CAS in
line 3 fail, the exchanger returns None (line 12). Otherwise,
the exchanger tries to make a match, by changing the hole
of cur into M v (line 14). If successful (line 16), it reads the
value w stored in cur that was initially proposed for match-
ing, and returns it. In any case, it unlinks cur from g (line
15) to make space for other offers.

3.1 Step 1: Defining Auxiliary State and Invariants
To formally specify the exchanger, we decorate it with aux-
iliary state. In addition to histories, necessary for specifying
the observable behavior, the auxiliary state is used for cap-
turing the coherence constraints of the actual implementa-
tion, e.g., with respect to memory allocation and manage-
ment of outstanding offers. The state is subjective as de-
scribed in Section 2: it keeps thread-local auxiliary variables
that name the thread’s private state (self), but also the private
state of all other threads combined (other).

The subjective state of the exchanger for each thread in
this example consists of three groups of two components: (1)
thread-private heap hS of the thread, and of the environment
hO, (2) a set of outstanding offers πS created by the thread,
and by the environment πO, and (3) a time-stamped history
of values χS that the thread exchanged so far, and dually χO

for the environment. In Section 2, we illustrated subjectivity
by means of histories, white we used white and gray entries,
respectively, to describe what here we name χS and χO,
respectively. Now we see that the dichotomy extends beyond
histories, and this example requires the dichotomy applied to
heaps, and to sets of offers as well. In addition to self /other
components of heaps, permissions and histories, we also
need shared (aka. joint) state consisting of two components:
a heap hJ of storing the offers that have been made, and

6

a map mJ of offers that have been matched, but not yet
collected by the thread that made them.

Heaps, sets and histories are all PCMs under the operation
of disjoint union, with empty heap/set/history as a unit. We
overload the notation and write x 7→ v for a singleton heap
with a pointer x storing value v, and t 7→ a for a singleton
history. Similarly, we apply disjoint union ·∪ and subset ⊆,
to all three types uniformly.

We next describe how the exchanger manipulates the
above variables. First, hJ is a heap that serves as the “stag-
ing” area for the offers. It includes the global pointer g.
Whenever a thread wants to make an offer, it allocates a
pointer p in hS, and then tries to move p from hS into hJ, si-
multaneously linking g to p, via the CAS in line 3 of Figure 2.

Second, πS and πO are sets of offers (hence, sets of point-
ers) that determine offer ownership. A thread that has the
offer p ∈ πS is the one that created it, and thus has the sole
right to retire p, or to collect the value that p was matched
with. Upon collection or retirement, p is removed from πS.

Third, χS and χO are exchanger-specific histories, each
mapping a time-stamp (isomorphic to nats), to a pair of ex-
changed values. A singleton history t 7→ (v, w) symbolizes
that a thread having this singleton as a subcomponent of χS,
has exchanged v for w at time t. As we describe below, the
most important invariant of the exchanger is that each such
singleton is matched by a “symmetric” one to capture that
another thread has simultaneously exchanged w for v. Clas-
sical linearizability cannot express this simultaneous behav-
ior, making the exchanger non-linearizable.

Fourth, mJ is a map storing the offers that were matched,
but not yet acknowledged and collected. Thus, dom mJ =
πS ·∪ πO. A singleton entry in mJ has the form p 7→ (t, v, w)
and denotes that offer p, initially storing v, was matched at
time t with w. A singleton entry is entered into mJ when a
thread on the one end of matching, matches v with w. Such
a thread also places the twin entry t̄ 7→ (w, v), with inverted
order of v and w, into its own private history χS, where:

t̄ =

{
t+ 1 if t is odd
t− 1 if t > 0 and t is even

For technical reasons, 0 is not a valid time-stamp, and has
no distinct twin. The pending entry for p resides in mJ until
the thread that created the offer p decides to “collect” it.
It removes p from mJ, and simultaneously adds the entry
t 7→ (v, w) into its own χS, thereby logically completing the
exchange. Since twin time-stamps are consecutive integers,
a history cannot contain entries between twins.

Thus, two twin entries in the combined history including
χS, χO and mJ, jointly represent a single exchange, as if it
occurred atomically. For example, the entries 1 7→ (v1, w1)
and 2 7→ (w1, v1) will encode the end-points of the first
exchange; the entries 3 7→ (v2, w2) and 4 7→ (w2, v2)
will encode the end-points of the second exchange, etc., the
entries at timestamps t and t + 1, for odd t, will encode
the end-points of the t+1

2 -th exchange. Concurrency-aware

histories [21] capture this by making the ends of an exchange
occur as simultaneous events. We capture it via twin time-
stamps. More formally, consider χ = χS ·∪χO ·∪ ||mJ||. Then,
the exchanger’s main invariant is that χ always contains
matching twin entries:

t 7→ (v, w) ⊆ χ ⇐⇒ t̄ 7→ (w, v) ⊆ χ (9)

Here ||mJ|| is the collection of all the entries in mJ. That is,
||∅|| = ∅, and ||p 7→ (t, v, w) ·∪mJ

′|| = t 7→ (v, w) ·∪ ||mJ
′||.

In our implementation, we prove that atomic actions, such
as CAS, preserve the invariant, therefore, the whole program,
being just a composition of actions, doesn’t violate it.

3.2 Step 2: Hoare-style Specification of Exchanger
We can now give the desired formal Hoare-style spec.

{hS = ∅, πS = ∅, χS = ∅, η ⊆ χO ·∪ ||mJ||}
exchange v

hS = ∅, πS = ∅, η ⊆ χO ·∪ ||mJ||,
if res is Some w then

∃t. χS = t 7→ (v, w), last(η) < t, t̄ else χS = ∅

 (10)

The precondition says that the exchanger starts with the
empty private heap hS, set of offers πS and history χS; hence
by framing, it can start with any value for these compo-
nents.4 The logical variable η names the initial history of all
threads, χO ·∪ ||mJ||, which may grow during the call, thus,
we use subset instead of equality to make the precondition
stable under other threads adding entries to χO or mJ.

In the postcondition, the self heap hS and the set of offers
πS didn’t change. Hence, if exchange made an offer during
its execution, it also collected or retired it by the end. The
history η is still a subset of the ending value for χO ·∪
||mJ||, signifying that the environment history only grows by
interference. We will make a crucial use of this part of the
spec when verifying a client of the exchanger in Section 5.

If the exchange fails (i.e., res is None), then χS remains
empty. If it succeeds (either in line 7 or line 16 in Figure 2),
i.e., if the result res is Somew, then there exists a time-stamp
t, such that self-history χS contains the entry t 7→ (v, w),
symbolizing that v and w were exchanged at time t.

Importantly, the postcondition implies, by invariant (9),
that in the success case, the twin entry t̄ 7→ (w, v) must be-
long to χO ·∪||mJ||, i.e., another thread matched the exchange
(this was made explicit by the spec (7)). Moreover, the ex-
change occurred after the call to exchange: whichever η we
chose in the pre-state, both t and t̄ are larger than the last
time-stamp in η.

The proof outline for the exchanger is available in Ap-
pendix A. In Section 5, after introducing necessary FCSL
background, we will illustrate Step 3 of our method and
show how to employ the subjective Hoare spec (10) for mod-
ular verification of a concurrent client.
4 Framing in FCSL is similar to that of separation logic, allowing extensions
to the initial state that remain invariant by program execution. In FCSL,
however, framing applies to any PCM-valued state component (e.g., heaps,
histories, etc.), whereas in separation logic, it applies just to heaps.

7

4. Background on FCSL
In order to formally present Step 3 of our method, we first
need to introduce some important parts of FCSL.

A Hoare specification in FCSL has the form {P} e {Q}@R.
P and Q are pre- and postcondition for partial correctness,
andR defines the shared resource on which e operates. The
latter is a state transition system describing the invariants of
the state (real and auxiliary) and atomic operations that can
be invoked by the threads that simultaneously operate on
that state. We elide the transition system aspect of resources
here, and refer to [35] for detailed treatment.

An important secondary role of a resource is to declare
the variables that P and Q may scope over. For example,
in the case of exchanger, we use the variables hS, πS, χS,
hO, πO, χO, and hJ,mJ. The mechanism by which the vari-
ables are declared is as follows. Underneath, a resource
comes with only three variables: aS, aO and aJ standing for
abstract self state, other state, and shared (joint) state, but the
user can pick their types depending on the application. In the
case of exchanger, aS and aO are triples containing a heap,
an offer-set and a history. The variables we used in Sec-
tion 2 are projections out of such triples: aS = (hS, πS, χS),
and aO = (hO, πO, χO). Similarly, aJ = (hJ,mJ).

It is essential that aS and aO have a common type exhibit-
ing the algebraic structure of a PCM, under a partial binary
operation ·∪. PCMs give a way, generic in R, to define the
inference rule for parallel composition.

{P1} e1 {Q1}@R {P2} e2 {Q2}@R

{P1 ~ P2} e1 ‖ e2 {[res.1/res]Q1 ~ [res.2/res]Q2}@R
(11)

Here, ~ is defined as follows.

(P1 ~ P2)(aS, aJ, aO) ⇐⇒ ∃x1 x2. aS = x1 ·∪ x2,
P1(x1, aJ, x2 ·∪ aO), P2(x2, aJ, x1 ·∪ aO)

Thereby, when a parent thread forks e1 and e2, then e1
becomes part of the environment for e2, and vice-versa. This
is so because the self component aS of the parent is split into
x1 and x2; x1 becomes the self part of e1, but x2 is added to
the other part aO of e1 (and symmetrically for e2).

To reason about quiescent moments, we use one more
constructor of FCSL: hiding. The program hide e opera-
tionally executes e, but logically installs a resource within
the scope of e. In the case of the exchanger, hide e starts only
with private heaps hS and hO, then takes a chunk of heap out
of hS and “installs” an exchanger in this heap, allowing the
threads in e to exchange values. hide e is quiescent wrt. ex-
changer, as the typechecker will prevent composing hide e
with threads that want to exchange values with e.

The auxiliaries πS, χS, πO, χO, and hJ,mJ, belonging to
the exchanger (denoted as resource E) are visible within
hide, but outside, only hS persists (denoted as a resource P
for private state). We elide the general hiding rule [35], and
just show the special case for the exchanger.

{P} e {Q}@E

{hS = Φ1(hJ),Φ1(P)} hide e {∃Φ2. hS = Φ2(hJ),Φ2(Q)}@P
(12)

Read bottom-up, the rule says that we can install the
exchanger E in the scope of a thread that works with P ,
but then we need substitutions Φ1 and Φ2, to map variables
of E (hS, πS, χS, etc) to values expressed with variables
from P (hS and hO). Φ1 is an initial such substitution (user
provided), and the rule guarantees the existence of an ending
substitution Φ2. The substitutions have to satisfy a number
of side conditions, which we elide here for brevity. The most
important one is that other variable aO = (hO, πO, χO) is
fixed to be the PCM unit (i.e., a triple of empty sets). Fixing
aO to unit captures that hide protects e from interference.

At the beginning of hide e, the private heap equals the
value that Φ1 gives to hJ (hS = Φ1(hJ)). In other words,
the hide rule takes the private heap of a thread, and makes
it shared, i.e., gives it to the hJ component of E . Upon
finishing, hide e makes hJ private again.

In the subsequent text we elide the resources from specs.

5. Verifying Exchanger’s Client
We next illustrate how the formally specified exchanger from
Section 3 can be used by real-world client programs, and
how the other component, asserted by the spec to satisfy η ⊆
χO ·∪ ||mJ||, is crucial for their verification. We emphasize
that the proof of the client does not see the implementation
details, which are hidden by the spec (10).

While simple, our client is realistic, and has been used
in java.util.concurrent [14]. It is defined as follows.
First, the exchanger loops until it exchanges the value.

exchange’ (v : A) : A = {
w′ ← exchange v;

if w′ is Some w then return w else exchange’ v }

Next, exchange’ is iterated to exchange a sequence in order,
appending the received matches to an accumulator.

ex seq (vs, ac : seq A) : seq A = {
if vs is v::vs ′ then
w ← exchange’ v; ex seq (vs ′, snoc ac w)

else return ac }

Our goal is to prove, via (10), that the parallel composition

e = ex seq (vs1, nil) ‖ ex seq (vs2, nil)

exchanges vs1 and vs2, i.e., returns the pair (vs2, vs1). This
holds only under the assumption that e runs without interfer-
ence (i.e., quiescently), so that the two threads in e have no
choice but to exchange the values between themselves.

We make the quiescence assumption explicit using the
FCSL hide constructor, as described in Section 4. Thus, we

8

establish the following Hoare triple:

{hS = g 7→ null} hide e {g ∈ dom hS, res = (vs2, vs1)}
(13)

It says that we start with a heap where g stores null, and
end with a possibly larger heap (due to the memory leak),
but with the result (vs2, vs1). The auxiliaries πS, πO, ηS, ηO,
hJ,mJ are visible inside hide, but outside, only hS persists.
Explaining the verification. We illustrate the verification
by listing the specs of selected subprograms. First, the spec
of exchange’ easily derives from (10) by removing the now-
impossible failing case.

{hS = ∅, πS = ∅, χS = ∅, η ⊆ χO ·∪ ||mJ||}
exchange’ v{

hS = ∅, πS = ∅, η ⊆ χO ·∪ ||mJ||,
∃t. χS = t 7→ (v, res), last(η) < t, t̄

}
Next, ex seq has the following spec:

{hS = ∅, πS = ∅, χS = ∅}
ex seq (vs, nil){

∃ts. hS = ∅, πS = ∅, χS = zip ts vs res,

grows notwins ts, zip ts res vs ⊆ χO ·∪ ||mJ||

}
Here, ts is a list of time-stamps, and zip ts vs ws joins up
the singleton histories t 7→ (v, w), for each t, v, w drawn,
in order, from the lists ts , vs , ws . The spec says that at
the time-stamps from ts , ex seq exchanged the elements of
vs for those of res. That ts is increasing and contains no
twins, follows from the spec of exchange’ which says that
the time-stamps t and t̄ that populate ts and ts , are larger
than anything in η, and thus only grow with iteration. From
the same postcondition, it follows that χO ·∪ ||mJ|| contains
all the twin exchanges, by invariant (9), as commented in
Section 2 about the spec for exchange.

Next, by the FCSL parallel composition rule (Section 4):

{hS = ∅, πS = ∅, χS = ∅}
ex seq (vs1, nil) ‖ ex seq (vs2, nil)

∃ts1 ts2. grows notwins ts1, grows notwins ts2,
hS = ∅, πS = ∅, χS = zip ts1 vs1 res.1 ·∪ zip ts2 vs2 res.2,

zip ts1 res.1 vs1 ⊆ zip ts2 vs2 res.2 ·∪ χO ·∪ ||mJ||,
zip ts2 res.2 vs2 ⊆ zip ts1 vs1 res.1 ·∪ χO ·∪ ||mJ||.


To explain: ts and res from the left and right ex seq threads
become ts1, ts2, res.1 and res.2, respectively. The values
of each self component hS, πS, χS from the two threads are
joined into the self component of the composition. At the
same time, the other component χO of the left (resp. right)
thread equals the sum of χS of the right (resp. left) thread,
and the χO of the composition. This formalizes the intuition
that upon forking, the left thread becomes part of the envi-
ronment for the right thread, and vice-versa.

The postcondition says that the self history of e contains
both zip ts1 vs1 res.1 and zip ts2 vs2 res.2. Thus, vs1 is ex-
changed for res.1, and vs2 for res.2. But we further want

c0
c1

bal
0

1

1 getAndInc() : nat = {
2 b← flip(bal);

3 res← fetchAndAdd2(cb);

4 return res }

Figure 3. Simple counting network

to derive res.1 = vs2 and res.2 = vs1, i.e., the lists are ex-
changed for each other, in the absence of interference.

We next explain how this desired property follows for
hide e, from the two inequalities in e’s postcondition

zip ts1 res.1 vs1 ⊆ zip ts2 vs2 res.2 ·∪χO ·∪ ||mJ||, (14)

zip ts2 res.2 vs2 ⊆ zip ts1 vs1 res.1 ·∪χO ·∪ ||mJ||. (15)

Notice that (14) and (15) are ultimately instances of the con-
junct η ⊆ χO ·∪ ||mJ|| that was part of the specification (10),
thereby justifying the use of subjective other variables.

We know that dom mJ =πS ·∪ πO (from Section 2),
that πS = ∅ (from e’s postcondition), and that by hiding,
πO =χO = ∅. Thus, towards deriving the postcondition of
hide e, we simplify (14) and (15) into:

zip ts1 res.1 vs1 ⊆ zip ts2 vs2 res.2

zip ts2 res.2 vs2 ⊆ zip ts1 vs1 res.1

Because ts1 and ts2 are increasing lists of time-stamps, and
contain no twins, the above implies ts2 = ts1. Hence:

zip ts1 res.1 vs1 = zip ts2 vs2 res.2

and thus res.1 = vs2, vs1 = res.2. We omit the remaining
technical argument that explains how the heap hJ, with the
pointer g, is folded into hS, which ultimately obtains (13).

6. Specifying Counting Networks
We now show how to use subjective histories to specify an-
other class of non-linearizable objects—counting networks.
Counting networks are a special case of balancing networks
introduced by Aspnes et al. [4], themselves building on sort-
ing networks [3], aimed to implement concurrent counters in
a way free from synchronization bottlenecks. The key idea
is to decompose the workload between several counters, so
that each of them is responsible for a disjoint set of val-
ues. A thread trying to increment first approaches the bal-
ancer, which is a logical “switch” that “directs” the thread,
i.e., provides it with the address of the counter to incre-
ment. The balancers make counting networks’ operations
non-linearizable, as in the presence of interference the re-
sults of increments might be observed out of order.

Figure 3 presents a schematic outline and a pseudo-
code implementation of a counting network with a sin-
gle balancer. The implementation contains three pointers:
the balancer bal , which stores either 0 or 1, thus directing

9

threads to the shared pointers c0 or c1, which count the even
and odd values, respectively. Threads increment by call-
ing getAndInc, which works as follows. It first atomically
changes the bit value of the balancer via a call to atomic
operation flip (line 2). The flip operation returns the pre-
vious value b of the balancer as a result, thus determining
which of the counters, c0 or c1, should be incremented. The
thread proceeds to atomically add 2 to the value of cb via
fetchAndAdd2 (line 3). The old value of cb is returned as the
result of the procedure.5

Assuming that c0 and c1 are initialized with 0 and 1, it is
easy to see that in a single-threaded program, the network
will behave as a conventional counter; that is, consecutive
invocations of getAndInc return consecutive nats. However,
in the concurrent setting, getAndInc may return results out
of order, as follows.
Example 6.1. Consider two threads, T1 and T2 operating
on the network initialized with bal 7→ 0, cb 7→ b. T1 calls
getAndInc and executes its line 2 to set bal to 1. It gets sus-
pended, so T2 proceeds to execute lines 2 and 3, therefore
setting bal back to 0 and returning 1. While T1 is still sus-
pended, T2 calls getAndInc again, gets directed to c0, and
returns 0, after it has just returned 1.

This out-of-order behavior, however, is not random, and
can be precisely characterized as a function of the number
of threads operating on the network [2, 28]. In the rest of
this section and in Section 7, we show how to capture such
bounds in the spec using auxiliary state of (subjective) his-
tories in a client-sensitive manner. As a form of road map,
we list the desired requirements for the spec of getAndInc,
adapting the design goals of the criteria, such as QC, QQC
and QL [2, 4, 28], which we will proceed to verify formally,
following Step 1 and Step 2 of our approach, and then em-
ploy in client-side reasoning via Step 3:
• R1: Two different calls to getAndInc should return distinct

results (strong concurrent counter semantics).
• R2: The results of calls to getAndInc, separated by a pe-

riod of quiescence (i.e., absence of interference), should
appear in their sequential order (quiescent consistency).

• R3: The results of two sequential calls C1 and C2, in a
single thread should be out of order by no more than 2 N ,
whereN is the number of interfering calls that overlap with
C1 and C2 (quantitative quiescent consistency).

6.1 Step 1: Counting Network’s Histories and
Invariants

To formalize the necessary invariants, we elaborate the
counting network with auxiliary state: tokens (isomorphic
to nats) and novel interference-capturing histories.

5 In the counting network from Figure 3, the balancer itself might seem like
a contention point. However, the flip operation is much less expensive
than CAS as a synchronization mechanism. The performance can be further
improved by constructing a diffracting tree of several balancers [24, §12.6],
but we do not consider diffracting trees here.

0 2 4 6

1 3 5

history of the counter c0

history of the counter c1

z0

u1

y0x0

tokens of
pending threads

1

current value
of the balancer

Figure 4. Tokens and histories of the simple network

A token provides a thread that owns it with the right
to increment an appropriate counter [4]. In our example,
a thread that performs the flip in line 2 of getAndInc

will be awarded a token which it can then spend to exe-
cute fetchAndAdd2. Thus, any individual token represents a
“pending” call to getAndInc, and the set of unspent tokens
serves as a bound on the out-of-order behavior that the net-
work exhibits. We introduce auxiliary variables for the held
tokens: τS keeps the tokens owned by the self thread, with its
even and odd projections τ0S and τ1S , such that τS = τ0S ·∪ τ1S ,
administering access to c0 and c1, respectively. Similarly,
τO, featuring the same projections, keeps the tokens owned
by the other thread. We abbreviate τ i = τ iS ·∪ τ iO for i = 0, 1.

Figure 4 illustrates a network with three even tokens:
x0, y0, z0 ∈ τ0, held by threads that will increment c0, and
one odd token u1 ∈ τ1, whose owner will increment c1.

A history of the counting network is an auxiliary finite
map, consisting of entries of the form t 7→ (ι̂, z). Such
an entry records that the value t has been written into an
appropriate counter (c0 or c1, depending on the parity of t),
at the moment when τ0 and τ1 held values of ι̂’s even/odd
projections ι̂0 and ι̂1, respectively. Moreover, in order to
write t into a counter, the token z was spent by the thread. We
will refer to z as the spent token. Notice that the entries in the
history contain tokens held by both self and other threads.
Thus, a history captures the behavior of a thread subjectively,
i.e., as a function of the interfering threads’ behavior.

Similarly to tokens, network histories are represented by
the auxiliary variables χS, tracking counter updates (even
and odd) performed by the self thread, and dually χO for the
other thread. We abbreviate χi = χi

S ·∪ χi
O for i = 0, 1.

Figure 4 illustrates a moment in network’s history and
how it relates to the state of the counters. Only 0 has been
written to c0 so far (upon initialization), hence χ0 only
contains an entry for t = 0 (we ignore at the moment the
contents of the history entries). On the other hand, χ1 has
entries for 1 and 3, because after initialization, one thread
has increased c1. The gray boxes indicate that 0 and 3 are the
current values of c0 and c1, and thus also the latest entries
in χ0 and χ1, respectively. In particular, these values will
be returned by the next invocations of fetchAndAdd2. The
dashed boxes correspond to the entries to be contributed by
the currently running threads holding tokens x0, y0, z0, u1.

In addition to τ and χwhich come in flavors private to self
and other threads, we require the following shared variables:

10

(1) hJ for the joint heap of the network, and (2) bJ, n0J and
n1J for the contents of bal , co and c1, respectively.
Invariants of the counting network The main invariant of
the network relates the number of tokens, the size of histories
and the value of the balancer:

|χ0|+ |τ0| = |χ1|+ |τ1|+ bJ (16)

The equation formalizes the intuition that out-of-order
anomalies of the counting network appear if one of the
two counters is too far ahead of the other one. The invari-
ant (16) provides a bound on such a situation. One counter
can get ahead temporarily, but then there must be a number
of threads waiting to spend their tokens on the other counter.
Thus, the other counter will eventually catch up.

The approaches such as quiescent and quantitative qui-
escent consistency describe this situation by referring to the
number of unmatched call events in an event history [10, 28].
In contrast, we formalize this property via auxiliary state: the
sets of tokens ι̂ recorded in the entry for the number t deter-
mine the environment’s capability to add new history entries,
and thus “run ahead” or “catch up” after t has been returned.
The other invariants of the counting network are as follows:
(i) hJ = bal 7→ bJ ·∪ c0 7→ n0J ·∪ c1 7→ n1J .

(ii) The histories contain disjoint time-stamps.
(iii) The history χ0 (resp. χ1) contains all even (resp. odd)

values in [0, n0J] (resp. [1, n1J]). This ensures that n0J and
n1J are the last time-stamps in χ0 and χ1, respectively.

(iv) τ0, τ1 and spent (χS ·∪ χO) contain mutually disjoint
tokens, where spent (t 7→ (ι̂, z) ·∪ χ′) = {z} ·∪ spent χ′,
and spent ∅ = ∅. In other words, a spent token never
appears among the “alive” ones (i.e., in τ0 ·∪ τ1).

(v) t 7→ (ι̂, z) ⊆ χS ·∪ χO =⇒ z ∈ ι̂.
(vi) For any t, ι̂, z:

• t 7→ (ι̂, z) ⊆ χ0 =⇒ t+2 |ι̂∩τ0| < n1
J +2 |ι̂∩τ1|+2, and

• t 7→ (ι̂, z) ⊆ χ1 =⇒ t+ 2 |ι̂ ∩ τ1| < n0
J + 2 |ι̂ ∩ τ0|+ 2.

The invariant (vi) provides quantitative information about
the network history by relating the actual (n0J , n1J) and the
past (t) counter values, via the current amount of interfer-
ence (τ) and the snapshot interference (ι̂). To explain (vi),
we resort to the intuition provided by the following equality,
which, however, being not quite valid, cannot be used as an
invariant, as we shall see. Focusing on the first clause in (vi),
if t 7→ (ι̂, z) ⊆ χ0, then, intuitively:

t+ 2 |ι̂0 \ τ0|+ 2 |ι̂ ∩ τ0| = n1
J + 2 |ι̂ ∩ τ1|+ (2bJ − 1)

The equality says the following. When t is snapshot from
c0 and placed into the history χ0, the set of outstanding even
tokens was ι̂0. By the present time, c0 has been increased
|ι̂0\τ0| times, each time by 2, thus n0J = t+2 |ι̂0\τ0|. What
is left to add to c0 to reach the period of quiescence, when
no threads interfere with us, is 2 |ι̂ ∩ τ0|. Similar reasoning
applies to c1. It is easy to see at the period of quiescence,
c0 and c1 differ by 2bJ − 1; that is, the counter pointed to

{
τS = ∅, χS = ηS, ηO ⊆ χO,

ιO ⊆ τO ·∪ (spent χO \ spent ηO), I ηO ιO

}
getAndInc()

∃ι̂ z. τS = ∅, χS = ηS ·∪ (res + 2) 7→ (ι̂, z),

ηO ⊆ χO, ιO ⊆ τO ·∪ (spent χO \ spent ηO),

last (ηS ·∪ ηO) < res + 2 + 2 |ι̂ ∩ ιO|,
ResPast (ηS ·∪ ηO) res ι̂ z, I ηO ιO


(17)

Figure 5. Hoare-style spec of a simple counting network.

by bal is behind by 1. However, the equality is invalid, as bJ
can be read off only in the present, whereas the “intuitive”
reasoning behind the equality requires a value of bJ from
a quiescent period in the future. Hence, in order to get a
valid property, we bound 2bJ − 1 by 2. For simplicity, we
even further weaken the bounds by dropping |ι̂0 \ τ0| to
obtain (vi); as it will turn out, even such a simpler bound
will suffice for proving R1–R3.
Allowed changes in the counting network The state of the
counting network (auxiliary and real) can be changed in two
possible ways by concurrent threads. These changes formal-
ize the way the atomic operations flip and fetchAndAdd2

from Figure 3 (b) work with auxiliary state. Flipping alters
the bit value bJ of bal to the complementary one, 1 − bJ. It
also generates a token z (of parity bJ) and stores it into τS.
The token is fresh, i.e., distinct from all alive and spent to-
kens in τS ·∪ τO ·∪ spent (χS ·∪ χO). Incrementation spends
a token z from τS, and depending on its i, it atomically in-
creases the value niJ of ci by two, while simultaneously re-
moving z from τS (thus, the precondition is that z ∈ τS). It
also adds the entry (niJ + 2) 7→ (τ0 ·∪ τ1, zi) to χS, thus
snapshoting the values of τ0 and τ1. It is easy to check that
both these allowed changes preserve the state-space invari-
ants (16), (i)–(vi), and that their effect on real state (with
auxiliary state erased) are those of flip and fetchAndAdd2.

6.2 Step 2: a Hoare Spec for getAndInc
Figure 5 provides a Hoare-style spec for getAndInc, verified
in our proof scripts. We use the logical variable ι and its vari-
ants to range over token sets, and η to range over histories.

The precondition starts with an empty token set (τS =
∅), and hence by framing, any set of tokens. The initial
self-history χS is set to an arbitrary ηS.6 The precondition
records the other components of the initial state as follows.
First, ηO names (a subset of) χO, to make it stable under
interference, as in Section 2. Next, we use ιO to name the
(subset of) initially live tokens τO. However, as τO may
shrink due to other threads spending tokens, simply writing
ιO ⊆ τO is unstable. Instead, we write ιO ⊆ τO ·∪(spent χO\

6 Alternatively, we could have also takenχS = ∅, but the clients will require
generalizing to χS = ηS by the FCSL’s frame rule [41]. To save space and
simplify the discussion, we immediately frame wrt. the auxiliary χS. Our
examples do not require such client-side framing wrt. τS.

11

spent ηO) to account for the tokens spent by other threads as
well. The set τO ·∪ (spent χO \ spent ηO) only grows under
interference, as new live tokens are generated, or old live
tokens are spent, making the inclusion of ιO stable. Indeed,
one cannot take any arbitrary ηO and ιO to name the other
components of the initial state. Therefore, we constrain these
two variables by the invariant I, that relates them to the self-
components of the actual state and to each other according to
the invariants (ii)–(vi).7 This is natural, since, as we will see
in Section 7, all clients instantiate ηO and ιO with the other-
components of the actual pre-state, respecting (ii)–(vi).

The postcondition asserts that the final token set τS is also
empty (i.e., the token that getAndInc generates by flip, is
spent by the end). The history χS is increased by an entry
(res + 2) 7→ (ι̂, z), corresponding to writing the value of
the result (plus two) into one of the network’s counters,
snapshoting the tokens of that moment into ι̂, and spending
the token z on the write. ηO is a subset of the new value of
χO, and ιO is a subset of the new value of τO ·∪ (spent χO \
spent ηO), by the already discussed stability.

The next inequality describes where the entry for res + 2
is placed wrt. the pre-state history η = ηS ·∪ ηO. η may have
gaps arising due to out-of-order behavior of the network, and
res + 2 may fill one such gap. However, there is a bound on
how far res (and hence res+2) may be from the tail of η. We
express it as a function of ιO and ι̂, derived from the bounds
in (vi), taking res+2 for t and over-approximating the instant
value niJ of the incremented counter via last (ηS ·∪ ηO). The
inequality weakens the invariant (vi), making it hold for even
and odd entries by moving 2 |ι̂∩ιiO| (for i = 0, 1) to the right
side of < and joining them, since ι0O ∩ ι1O = ∅.

Finally, the predicate ResPast provides more bounds that
we will need in the proofs of the client code’s properties.

ResPast η res ι̂ z =̂ ι̂ ⊆ τO ·∪ (spent χO) ·∪ {z} ,
∀t ι. t 7→ (ι,−) ⊆ η ⇒ z /∈ ι, t < res + 2 + 2 (|ι̂ ∩ ι|)

(18)

When instantiated with η = ηS ·∪ ηO, ResPast says the fol-
lowing. The token set ι̂ snapshot when res+2 was committed
to history, is a subset of all the tokens in post-state, including
the live ones (τO), and spent ones (spent χO ·∪ {z}). More-
over, if t is an entry in η, with contents (ι,−), then: (1) z /∈ ι,
because z is a token generated when getAndInc executed
flip. Hence, z is fresh wrt. any token-set from the pre-state
history η; and (2) t and ι satisfy the same bounds wrt. res+2,
as those described for the last history entry and ιO.
How will the spec (17) be used? The clause χS = ηS ·∪(res+
2) 7→− of (17), in conjunction with the invariant (ii), ensures
that any two calls to getAndInc, sequential or concurrent,
yield different history entries, and hence different results.
This establishes R1, which we will not discuss further.

The inequality on last (ηS ·∪ ηO) will provide for R2 in
client reasoning. To see how, consider the particular case

7 That is, ηO and ιO take the role of χO and τO in invariants (ii)–(vi), with
ni
J = last (χS ·∪ ηO)i. The formal definition of I is in our proof scripts.

{
τS = ∅, χS = ηS, ηO ⊆ χO, I ηO ιO,
ιO ⊆ τO ·∪ (spent χO \ spent ηO)

}
getAndInc() ei

∃ι̂ ηi. τS = ∅, χS = ηS ·∪ ηi ·∪ (res.1 + 2) 7→ (ι̂,−) ,

ηO ⊆ χO, ιO ⊆ τO ·∪ (spent χO \ spent ηO), I ηO ιO,
last (ηS ·∪ ηO) < res.1 + 2 + 2 |ι̂ ∩ ιO|


Figure 6. Parallel composition of getAndInc and ei in (20).

when ιO is empty, i.e., the pre-state is quiescent. In that case,
the intersection with ι̂ is empty, and we can infer that res+2,
is larger than either counter’s value in the pre-state. As we
shall see in Section 7, this captures the essence of QC.

Finally, the predicate ResPast (18) establishes a bound
for the “out-of-order” discrepancy between the result res and
any value t committed to the history in the past, via 2 |ι̂∩ ι|.
We will further bound this value using the size of ι̂, and the
inclusion ι̂ ⊆ τO ·∪ spent χO from (18). These bounds will
ultimately enable us to derive the requirement R3.

7. Verifying Counting Network’s Clients

Following Step 3 of our verification method, we now il-
lustrate requirements R2 and R3 from the previous sec-
tion via two different clients which execute two sequential
calls to getAndInc. Both clients are higher-order, i.e., they
are parametrized by subprograms, which can be “plugged
in”. The first client will exhibit a quiescence between the
two calls, and we will prove that the call results appear
in order, as required by R2. The second client will experi-
ence interference of a program with a N concurrent calls
to getAndInc, and we will derive a bound on the results in
terms of N , as required by R3.

Both our examples will rely on the general mechanism
of hiding, presented in Section 4, as a way to logically
restrict the interference on a concurrent object, in this case, a
counting network, in a lexically-scoped way. To “initialize”
the counting network data structure, we provide the starting
values for the shared heap (h0) and for the history (η0),
assuming that the initial set of tokens is empty:

h0 =̂ bal 7→ 0 ·∪ c0 7→ 0 ·∪ c1 7→ 1

η0 =̂ {0 7→ ({0} , 0), 1 7→ ({1} , 1)}
(19)

That is, η0 provides the “default” history for the initial values
0 and 1 of c0 and c1, with the corresponding tokens repre-
sented by numbers 0 and 1. As always with hiding, the post-
condition of the hidden program will imply that τO and χO

are both empty, as there is no interference at the end.

12

7.1 Exercising Quiescent Consistency
Our first client is the following program eqc :

1 (res1,−)← (getAndInc() || e1);

2 (res2,−)← (getAndInc() || e2);

3 return (res1, res2)

(20)

Each of the calls to getAndInc interferes with either e1 or
e2, but in the absence of external interference, the quiescent
state is reached between the lines 1 and 2. Hence, after
executing hide eqc , it should be res1 < res2, following R2.

The programs e1 and e2 can invoke getAndInc and mod-
ify the counters concurrently with the two calls of eqc , which
we capture by giving both the following generic spec:

{ χS = ∅, τS = ∅, ι ⊆ τO ·∪ spent χO }
ei{

∃ηi. χS = ηi, τS = ∅, ι ⊆ τO ·∪ spent χO

} (21)

The postcondition allows for a number of increments via
calls to getAndInc, which is reflected in the addition ηi to
χS. However, all such calls are required to be finished by the
end of ei (τS = ∅). As customary by now, we use the logical
variable ι to name the initial set of other tokens.

Figure 6 provides a spec for each of the parallel compo-
sitions in the program (20), proved via the corresponding
FCSL inference rule for parallel composition (11). The spec
is very similar to (17) with the differences highlighted via
gray boxes: (a) the self-history χS is increased by ei’s contri-
bution ηi in addition to the entry, introduced by getAndInc,
(b) the result of the parallel composition is a pair, but we
only constrain its first component res.1, resulting from the
left subprogram. We also drop the last conjunct with ResPast
from (17), which we won’t require for this example.

Next, we use the spec from Figure 6 to specify and verify
the program eqc , so far assuming external interference.{
Fig. 6’s precondition with ηS := η0, ηO := χO, and ιO := τO

}
// P

(res1,−)← (getAndInc() || e1);{
∃η1. τS = ∅, χS = η′S, . . .

where η′S = η0 ·∪ η1 ·∪ (res1 + 2) 7→ − , ηO := χO and ιO := τO

}
(res2,−)← (getAndInc() || e2);∃η1 η2 ι̂. τS = ∅, ιO ⊆ τO ·∪ (spent χO \ spent ηO) ,

last (η′S ·∪ ηO) < res2 + 2 + 2 |ι̂ ∩ ιO| , . . .

 // Q

return (res1, res2); // =: res

{ Q(res.1/res1, res.2/res2) }

We start by instantiating the logical variables ηS, ηO and ιO
from Figure 6 with η0, current χO and τO, respectively, nam-
ing the obtained precondition P . In the following assertion
we focus on the clauses constraining τS and χS. To verify the
second call, we instantiate ηS, ηO and ιO from Figure 6 with
η′S = η0 ·∪ η1 ·∪ (res1 + 2) 7→ −, current χO and τO, corre-
spondingly, obtaining the postcondition, which we name Q.

{ (17)’s precondition with ηS := η0, ηO := χO, and ιO := τO }

res1 ← getAndInc();{
∃ι. τS = ∅, χS = η′S, . . .

where η′S = η0 ·∪ (res1 + 2) 7→ (ι,−)

}
res2 ← getAndInc();{

∃ι̂ z.ResPast(η′S ·∪ ηO) res2 ι̂ z, . . .
}

{
∃ι̂ z. ι̂ ⊆ τO ·∪ (spent χO) ·∪ {z} , z /∈ ι,

res1 + 2 < res2 + 2 + 2 |ι̂ ∩ ι|

}
return (res1, res2) // =: res{

res.1 < res.2 + 2 |τO ·∪ spent χO|
}

Figure 7. Proof outline of sequential composition in (24).

The inequality in the postcondition Q gives the bound-
ary on the out-of-order position of res2 with respect to the
last value in the history captured in between the two parallel
compositions. The boundary is given via the size of inter-
section of the two sets of tokens: snapshot (ι̂) and “alive”
between the calls (ιO). Now, to ensure the absence of ex-
ternal interference, we consider the program (hide eqc). By
the general property of hiding (Section 4), we know that at
the final state there is no interference, hence τO = ∅ and
χO = ∅ in Q. Therefore, from the set inclusion on ιO in Q
(the grayed part), we deduce that ιO = ∅. As a consequence,
the intersection ι̂∩ ιO = ∅, so from the inequality we obtain

last (η′S ·∪ ηO) < res.2 + 2 (22)

But η′S is defined as (res.1+2) 7→ − ·∪. . ., hence, res.1+2 ∈
dom η′S, and thus res.1 + 2 ≤ last η′S. Even more:

res.1 + 2 ≤ last (η′S ·∪ ηO). (23)

From (22) and (23) follows the result R2: res.1 < res.2.

7.2 Proving Quantitative Bounds
We next show how the spec (17) also obtains quantitative
bounds on the out-of-order anomalies in terms of a number
of running threads in the following program eqqc :

1 res1 ← getAndInc();

2 res2 ← getAndInc();

3 return (res1, res2)

e (24)

The e’s spec says that the number of calls to getAndInc in e
(i.e., the size of interference e exhibits) is some fixed N :

{τS = ∅, χS = ηS} e
{
∃η. τS = ∅, χS = ηS ·∪ η, |η| = N

}
(25)

Our goal is to prove that in the absence of external interfer-
ence for eqqc , res1 < res2 + 2 N (requirement R3).

We first verify the sequential composition of the two calls
in (24); the proof outline is in Figure 7. As previously, we

13

{ τS = ∅, χS = η0, . . . } // P{
τS = ∅, χS = η0

} {
τS = ∅, χS = ∅

}
res1 ← getAndInc();

res2 ← getAndInc();

return (res1, res2) // =: res

e

{
res.1 < res.2 + 2 |τO ·∪ spent χO|

} {
∃η. χS = η, |η| = N, . . .

}
// res1 := res.1.1, res2 := res.1.2

{res1 < res2 + 2 |τO ·∪ spent (χO ·∪ η)|}
{res1 < res2 + 2 |τO ·∪ spent χO|+ 2 N} // Q

Figure 8. Proof outline for the eqqc program.

start by instantiating the logical variables ηS, ηO and ιO
from spec (17) with ηS, χO and τO, respectively. In the
assertion, resulting by of the first getAndInc, we keep only
the clauses involving τS and χS, dropping the rest. To verify
the second getAndInc call, we instantiate ηS, ηO and ιO with
η′S = ηS ·∪ (res1 + 2) 7→ (ι,−), current χO and τO.

In the postcondition of the second call to getAndInc, we
focus on the ResPast (η′S ·∪ ηO) res2 ι̂ z clause, where ι̂
is the set of tokens snapshot when contributing res2 + 2.
Unfolding the definition of ResPast from (18), we obtain
ι̂ ⊆ τO ·∪ spent χO ·∪ {z}. Also, using (res1 + 2) 7→ (ι,−) in
the implication that the unfolding obtains, we get z /∈ ι and

res1 + 2 < res2 + 2 + 2 |ι̂ ∩ ι| (26)

Now we use the following trivial fact to simplify.

Lemma 7.1. If z ∈ ι̂ and z /∈ ι, then |ι̂ ∩ ι| ≤ |ι̂| − 1.

Using the invariant (v), Lemma 7.1 derives |ι̂ ∩ ι| ≤ |ι̂| − 1
after which, the inclusion ι̂ ⊆ τO ·∪ spent χO ·∪ {z} leads to

|ι̂ ∩ ι| ≤ |τO ·∪ spent χO| (27)

Combined with (26), this gives us res1 < res2 + 2 |τO ·∪
spent χO|, as shown in Figure 7’s postcondition. In words,
it asserts that the discrepancy between res.1 and res.2 is
bounded by the size of the tokens, which are either held by
the interfering threads at the end or are spent.

Figure 8 shows the proof outline for eqqc via the spec
from Figure 7. By the parallel composition rule (11), the
precondition splits into two subjective views, where we send
the initial history η0 to the left thread, and the empty history
to the right thread. The proof from Figure 7 then applies to
the left thread, and the spec (25) applies to the right one.
Final χO of the left thread is the union of χO from the
joined thread with η, since the environment of the left thread
includes the right thread and of the join. Rewriting by this
property in the postcondition of the left thread gives us the
post of the joint thread: res1 < res2+2 |τO ·∪spent (χO ·∪η)|,
which we can next simplify into

res1 < res2 + 2 |τO ·∪ spent χO|+ 2 N

because spent distributes over ·∪, and |spent η| = |η| = N .
Finally, we restrict the external interference by considering
(hide eqqc). From the properties of hiding, we deduce that
τO and χO in Q are empty, hence we can simplify into
res1 < res2 + 2 N , which is the desired result R3.

8. Discussion

Reasoning about quantitatively quiescent queues The idea
of interference-capturing histories, which allowed us to
characterize the out-of-order discrepancies between the re-
sults of a counting network in Section 6, can be applied to
specify other balancer-based data structures, for instance,
queues [10]. The picture on the right illustrates schemat-
ically a non-linearizable queue [10], which is built out of

q0
q1

bale
0

1

bald 1

0

two atomic queues, q0 and q1,
and two balancers, bale and
bald. The balancers are used to
distribute the workload between
the two queues by directing the
threads willing to enqueue and
dequeue elements, correspondingly.

One can think of representing the pending enqueue/de-
queue requests to each of the two queues, q0 and q1, by two
separate sets of tokens, as shown in Figure 9. The white and
gray boxes correspond to the present and dequeued nodes
in the queue in the order they were added/removed. There-
fore, white elements are those that are currently in the queue.
Similarly, the white-colored tokens are for enqueueing ele-
ments, so the elements x, y, z and k are going to be added to
the corresponding atomic queues. Gray-colored tokens cor-
respond to dequeueing capabilities for one or another atomic
queue, distributed among the threads, so the elements c and
d are going to be removed next, on the expense of the corre-
sponding dequeue tokens. The timestamps of the entries in
the queue history, omitted from the figure, are created, as el-
ements are being enqueued to q0 and q1, and the parity of a
timestamp corresponds to the atomic queue being changed.
Thus, there might be “gaps” in the combined queue history
reminiscent to the gaps in the counter history from Section 6
(e.g., the gap caused by the absence of an “even” element in
the combined history right between d and e in Figure 9, as
indicated by “?”), which will cause out-of-order anomalies
during concurrent executions. By accounting for the number
of past and present tokens for enqueueing and dequeueing,
one should be able to capture the effects of interference and
express a quantitative boundary on the discrepancy between
the results, coming out of order.

How much information to expose in a spec? The specs
we have proved for concurrent objects in Sections 2 and 6
allow for efficient compositional reasoning about clients, but
they are also non-trivial to formulate and verify. Luckily, the
FCSL way of reasoning provides a flexible solution for the
compositionality-versus-complexity conundrum [31, §7].

14

history of the queue q0

history of the queue q1

tokens for enqueueing/dequeueing

e(x)0 e(y)0 e(z)0 d0

e(k)1 d1

a c

b d e

? ? ?

?

Figure 9. Tokens and histories of a balancer-based queue.

In FCSL, it is up to the library implementor to decide, how
much of implementation-specific insight should go into a
spec. The amount of such details is determined based on the
foreseen client scenarios. For instance, we have hidden the
balancer in the spec (17), but decided keep the exact constant
2, which would allow us to derive more precise quantitative
bounds later (see Section 7.2). We could have hidden this
component too (as well as some parts of the invariant I), by
employing in the specification sigma-types (a dependently-
typed analogue of existential types), provided by FCSL as
it’s embedded into Coq [7]. We could have also omitted
tokens from the spec, therefore, reducing the set of derivable
client-specific properties to Section 6’s R1 only.

9. Mechanization and Evaluation
We have mechanized the specs and the proofs of all the ex-
amples from this paper [1], taking advantage of the fact that
FCSL has been recently implemented as a tool for concur-
rency verification [40] on top of the Coq proof assistant [7].

Table 1 summarizes the statistics with respect to our
mechanization in terms of lines of code and compilation
times. The examples were proof-checked on a 3.1 GHz Intel
Core i7 OS X machine with 16 Gb RAM, using Coq 8.5pl2
and Ssreflect 1.6 [17]. As the table indicates, a large fraction
of the implementation is dedicated to proofs of preservation
of resource invariants (Inv), i.e., checking that the actual im-
plementations do not “go wrong”. In our experience, these
parts of the development are the most tricky, as they require
library-specific insights to define and reason about auxil-
iary histories. Since FCSL is a general-purpose verification
framework, which does not target any specific class of pro-
grams or properties, we had to prove problem-specific facts,
e.g., lemmas about histories of a particular kind (Facts), and
to establish the specs of interest stable (Stab). Once this
infrastructure has been developed, the proofs of main proce-
dures turned out to be relatively small (Main).

Fortunately, trickiness in libraries is invisible to clients,
as FCSL proofs are compositional. Indeed, because specs
are encoded as Coq types [40], the substitution principle
automatically applies to programs and proofs. At the mo-
ment, our goal was not to optimize the proof sizes, but to
demonstrate that FCSL as a tool is suitable off-the-shelf
for machine-checked verification of properties in the spirit
of novel correctness conditions [4, 22, 28]. Therefore, we
didn’t invest into building advanced tactics [34] for specific
classes of programs [52] or properties [6, 13, 51].

Program Facts Inv Stab Main Total Build

Exchanger (§3) 365 1085 446 162 2058 4m 46s
Exch. Client (§5) 258 – – 182 440 57s
Count. Netw. (§6) 379 785 688 27 1879 12m 23s
CN Client 1 (§7.1) 141 – – 180 321 3m 11s
CN Client 2 (§7.2) 115 – – 259 374 3m 9s

Table 1. Mechanization of the examples: lines of code for
program-specific facts (Facts), resource invariants and tran-
sitions (Inv), stability proofs for desired specs (Stab), spec
and proof sizes for main functions (Main), total LOC count
(Total), and build times (Build). The “–” entries indicate the
components that were not needed for the example.

10. Related Work
Linearizability and history-based criteria. The need for
correctness criteria alternative to linearizability [25], which
is more relaxed yet compositional, was recognized in the
work on counting networks [4]. The suggested notion of qui-
escent consistency [43] required the operations separated by
a quiescent state to take effect in their logical order. A more
refined correctness condition, quasi-linearizability, imple-
menting a relaxed version of linearizability with an upper
bound on nondeterminism, was proposed by Afek et al. [2],
allowing them to obtain the quantitative boundaries simi-
lar to what we proved in Section 7.2. The idea of relaxed
linearizability was later used in the work on quantitative
relaxation (QR) [23] for designing scalable concurrent data
structures by changing the specification set of sequential his-
tories. Most recently, quantitative quiescent consistency has
been proposed as another criterion incorporating the pos-
sibility to reason about effects of bounded thread interfer-
ence [28]. It is worth noticing that some of these correctness
criteria are incomparable (e.g., QC and QR [23], QL and
QQC [28]) hence, for a particular concurrent object, choos-
ing one or another criterion should be justified by the needs
of the object’s client. Therefore, a suitable correctness con-
dition is essentially “in the eye of the beholder”, as is typical
in programming, when designing libraries and abstract data
structures, and the logic-based approach we advocate pro-
vides precisely this flexibility in choosing desired specs.
Hoare-style specifications of concurrent objects. Hoare-
style program logics were used with great success to ver-
ify a number of concurrent data structures and algorithms,
which are much more natural to specify in terms of observ-
able state modifications, rather than via call/return histories.
The examples of such objects and programs include barri-
ers [12, 26], concurrent indices [8], flat combiner [41, 47],
event handlers [44], shared graph manipulations [37, 40],
as well as their multiple client programs. The observation
about a possibility of using program logics as a correct-
ness criterion, alternative to linearizability, has been made in
some of the prior works [8, 27, 45]. Their criticism of lin-
earizability addressed its inability to capture the state-based

15

properties, such as dynamic memory ownership [27]—
something that linearizability indeed cannot tackle, unless
it’s extended [19]. However, we are not aware of any prior
attempts to capture CAL, QC and QQC-like properties of
concurrent executions by means of one and the same pro-
gram logic and employ them in client-side reasoning.

Several logics for proving linearizability or, equivalently,
observational refinement [15, 49], have been proposed re-
cently [33, 47, 50], all employing variations of the idea of
using specifications as resources, and identifying (possibly,
non-fixed or non-local) linearization points, at which such
specification should be “run”. In these logics, after establish-
ing linearizability of an operation, one must still devise its
Hoare-style spec, such that the spec is useful for the clients.

Similarly to the way linearizability allows one to replace
a concurrent operation by an atomic one, several logics have
implemented the notion of logical atomicity, allowing the
clients of a data structure to implement application-specific
synchronization on top of the data structure operations. Log-
ical atomicity can be implemented either by parametrizing
specs with client-specific auxiliary code [27, 30, 44, 45] or
by engineering dedicated rules relying on the simulation be-
tween the actual implementation and the “atomic” one [9].

Instead of trying to extend the existing approaches for
logical atomicity to non-linearizable objects (for which the
notion of atomicity is not intuitive), we relied on a gen-
eral mechanism of auxiliary state, provided by FCSL [35].
Specifically, we adopted the idea of histories as auxiliary
state [41], which, however, was previously explored in the
context of FCSL only for specifying linearizable structures.
We introduced enhanced notation for referring directly to
histories (e.g., χS, χO), although FCSL’s initial logical in-
frastructure and inference rules remained unchanged.

In this work, we do not argue that FCSL is the only
logic capable of encoding custom correctness conditions and
their combinations, though, we are not aware of any other
work exploring a similar possibility. However, we believe
that FCSL’s explicit other subjective state component pro-
vides the most straightforward way to do so. The logics like
CAP [11] and TaDA [9], from our experience and personal
communication with their authors, may be capable of im-
plementing our approach at the expense of engineering a
complicated structure of capabilities to encode histories and
“snapshot” interference of an environment. Other logics in-
corporating the generic PCM structure [29, 30, 37, 48] might
be able to implement our approach, although none of these
logics provide an FCSL-style rule for hiding (12) as a uni-
form mechanism to express explicit quiescence.

Concurrently with this work, Hemed et al. developed a
(not yet mechanized) verification technique for CAL [22],
which they applied to the exchanger and the elimination
stack. Similarly to our proposal, they specify CAL-objects
via Hoare logic, but using one global auxiliary history,
rather than subjective auxiliary state. This tailors their sys-

tem specifically to CAL (without a possibility to incorpo-
rate reasoning about other, non CA-linearizable, concurrent
structures), and to programs with a fixed number of threads.
In contrast, FCSL supports dynamic thread creation, and is
capable of uniformly expressing and mechanically verifying
several different criteria, with CAL merely a special case,
obtained by a special choice of PCM. Moreover, in FCSL
the criteria combine, as illustrated in Section 5, where we
combined quiescence with CAL via hiding. Hiding is cru-
cial for verifying clients with explicit concurrency, but is
currently unsupported by Hemed et al.’s method.

11. Conclusion and Future Work
We have presented a number of formalization techniques,
enabling specification and verification of non-linearizable
concurrent objects and their clients in Hoare-style program
logics. All the explored reasoning patterns involve the idea
of formulating execution histories as auxiliary state, captur-
ing the expected concurrent behavior. We have discovered
that quantitative logic-based reasoning about concurrent be-
haviors can be done by storing relevant information about
interference directly into the entries of a logical history.

We believe that our results help to bring the Hoare-style
reasoning into the area of non-linearizable concurrent ob-
jects and open a number of exciting opportunities for the
field of mechanized logic-based concurrency verification.

For instance, in this paper we have deliberately chosen to
focus on simple client programs to showcase the specs we
gave to concurrent libraries. However, any larger program
incorporating these examples can be verified composition-
ally in FCSL, out of these clients’ specs, via the substitution
principles of FCSL [35, 40], without the need to deal with
concepts such as histories and tokens that are specific to par-
ticular libraries. We believe that the reasoning patterns we
have described will be useful for mechanical verification of
larger weakly-synchronized approximate parallel computa-
tions [38], exploiting the QC and QQC-like behavior.

Furthermore, by ascribing interference-sensitive quanti-
tative specs in the spirit of (17) to relaxed concurrent li-
braries [23], one can assess the applicability of a library im-
plementation for its clients: the clients should tolerate the
anomalies caused by interference, as long as they can logi-
cally infer the desired safety assertions from a library spec,
which is fine-tuned for particular usage scenarios.

Acknowledgements We thank the anonymous reviewers
from OOPSLA’16 PC and AEC for their feedback. We are
grateful to Yannis Smaragdakis for his efforts as OOPSLA
PC chair and to Sophia Drossopoulou for her dedication
to bring out the best of the paper. This research was par-
tially supported by the Spanish MINECO project RISCO
(TIN2015-71819-P) and the US National Science Founda-
tion (NSF). Any opinion, findings, and conclusions or rec-
ommendations expressed in the material are those of the
authors and do not necessarily reflect the views of NSF.

16

A. Exchanger Invariants and Proof Outline

In this section, we formally define the exchanger’s state
invariants, and present the proof outline for its spec (10).

Additional exchanger invariants The states in the ex-
changer state-space must satisfy other invariants in addition
to (9). These properties arise from our description of how the
exchanger behaves on decorated state. We abbreviate with
p 7→ (x; y) the heap p 7→ x ·∪ p+1 7→ y.
(i) hJ contains a pointer g and a number of offers p 7→

(v;x), and g points to either null or to some offer in hJ.
(ii) χS, χO and ||mJ|| contain only disjoint time-stamps. Sim-

ilarly, πS is disjoint from πO.
(iii) All offers in mJ are matched and owned by some thread:
∃t. p 7→ (t, v, w) ⊆ mJ ⇔ p ∈ πS ·∪ πO, p 7→ (v;M w) ⊆ hJ.

(iv) There is at most one unmatched offer; it is the one linked
from g. It is owned by someone: p 7→ (v;U) ⊆ hJ =⇒
p ∈ πS ·∪ πO, g 7→ p ⊆ hJ. .

(v) Retired offers aren’t owned: p 7→ (v;R)⊆hJ⇒ p /∈πS ·∪πO.
(vi) The outstanding offers are included in the joint heap, i.e.,

if p ∈ πS ·∪ πO then p ∈ dom hJ.
(vii) The combined history χS ·∪ χO ·∪ ||mJ|| is gapless: if it

contains a time-stamp t, it also contains all the smaller
time-stamps (sans 0).

Explaining the proof outline Figure 10 presents the proof
outline for the spec (10). We start with the precondition, and
after allocation in line 2, hS stores the offer p in line 3.

If CAS at line 4 succeeds, the program “installs” the offer;
that is, the state (real and auxiliary) is changed simultane-
ously to the modification of g. In particular, p is added to πS,
and the offer p changes ownership, to move from hS to hJ.
Since b will be bound to null, this leads us to the assertion in
line 7. We explain in Section 4 how these kinds of changes
to the auxiliary state, which are supposed to occur simulta-
neously with some atomic operation (in this case, CAS), are
specified and verified in FCSL. The assertion in line 7 further
states bounded p v η. We do not formally define bounded
here (it is in the proof scripts, accompanying the paper), but
it says that p has been moved to hJ, i.e., p 7→ (v;−) ⊆ hJ,
and that any time-stamp t at which another thread may match
p, and thus place the entry p 7→ (t, v,−) into mJ, must sat-
isfy last(η) < t, t̄. Intuitively, this property is valid, and sta-
ble under interference, because entries in mJ can be added
only by generating fresh time-stamps wrt. the collective his-
tory χO ·∪ ||mJ||, and η is a subset of it. If CAS in line 4 fails,
then nothing changes, so we move to the spec in line 15.

At line 8, CAS succeeds if x=U, and fails if x=M w. No-
tice that x cannot be R; since we own p ∈ πS, no other thread
could retire p. If CAS fails, then the offer has been matched
with w. CAS simultaneously “collects” the offer as follows.
By invariant (iii), and bounded p v η, the auxiliary map mJ

contains an entry p 7→ (t, v, w), where last(η) < t, t̄. The
auxiliary state is changed to remove p from mJ, and simul-
taneously place t 7→ (v, w) into χS. If CAS succeeds, the of-

1 {hS = ∅, πS = ∅, χS = ∅, η ⊆ χO ·∪ ||mJ||}
2 p← alloc (v,U);
3 {hS = p 7→ (v;U), πS = ∅, χS = ∅, η ⊆ χO ·∪ ||mJ||}
4 b← CAS (g,null, p);
5 if b == null then
6 sleep (50);
7 {hS = ∅, πS = {p}, χS = ∅, η ⊆ χO ·∪ ||mJ||,bounded p v η}
8 x← CAS (p+1,U,R);
9 {hS = ∅, πS = ∅, η ⊆ χO ·∪ ||mJ||,

10 x = M w =⇒ ∃t. χS = t 7→ (v, w), last(η) < t, t̄,
11 x = U =⇒ χS = ∅}
12 if x is M w then return (Some w)
13 else return None
14 else
15 {hS = p 7→ (v;U), πS = ∅, χS = ∅, η ⊆ χO ·∪ ||mJ||}
16 dealloc p;
17 {hS = ∅, πS = ∅, χS = ∅, η ⊆ χO ·∪ ||mJ||}
18 cur ← read g;
19 {hS = ∅, πS = ∅, χS = ∅, η ⊆ χO ·∪ ||mJ||,
20 cur = null ∨ cur 7→ (w;−) ⊆ hJ}
21 if cur == null then return None
22 else
23 {hS = ∅, πS = ∅, χS = ∅, η ⊆ χO ·∪ ||mJ||, cur 7→ (w;−) ⊆ hJ}
24 x← CAS(cur+1,U,M v);
25 {hS = ∅, πS = ∅, η ⊆ χO ·∪ ||mJ||, cur 7→ (w; y) ⊆ hJ,
26 x = U =⇒ y = M v,∃t. χS = t 7→ (v, w), last(η) < t, t̄,
27 x 6= U =⇒ χS = ∅, y 6= U}
28 CAS (g, cur, null);
29 {same as above; the state satisfies (iv) because y 6= U}
30 if x == U then w ← read cur; return (Some w)
31 {hS = ∅, πS = ∅, η ⊆ χO ·∪ ||mJ||, res = Some w,
32 ∃t.χS = t 7→ (w, v), last(η) < t, t̄}
33 else return None}
34 {hS = ∅, πS = ∅, χS = ∅, η ⊆ χO ·∪ ||mJ||, res = None}

Figure 10. Proof outline for the exchanger.

fer was unmatched, and is “retired” by removing p from πS.
Lines 12-13 branch on x, selecting either the assertion 10 or
11, so the postcondition follows.

After reading cur in line 18, by invariant (i), we know that
cur either points to null, or to some offer p 7→ (w;−) ⊆ hJ.

At line 24, the CAS succeeds if x = U and fails otherwise.
If CAS succeeded, then it “matches” the offer in cur; that is,
it writes M w into the hole of cur, and changes the auxiliary
state as follows. It takes t to be the smallest unused time-
stamp in the history χ = χS ·∪χO ·∪ ||mJ||. Thus last(χ) < t,
and because χ has even size by invariant (9), t must be odd,
and hence t < t̄ = t + 1. The t 7→ (v, w) is placed into
χS, giving us assertion 26. To preserve the invariant (iii),
CAS simultaneously puts the entry p 7→ (t, w, v) into mJ, for
future collection by the thread that introduced offer cur. But,
we do not need to reflect this in line 26. If the CAS fails, the
history χS remains empty, as no matching is done. However,
the hole y associated with cur cannot be U, as then CAS

would have succeded. Therefore, it is sound in line 28 to
“unlink” cur from g, as the unlinking will not violate the
invariant (iv), which says that an unmatched offer must be
pointed to by g. Finally, lines 30 and 33 select the assertion
26 or 27, and either way, directly imply the postcondition.

17

References
[1] FCSL: Fine-grained Concurrent Separation Logic. Coq De-

velopment and Code Commentary. Available on the project
website at http://software.imdea.org/fcsl.

[2] Y. Afek, G. Korland, and E. Yanovsky. Quasi-Linearizability:
Relaxed Consistency for Improved Concurrency. In OPODIS,
pages 395–410. Springer, 2010.

[3] M. Ajtai, J. Komlós, and E. Szemerédi. AnO(n log n) sorting
network. In STOC, pages 1–9. ACM, 1983.

[4] J. Aspnes, M. Herlihy, and N. Shavit. Counting networks. J.
ACM, 41(5):1020–1048, 1994.

[5] C. J. Bell, A. W. Appel, and D. Walker. Concurrent separation
logic for pipelined parallelization. In SAS, pages 151–166.
Springer, 2010.

[6] A. Bouajjani, M. Emmi, C. Enea, and J. Hamza. Tractable
refinement checking for concurrent objects. In POPL, pages
651–662. ACM, 2015.

[7] Coq Development Team. The Coq Proof Assistant Reference
Manual - Version 8.5pl2, 2016. https://coq.inria.fr.

[8] P. da Rocha Pinto, T. Dinsdale-Young, M. Dodds, P. Gardner,
and M. J. Wheelhouse. A simple abstraction for complex
concurrent indexes. In OOPSLA, pages 845–864. ACM, 2011.

[9] P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner. TaDA:
A Logic for Time and Data Abstraction. In ECOOP, pages
207–231. Springer, 2014.

[10] J. Derrick, B. Dongol, G. Schellhorn, B. Tofan, O. Travkin,
and H. Wehrheim. Quiescent Consistency: Defining and
Verifying Relaxed Linearizability. In FM, pages 200–214.
Springer, 2014.

[11] T. Dinsdale-Young, M. Dodds, P. Gardner, M. J. Parkinson,
and V. Vafeiadis. Concurrent Abstract Predicates. In ECOOP,
pages 504–528. Springer, 2010.

[12] M. Dodds, S. Jagannathan, and M. J. Parkinson. Modular
reasoning for deterministic parallelism. In POPL, pages 259–
270. ACM, 2011.

[13] C. Dragoi, A. Gupta, and T. A. Henzinger. Automatic lineariz-
ability proofs of concurrent objects with cooperating updates.
In CAV, pages 174–190. Springer, 2013.

[14] Class Exchanger<V>, Java Platform SE 8 Documentation.
Available from http://docs.oracle.com/javase/8/

docs/api/java/util/concurrent/Exchanger.html.
Accessed June 24, 2015.

[15] I. Filipovic, P. W. O’Hearn, N. Rinetzky, and H. Yang. Ab-
straction for concurrent objects. Theor. Comput. Sci., 411(51-
52):4379–4398, 2010.

[16] M. Fu, Y. Li, X. Feng, Z. Shao, and Y. Zhang. Reasoning
about optimistic concurrency using a program logic for his-
tory. In CONCUR, pages 388–402. Springer, 2010.

[17] G. Gonthier, A. Mahboubi, and E. Tassi. A Small Scale
Reflection Extension for the Coq system. Technical Report
6455, Microsoft Research – Inria Joint Centre, 2009.

[18] A. Gotsman, N. Rinetzky, and H. Yang. Verifying concurrent
memory reclamation algorithms with grace. In ESOP, pages
249–269. Springer, 2013.

[19] A. Gotsman and H. Yang. Linearizability with ownership
transfer. In CONCUR, pages 256–271. Springer, 2012.

[20] A. Haas, T. A. Henzinger, A. Holzer, C. M. Kirsch, M. Lip-
pautz, H. Payer, A. Sezgin, A. Sokolova, and H. Veith. Lo-
cal Linearizability for Concurrent Container-Type Data Struc-
tures. In CONCUR, 2016. To appear.

[21] N. Hemed and N. Rinetzky. Brief announcement:
Concurrency-Aware Linearizability. In PODC, pages 209–
211. ACM, 2014.

[22] N. Hemed, N. Rinetzky, and V. Vafeiadis. Modular verifi-
cation of concurrency-aware linearizability. In DISC, pages
371–387. Springer, 2015.

[23] T. A. Henzinger, C. M. Kirsch, H. Payer, A. Sezgin, and
A. Sokolova. Quantitative relaxation of concurrent data struc-
tures. In POPL, pages 317–328. ACM, 2013.

[24] M. Herlihy and N. Shavit. The art of multiprocessor program-
ming. M. Kaufmann, 2008.

[25] M. Herlihy and J. M. Wing. Linearizability: A correctness
condition for concurrent objects. ACM Trans. Prog. Lang.
Syst., 12(3):463–492, 1990.

[26] A. Hobor and C. Gherghina. Barriers in concurrent separation
logic. In ESOP, pages 276–296. Springer, 2011.

[27] B. Jacobs and F. Piessens. Expressive modular fine-grained
concurrency specification. In POPL, pages 271–282. ACM,
2011.

[28] R. Jagadeesan and J. Riely. Between Linearizability and
Quiescent Consistency - Quantitative Quiescent Consistency.
In ICALP (2), pages 220–231. Springer, 2014.

[29] R. Jung, R. Krebbers, L. Birkedal, and D. Dreyer. Higher-
order ghost state. In ICFP. ACM, 2016.

[30] R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon,
L. Birkedal, and D. Dreyer. Iris: Monoids and invariants as
an orthogonal basis for concurrent reasoning. In POPL, pages
637–650. ACM, 2015.

[31] L. Lamport. Composition: A way to make proofs harder. In
COMPOS, pages 402–423. Springer, 1998.

[32] R. Ley-Wild and A. Nanevski. Subjective auxiliary state for
coarse-grained concurrency. In POPL, pages 561–574. ACM,
2013.

[33] H. Liang and X. Feng. Modular verification of linearizability
with non-fixed linearization points. In PLDI, pages 459–470.
ACM, 2013.

[34] A. McCreight. Practical Tactics for Separation Logic. In
TPHOLs, pages 343–358. Springer, 2009.

[35] A. Nanevski, R. Ley-Wild, I. Sergey, and G. A. Delbianco.
Communicating state transition systems for fine-grained con-
current resources. In ESOP, pages 290–310. Springer, 2014.

[36] S. S. Owicki and D. Gries. Verifying properties of parallel pro-
grams: An axiomatic approach. Commun. ACM, 19(5):279–
285, 1976.

[37] A. Raad, J. Villard, and P. Gardner. CoLoSL: Concurrent
Local Subjective Logic. In ESOP, pages 710–735. Springer,
2015.

[38] M. C. Rinard. Unsynchronized techniques for approximate
parallel computing. In RACES - SPLASH Workshop, 2012.

[39] W. N. Scherer III, D. Lea, and M. L. Scott. A scalable
elimination-based exchange channel. In SCOOL, 2005.

18

http://software.imdea.org/fcsl
https://coq.inria.fr
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Exchanger.html
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Exchanger.html

[40] I. Sergey, A. Nanevski, and A. Banerjee. Mechanized verifi-
cation of fine-grained concurrent programs. In PLDI, pages
77–87. ACM, 2015.

[41] I. Sergey, A. Nanevski, and A. Banerjee. Specifying and veri-
fying concurrent algorithms with histories and subjectivity. In
ESOP, pages 333–358. Springer, 2015.

[42] N. Shavit. Data structures in the multicore age. Commun.
ACM, 54(3):76–84, 2011.

[43] N. Shavit and A. Zemach. Diffracting trees. ACM Trans.
Comput. Syst., 14(4):385–428, 1996.

[44] K. Svendsen and L. Birkedal. Impredicative Concurrent Ab-
stract Predicates. In ESOP, pages 149–168. Springer, 2014.

[45] K. Svendsen, L. Birkedal, and M. J. Parkinson. Modular
reasoning about separation of concurrent data structures. In
ESOP, pages 169–188. Springer, 2013.

[46] R. K. Treiber. Systems programming: coping with parallelism.
Technical Report RJ 5118, IBM Almaden, 1986.

[47] A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement
and Hoare-style reasoning in a logic for higher-order concur-
rency. In ICFP, pages 377–390. ACM, 2013.

[48] A. Turon, V. Vafeiadis, and D. Dreyer. GPS: navigating weak
memory with ghosts, protocols, and separation. In OOPSLA,
pages 691–707. ACM, 2014.

[49] A. J. Turon, J. Thamsborg, A. Ahmed, L. Birkedal, and
D. Dreyer. Logical relations for fine-grained concurrency. In
POPL, pages 343–356. ACM, 2013.

[50] V. Vafeiadis. Modular fine-grained concurrency verification.
PhD thesis, University of Cambridge, 2007.

[51] V. Vafeiadis. Automatically proving linearizability. In CAV,
pages 450–464. Springer, 2010.

[52] K. Zee, V. Kuncak, and M. C. Rinard. Full functional verifica-
tion of linked data structures. In PLDI, pages 349–361. ACM,
2008.

19

	Introduction
	Concurrency Specification via Program Logics
	Contributions and Outline

	Main Ideas and Overview
	Abstract Histories of Non-linearizable Objects
	Hoare-style Specifications for exchange and flip2
	Using Subjective Specifications in the Client Code
	Specifying Non-linearizable Objects in Three Steps

	Verifying the Exchanger Implementation
	Step 1: Defining Auxiliary State and Invariants
	Step 2: Hoare-style Specification of Exchanger

	Background on FCSL
	Verifying Exchanger's Client
	Specifying Counting Networks
	Step 1: Counting Network's Histories and Invariants
	Step 2: a Hoare Spec for getAndInc

	Verifying Counting Network's Clients
	Exercising Quiescent Consistency
	Proving Quantitative Bounds

	Discussion
	Mechanization and Evaluation
	Related Work
	Conclusion and Future Work
	Exchanger Invariants and Proof Outline

